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Abstract As HIV/TB co-infected patients are started to be visited, it is common to
measureweight andCD4 repeatedly overtime to determine the health status of patients.
Most of the time linear mixed modeling of weight and CD4 count cannot handle the
association between the outcomes whereas the joint modeling of multivariate linear
mixed model does. Thus, this study was an attempt to model jointly the longitudinal
CD4 and weight measurements of HIV/TB co-infected patients. This retrospective
study consists of 254 HIV/TB co-infected patients who were 18years old and above,
and on ART followup from 1st February 2009 to 1st July 2014 at Jimma University
Specialized Hospital. Firstly, weight and square root of CD4 count were analyzed
separately. Based on the separate model, the joint models were built to know the cor-
relation betweenmean change of weight and CD4 count overtime. Finally, appropriate
model was selected based on AIC and BIC values. The fit statistics showed that the
joint model fitted the data better than the separate model. From the joint model sex,
educational level and functional status were the factors contributing to the prediction
of HIV/TB co-infected patients weight at baseline. Beside the linear time effect has a
positive effect on the mean change of weight whereas the quadratic time change has
negative effect. The baseline CD4 count was differ by patient status and functional
status. Further, the linear time effect has a positive sign and found to be statistically
significant at 5% level of significance on the mean change of the square root of CD4
count. Nevertheless, the quadratic time effect has a significant negative effect. The
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finding of the current study revealed that there was a moderate positive association
between the mean change of weight and square root of CD4 count overtime.

Keywords Co-infection · Longitudinal analysis · Linear mixed model · Multivariate
linear mixed model

1 Background of the Study

Tuberculosis and HIV have been closely linked since the emergence of AIDS and
TB is the most common infectious disease affecting HIV-sero positive individuals
and causing to their death [1,2]. Globally, the number of TB patients who had been
diagnosed with HIV status reached 2.1 million in 2010 which is equivalent to 34%
of notified cases of TB. Of the 8.8 million incident cases worldwide an estimated 1.1
million (13%) were found to be co-infected with HIV [3].
Today, HIV and TB treatments are common in many societies and the use of drugs
has altered the joint dynamics of both diseases. About one third of 39.5 million HIV
infected people worldwide were co-infected with TB [4] and up to 50% of individuals
living with HIV are expected to develop TB. Many TB carriers who were infected
with HIV are 30–50 times more likely to develop active TB than those without HIV.
For individuals infected with HIV the presence of other infections including TB tends
to increase the rate of HIV replication. This acceleration may result in higher levels
of infection and rapid HIV progression to the AIDS stage [5].
Over the past 20years, HIV has fuelled TB notification rates which have increased
3–5 fold in many African countries. By 2007, the continent accounted for 79% of
the global burden of HIV associated TB [6]. Worst affected were those countries in
the east and south of the continent where HIV prevalence rates are highest. In South
Africa and Swaziland approximately 1% of the population develops TB annually.
Notification rates in some poor communities in South Africa have even increased
to over 2% per year rates that are almost unprecedented in the era of short course
multi-drug chemotherapy [7,8].
WHO ranked Ethiopia as seventh among the 22 high burden countries with TB where
the estimated annual incidence and prevalence, respectively, were 379 and 643 cases
per 100,000 populations [9]. The prevalence of HIV among TB patients was estimated
as high as 41% [10,11]. In Ethiopia routine data obtained from 44 locations in the year
2005/2006 showed that about 41% of TB patients were HIV+. In addition, another
routine data set collected in 2006/2007 estimated that some 31% of TB patients were
HIV+ [12]. TB was the cause of 76,000 deaths in Ethiopia out of which 30% were
among HIV+ patients [6]. Beside the rate of mortality caused by the co-infection,
the extent of the negative impact on the quality of livelihood resulting from mental
disorders was studied [13].
In many medical cases more than one clinical outcome are measured longitudinally
at the same time on the same subject where these measured clinical outcomes are
correlated. For example, SBP and DBP for hypertensive patients and CD4 count, beta-
2-macroglobulin and weight for HIV infected patients were measured longitudinally
at same time. Since they are highly related changes in either often affect changes
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in the other. In such cases the univariate longitudinal analysis does not take into
account correlation between observations on different response variables at each time
points. Beside this knowing how the evolution of one is related to the evolution of
the other, as well as how the association changes or evolves overtime is difficult from
univariate longitudinal analysis. Joint modeling of longitudinal data in other way
round accounts two types of correlations which are known to be serial correlation and
cross correlation. The serial correlation accounts correlation between observations at
different time points within a subject and the cross correlation accounts correlation
between different responses at each time point. If different types of outcomes are
measured at each time point, the correlation structure is more complicated and hence,
more difficult for drawing inference [14,15].
Therefore, the primary objective of present studywas tomodel jointlyweightwhich act
as a marker for TB patients and CD4 count which act as a biomarker for HIV infected
individuals. Furthermore, the study deals with linear mixed modeling of weight and
CD4 count measurements to know the factors that affect the mean change of each
outcome variable overtime.

2 Materials and Methods

2.1 Data Source

TheHIV/TBco-infectiondata used for this studywereobtained fromJimmaUniversity
Specialized Hospital HIV and TB Outpatient Clinics, South West of Ethiopia. The
study population consists of all HIV/TB co-infected patients who were 18years old
and above, and who were on ART treatment any time between 1st February 2009 and
1st July 2014.Of the total 850 co-infected patients fromboth clinics at the hospital, 254
patients who have at least one CD4 count and weight at the same time were considered
for the study. All the patients’ epidemiological, laboratory and clinical information
were obtained from the patients chart of ART followup retrospectively from patients
card.

2.2 Ethical Consideration

Ethical clearance was obtained from Department of Statistics of Jimma University.
Personal information was kept confidentially without disclosing to others during data
collection from patient cards.

2.3 Variables of the Study

The two outcome variables considered for this study were the longitudinal CD4 count
measurement and weight of co-infected patients which is measured in kg. The CD4
cell counts per mm3 of blood, which is considered as a biomarker was measured
approximately within 6months interval whereas the weight of the patients were mea-
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Table 1 List of covariates used in the separate and joint modeling

Variable name Values of the variable Type

Age Years (baseline) Continuous

Marital status Single, married, separated, windowed, divorced Categorical

Residence Rural, urban Categorical

Educational level Not educated, primary, secondary, tertiary Categorical

Working time Partimer, working full time, unemployed Categorical

Use of alcohol Use, do not use Categorical

Smoking Smoker, nonsmoker Categorical

Use of soft drug Use, do not use Categorical

Type of TB Pulmonary TB, extra pulmonary TB Categorical

Clinical stage Stage-I, stage-II, stage-III, stage-IV Categorical

Functional status Working, ambulatory, bed ridden Categorical

Religion Muslim, orthodox, protestant Categorical

Sex Female, male Categorical

Status of patients Active, missed, died, transferred Categorical

sured at each patients visit. The 14 independent covariates considered for the separate
and joint modeling are listed in Table 1 with respective of their categories.

2.4 Model Specification

Longitudinal responses may arise in two common situations. One is when the mea-
surements taken on the same subject at different times and the other is when the
measurements taken on related subjects. In both cases, the responses are likely to be
correlated [14]. For longitudinal data, two sources of variationswere consideredwhich
were the within-subject which arises during the measurements within each subject,
and between subject variation which arises during the measurement between differ-
ent subjects. Modeling within subject variations help us to study changes overtime
while modeling between subject variation help us to understand differences between
subjects.

2.4.1 Univariate Linear Mixed Effects Model

Before going to the joint modeling of longitudinally measured weight and CD4 count
of HIV/TB co-infected patients, the linear mixed model were employed for each
outcome to identify an appropriate covariates that predicts the mean change of weight
and CD4 count overtime. Therefore, the linear mixed-effects model handling the two
of variation is

y j = X′
jβ j + Z′

jb j + ε j (1)

where y j is the n j × 1 vector of observed response values, β j is the p × 1 vector
of fixed-effects parameters, X j is the n j × p observed design matrix corresponding
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to the fixed-effects, b j is the q × 1 vector of random-effects parameters, Z j is the
n j × q observed design matrix corresponding to the random-effects, and ε j is the
n j × 1 vector of residuals for the j th response. The corresponding assumptions for
model (1) are b j ∼ Nqj (0, � j ) and ε j ∼ Nn j (0, � j ); where � j and � j are the
variance-covariance matrix for b j and ε j for each outcome variable respectively.

2.4.2 Methods of Parameter Estimation

Suppose that a random sample of n j for j th response observations is obtained from
a univariate normal linear mixed effects model as defined in equation (1). Then, the
likelihood of the model parameters given the vector of n j observations is defined as

L = L(βj, γj; yj) =
exp

{
− 1

2 (yj − X′
jβj)

′V−1(yj − X′
jβj)

}

(2π)
n
2 |V| 12

(2)

whereβ j is a vector of fixed-effect parameters andγ j is a vector containing the variance
parameters for the j th response. Hence, the log-likelihood of the model parameters is
defined as

l = l(βj, γj; yj) = −n

2
log(2π) − 1

2
log |V| − 1

2
(yj − X′

jβj)
′V−1(yj − X′

jβj)

= −n

2
log(2π) − 1

2

[
log |V| + (yj − X′

jβj)
′V−1(yj − X′

jβj)
] (3)

The required parameters of the model were obtained by maximizing the log-
likelihood function with respect to β j and γ j . However, the maximum likelihood
approach may produce variance parameters that are biased downwards since they are
based on the assumption that the fixed-effects parameters are known [16]. To handle
this problem the present study used restricted maximum likelihood (REML) method,
which treat fixed-effects as parameters rather than constant.

2.4.3 Multivariate Linear Mixed Model

The mixed model can be easily extended to include multiple response variables by
further stacking the data and defining a specific variance-covariance structure for the
random effects. In our case, consider modeling weight and CD4 count measurements
of co-infected patients jointly overtime by incorporating random intercepts and slopes
in order to model the correlations overtime between the two responses. As we defined
earlier, the primary aim of this study was to model jointly the longitudinally mea-
sured CD4 count and weight of HIV/TB co-infected patients which was modeled by
multivariate linear mixed model.

Let yi jk represent the i th observation from the j th subject for the kth response
variable, where i = 1, 2, . . . , n jk; j = 1, 2, . . . , s; k = 1, 2. Also define Nk =∑s

i=1 n jk and N = N1 + N2. The vector y jk = [y1 jk, y2 jk, . . . , yn jk jk]′ represents
the n jk observations of the kth response variable from the j th subject and the vector
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yk = [y1k, y2k, . . . , ysk]′ represents the Nk observations for the kth response variable
across all response variables and subjects. Finally, the vector y = [y1, y2, . . . , yk]′
represents the N observations across all response variables and subjects. In the context
of modeling our response variables, the linear mixed-effects models for each response
variable for subject j taken at time t can be specified as

y j1(t) = μ1(t) + a j1 + b j1(t) + ε j1(t)

y j2(t) = μ2(t) + a j2 + b j2(t) + ε j2(t)
(4)

where μk(t) refers to the average evolution (of the kth response over time) and is a
function of the fixed effects. The subject specific random intercepts a jk and slopes
b jk(t) describe how the subject specific profiles deviate from the average profile for
the kth response. The two response trajectories are joined together by assuming a joint
distribution for the vector of random-effects, b j , such as

b j =

⎡
⎢⎢⎣
a j1
b j1
a j2
b j2

⎤
⎥⎥⎦ ∼ N (0, �)

where the variance-covariance matrix for the random effects, �, has the following
structure:

� =

⎡
⎢⎢⎣

σ 2
a1 σa1b1 σa1a2 σa1b2

σb1a1 σ 2
b1

σb1a2 σb1b2
σa2a1 σa2b1 σ 2

a2 σa2b2
σb2a1 σb2b1 σb2a2 σ 2

b2

⎤
⎥⎥⎦ (5)

The error components for each response, which are independent of the random
effects can be taken to be correlated or uncorrelated (σ12 = 0), such that the error
components are defined as

[
ε1 j
ε2 j

]
∼ N

([
0
0

]
,

[
σ 2
1 σ12

σ21 σ 2
2

])

2.4.4 Special Cases for the Random Effect Variance Matrix

We obtain special cases for the variance-covariance matrix of the random effects by
making specific assumptions for the variance-covariance matrix �. The first assump-
tion is when the two outcome variable could be taken to be completely independent at
any point in time, we impose their variance-covariance matrix which has the following
special form given by

� =

⎡
⎢⎢⎣

σ 2
a1 σa1b1 0 0

σb1a1 σ 2
b1

0 0
0 0 σ 2

a2 σa2b2
0 0 σb2a2 σ 2

b2

⎤
⎥⎥⎦
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Within a response variable, the random intercept and slope induce within-subject cor-
relations in the repeated measures overtime, while assuming independence between
subjects.Moreover, thismodel assumes that the two responses are completely indepen-
dent. The results for the model would be identical to fitting two separate random-effect
models.

The second assumption is when the two response variables could be taken to be
completely dependent. In this case, the two responses essentially “share” the same
set of random effect parameters (intercept and slope). When two parameters are com-
pletely dependent, the correlation between them is equal to one. This occurs when the
covariance between the parameters is equal to the square root of the product of their
respective variances. Most notation, however, define the model with a 2× 1 vector of
random effects, such as

b =
[
a j

b j

]
∼ N (0, �),wi th � =

[
σ 2
a σab

σba σ 2
b

]

Clearly, the aforementioned structure imposes strong assumptions on the relation-
ship between the two response variables. It is very unlikely that the two responses
would exhibit complete dependence in the association between the random slopes and
between the random intercepts. One advantage of this model, when the assumption is
tenable, is that it drastically reduces the number of random effects that must be esti-
mated when the number of response variables is large. For models with a large number
of response variables, estimation would likely be impossible if the shared-parameters
(or alternative approach) were not used.

2.4.5 Association of the Evolutions (AOE)

One important question that may be addressed with a joint mixed-effects model is
how the evolution of one response is associated with the evolution of another response
(“association of the evolutions”). By definition, the correlation between the evolutions
for the two random slopes is given by

re = Cov(b1, b2)√
Var(b1)

√
Var(b2)

= σb1b2√
σ 2
b1

√
σ 2
b2

(6)

It may be noted that the above expression is produced using those values from the
� matrix defined in (5).

2.4.6 Evolution of the Association (EOA)

A similar idea that may be investigated using a joint mixed effects model is how the
association between the responses evolves overtime (“evolution of the association”).
Assuming uncorrelated errors, the marginal correlation between the two responses as
a function of time is given by
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rm(t) = Cov(y j1(t), y j2(t))√
Var(y j1(t))

√
Var(y j2(t))

= σa1a2 + tσa1b2 + tσa2b1 + t2σb1b2√
σ 2
a1 + 2t2σa1b1 + 2t2σ 2

b1
+ σ 2

1

√
σ 2
a2 + 2t2σa2b2 + 2t2σ 2

b2
+ σ 2

2

(7)

Assuming correlated errors, the marginal correlation between the two responses as
a function of time is given by

rm(t) = Cov(y j1(t), y j2(t))√
Var(y j1(t))

√
Var(y j2(t))

= σa1a2 + tσa1b2 + tσa2b1 + t2σb1b2 + σ12√
σ 2
a1 + 2t2σa1b1 + 2t2σ 2

b1
+ σ 2

1

√
σ 2
a2 + 2t2σa2b2 + 2t2σ 2

b2
+ σ 2

2

(8)

The delta method could be used to obtain 95% confidence bounds for rm(t) at any
particular point in time. Two observations can be made from the uncorrelated errors
by noticing t = 0 the marginal correlation reduces to

rm(t) = σa1a2√
σ 2
a1 + σ 2

1

√
σ 2
a2 + σ 2

2

(9)

which is essentially the correlation between the two random intercepts. In fact, when
the error components are small, the closer the marginal correlation at t = 0 approx-
imates the correlation between the random intercepts. Also, as t increases rm(t)
converges to re for the case with uncorrelated errors, and to

rm(t) = σa1a2 + σ12√
σ 2
a1 + σ 2

1

√
σ 2
a2 + σ 2

2

(10)

for the case of correlated errors, which indicates that the absolute value of the marginal
correlation at t = 0 cannot be higher than the correlation between the random inter-
cepts. It may also be noted that as t increases the marginal correlation converges to
the correlation between the random slopes, while the variance-covariance parameters
of the random effects determine the shape of the marginal correlation function [17].

2.4.7 Joint Model Estimation Techniques

In the particular context of random-effects models, so-called adaptive quadrature rules
can be used [18], were the numerical integration is centered on the estimates of the
random effects, and the number of quadrature points is then selected in terms of the
desired accuracy. To illustrate the main ideas, we consider Gaussian and adaptive
Gaussian quadrature, designed for the approximation of integrals of the form

∫
f (z)φ(z)dz (11)
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for a known function f (z) and for φ(z) the density of the multivariate standard normal
distribution. Therefore, first standardize the random effects such that they get the
identity covariance matrix. Then, the likelihood contribution for subject i equals

fi (yi |β, γ,�) =
ni∏
i=1

∫
fi j (yi j |bi , β, γ ) f (bi |�)dbi (12)

where bi is q × 1 dimensional vector of unknown random effects and bi ∼ N (0, �),
β is a vector of fixed-effects parameters and γ is a vector containing the variance
parameters. f (z) and for φ(z) denotes the density of the multivariate standard normal
distribution.

2.4.8 Model Selection Criteria

Several model selection procedures exists but none of which were the best. To have
an appropriate model for the univariate LMM and multivariate LMMmost commonly
known model selection criterions; Akaike Information Criterion (AIC) [19] and the
Bayesian Information Criterion (BIC) [14] were considered for this study.

AIC = −2 log L + 2p (13)

BIC = −2 log L + npar log(N ) (14)

where −2 log L is twice the negative log-likelihood value for the model, p is the
number of estimated parameters, npar denotes the total number of parameters in the
model and N is the total number of observations used to fit the model. Smaller values
of AIC and BIC reflect an overall better fit.

3 Results and Discussion

3.1 Descriptive Statistics

Some demographic information and baseline characteristics of all patients disaggre-
gated by patient status were presented in Table 2. Regarding the sex composition of
patients, out of total of 254 co-infected patients 139 (54.72%) of themwere males and
18 (56.25%) deathwere also occurred inmale group in comparisonwith female group.
More than half 146 (57.48%) of the co-infected patients belongs to orthodox religious
group whereas 17 (6.69%) belongs to protestant religious group. Of the total deaths
occurred in these categories small number 2 (6.25%) of deathswere occurred in protes-
tant religious group.When we look at the educational level category of the co-infected
patients, 108 (42.52%) attendedprimary educationwhile only17 (6.69%) attended ter-
tiary education. Table 2 also depicts that 8 (3.15%), 23 (9.06%), 123 (48.43%) and100
(39.37%) co-infected patients’ were at baseline clinical stage-I, stage-II, stage-III and
stage-IV respectively. Totally, 40 (93.75%) deathswere occurred in both clinical stage-
III and stage-IV at baseline time in comparison with remaining two baseline clinical
stages. About 13 (40.63%) and 10 (31.25%) death were occurred in ambulatory and
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Table 2 Demographic and clinical characteristics of the study patients

Variable Active % Died % Missed % Transferred % Total %

Sex

Female 61 48.41 14 43.75 24 42.86 16 40.00 115 45.28

Male 65 51.59 18 56.25 32 57.14 24 60.00 139 54.72

Religion

Muslim 43 34.13 15 46.88 17 30.36 16 40.00 91 35.83

Orthodox 75 59.52 15 46.88 37 66.07 19 47.50 146 57.48

Protestant 8 6.35 2 6.25 2 3.57 5 12.50 17 6.69

Educational level

Not educated 26 20.63 8 25.00 13 23.21 12 30.00 59 23.23

Primary 56 44.44 14 43.75 20 35.71 18 45.00 108 42.52

Secondary 37 29.37 8 25.00 19 33.93 6 15.00 70 27.56

Tertiary 7 5.56 2 6.25 4 7.14 4 10.00 17 6.69

Residence

Rural 21 16.67 4 12.50 7 12.50 6 15.00 38 14.96

Urban 105 83.33 28 87.50 49 87.50 34 85.00 216 85.04

Marital status

Divorced 6 4.76 2 6.25 7 12.50 6 15.00 21 8.27

Married 65 51.59 12 37.50 18 32.14 16 40.00 111 43.70

Separated 8 6.35 9 28.13 10 17.86 1 2.50 28 11.02

Single 33 26.19 8 25.00 19 33.93 13 32.50 73 28.74

Widowed 14 11.11 1 3.13 2 3.57 4 10.00 21 8.27

Clinical stage

Stage-I 4 3.17 0 0 1 1.79 3 7.14 8 3.15

Stage-II 16 12.70 2 6.25 2 3.57 3 7.14 23 9.06

Stage-III 61 48.41 14 43.75 27 48.21 21 50.00 123 48.43

Stage-IV 45 35.71 16 50.00 26 46.43 13 30.95 100 39.37

Functional status

Ambulatory 53 42.06 13 40.63 37 66.07 23 57.50 126 49.61

Bedridden 5 3.97 9 28.13 7 12.50 5 12.50 26 10.24

Working 68 53.97 10 31.25 12 21.43 12 30.00 102 40.16

Alcohol

No 91 72.22 15 46.88 28 50.00 22 55.00 156 61.42

Yes 35 27.78 17 53.13 28 50.00 18 45.00 98 38.58

Smoke

No 108 85.71 17 53.13 38 67.86 29 72.50 192 75.59

Yes 18 14.29 15 46.88 18 32.14 11 27.50 62 24.41

Type of TB

Extra pulmonary 60 47.62 17 53.13 25 44.64 20 50.00 122 48.03

Pulmonary 66 52.38 15 46.88 31 55.36 20 50.00 132 51.97
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Table 3 Summary measures of
covaraites at each time points
with respective sample sizes

Measurement
time

Sample
points

Square root of CD4 Weight

Mean SD Mean SD

0 254 11.965 5.430 48.407 10.608

6 156 16.102 5.309 52.994 10.818

12 134 18.094 4.852 54.795 9.6920

18 105 19.419 5.004 55.771 10.066

24 65 19.386 5.148 56.854 11.300

30 43 19.842 5.499 57.465 11.023

36 23 18.884 5.295 56.609 8.6380

42 9 16.777 3.653 58.556 12.136

48 3 14.824 1.181 64.333 13.614

working categories of patients functional status respectively. To this end, 37 (66.07%)
and 12 (21.43%) were missed to followup from these two groups respectively in
comparison with bedridden group at baseline during the time of co-infection periods.

Mean with the corresponding standard deviation at each time points with respective
sample sizes for both outcome variables was shown in Table 3. The average number
of square root of CD4 count was 11.965 at baseline. There was a general increment in
the mean value up to 30months starting from baseline and starts declining. However,
when we look at the standard deviations up to 36months there was slight variation
among themeasurement times where smaller variation in square root of CD4measure-
ment was observed at 48 month. Also it can be observed from Table 3, smaller mean
weight of co-infected patients were observed at the baseline of co-infection period and
larger mean weight was observed at 48month with larger weight variation among the
co-infected patients.

3.2 Exploring Individual Profile and the Mean Structure

To underpin the model building and visualize the pattern of weight and CD4 measure-
ments of the patients overtime, the overall individual plots were considered.

The graph (Fig. 1) demonstrates the variability (within and between patients) in
square root of CD4 count and weight measurements of HIV/TB co-infected patients.
The red line loess smoothing technique suggests that the mean structure growth of
both variables was in a linear and quadratic pattern overtime. Nevertheless, the rate of
increment was high in square root of CD4 count than weight.

3.3 The Separate Longitudinal Analysis

The separate longitudinal analysis were started from the fixed-effectmodeling to select
an appropriate covariates that predicts weight and square root of CD4 count where
this linear model only considers the between source of variation among co-infected
patients. First, we have used stepwise automatic variable selection method to select
appropriate fixed-effects from Table 1. After arriving at an optimal subset, the selected
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Fig. 1 Individual profile plot and the evolution of mean structure overtime for both covariates

Table 4 Selection of random effects to be included in the linear mixed-effects model

No. Random effects Square root of CD4 Weight

AIC BIC AIC BIC

1 Only intercept 5195.162 5274.305 4533.621 4594.209

2 Intercept and linear time
slope

5137.415 5225.869 4523.083 4592.991

3 Only linear time slope 5630.983 5710.125 4724.709 4785.297

4 Intercept and quadratic
time slope

5175.464 5263.917 4536.473 4606.382

5 Only quadratic time slope 5711.422 5790.564 4794.546 4855.133

6 Linear and quadratic time
slope

5583.500 5671.953 4670.797 4740.706

7 Intercept linear and
quadratic time slopes

5093.714 5196.134 4486.242 4570.133

fixed-effects model was fitted with different random effects for both responses to have
an appropriate linear mixed-effects models. The summary of the linear mixed-effects
models which were modeled by considering different random effects were shown in
Table 4.

From Table 4, for both responses only considering the quadratic time effect to the
model worsen the LMM. However, considering the linear time effects to the quadratic
time effect improves the LMM with only quadratic time effects since its inclusion
lowers the AIC and BIC values. Finally, when we look at the improvement of the
model with inclusion of random intercept to that of random linear and quadratic time
effects of the LMM, there was an improvement of the model and this model have
lower AIC and BIC values than the remaining six LMMs. Hence, we consider the
LMMwith random intercept linear and quadratic time effects as an appropriate model
for the separate models.
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Table 5 Separate models for each covariates

Fixed effects Weight Square root of CD4

Estimate 95% CI Fixed effects Estimate 95% CI

Intercept 35.999 [30.94, 41.057]† Intercept 11.844 [10.744, 12.943]

Sex Alcohol

Female (ref) Non-user (ref)

Male 6.330 [4.040, 8.620]† Users −0.622 [−1.764, 0.520]

Age 0.244 [0.111, 0.376]†

Time 0.656 [0.530, 0.783]† Time 0.560 [0.479, 0.642]†

Time2 −0.011 [−0.01, −0.007]† Time2 −0.010 [−0.011, −0.008]†

Functional status

Ambulatory (ref)

Bedridden 1.543 [−2.496, 5.582] Bedridden −3.347 [−5.447, −1.248]†

Working 3.334 [0.870, 5.799] Working 2.236 [0.982, 3.490]

Patient status

Active (ref)

Died −3.604 [−7.256, 0.047] Died −0.741 [−2.579,1.098]

Missed −3.530 [−6.362, −0.697]† Missed −0.448 [−1.907, 1.012]

Transferred −1.170 [−4.344, 2.004] Transferred 1.461 [−0.170, 3.093]

Educational level

Not educated (ref)

Primary −0.653 [−3.539, 2.233]

Secondary 4.671 [1.555, 7.788]†

Tertiary 3.906 [−1.042, 8.853]

Time × functional
status

Time × bedridden −0.233 [−0.480, 0.013] Time × bedridden 0.042 [−0.134, 0.217]

Time × working −0.138 [−0.226, −0.051]† Time × working −0.046 [−0.105, 0.013]

Random-effects Estimate 95% CI Random-effects Estimate 95% CIs

σ̂b0 8.901 [8.046, 9.847] σ̂b0 4.206 [3.715, 4.761]

σ̂b1 0.633 [0.525, 0.765] σ̂b1 0.364 [0.290, 0.457]

σ̂b2 0.015 [0.012, 0.020] σ̂b2 0.007 [0.005, 0.010]

σ̂b10b11 −0.350 [−0.525, −0.147] σ̂b10b11 −0.301 [−0.464, −0.118]

σ̂b10b12 0.292 [−0.009, 0.545] σ̂b10b12 0.334 [0.090, 0.540]

σ̂b10b22 −0.996 [−1.00, −0.784] σ̂b10b22 −0.983 [−0.995, −0.944]

σ̂ε 3.174 [2.931, 3.436] σ̂ε 2.682 [2.491, 2.887]

† Indicates the significance of covariates at 5% level of significance

Aswe can observe from the fitted LMM forweight of co-infected patients (Table 5),
there was significance difference weight at baseline by sex, patients status and educa-
tional level since the estimated coefficient formale,missed the followup and secondary
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Table 6 Joint model selection criterion

Type of model Random effect considered AIC BIC

Joint Intercept only 9717.900 9739.100

Joint Intercept and linear slope 9543.100 9676.000

Joint Intercept linear and quadratic slopes 9673.900 9719.900

Univariate (separate) Intercept and linear slope 13,989.00 13,999.70

education categories were significant (p < 0.05). But there was no significance dif-
ference weight at baseline by the functional status category of co-infected patients.
When we look at the mean change in weight overtime, the linear time have positive
significant effects whereas the quadratic time have negative significant effects. And
also, the mean change overtime in weight of co-infected patients were differ by the
functional status of the patients since the interaction of linear time with working func-
tional status have significant effects on weight at 5% level of significance. When we
look at the fitted LMM for square root of CD4 count, there was a significance differ-
ence in square root of CD4 measurement at baseline by the functional status of the
patients since the estimated coefficient of bedridden category was significant at 5%
level of significance. Likewise the case of weight, the linear time have positive effect
on mean change of square root of CD4 count overtime whereas the quadratic time
change have negative effect at 5% level of significance.

3.4 Joint Analysis of Square Root of CD4 Count and Weight

To have an appropriate joint model that represent the longitudinally measured CD4
count and weight of the co-infected patients, different candidate joint model with
different random effect for the joint modeling were considered. The AIC and BIC
were used as a guideline in selecting covariates for the model. A smaller AIC and
BIC values were generally indicates a better model. The results of the fitted models
information criterion were displayed in Table 6.

Table 6 elucidates that the joint model with random effects was considered as the
worstmodel compared to the jointmodelwith inclusion of random linear and quadratic
slopes since it have larger AIC and BIC values. Moreover, inclusion of random linear
slope to the random intercept for the joint modeling improves the joint model with
random intercept only. However, when we include quadratic slope time effects for
the joint modeling to that of with random intercept and linear slope, the joint model
becomes worst since it has larger AIC and BIC. Therefore, we consider the joint
model with random intercept and linear slope as an appropriate joint model since it
have smaller AIC and BIC values than the remaining models. Table 6 also shows
that the value of fit statistics (AIC and BIC) for all joint models were less than that
of the separate model. This indicates that joint model was fitting better the data as
compared to the univariate model. Therefore, our joint analysis of these two outcomes
was justified and the separate analysis results were likely to be biased. The result
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Table 7 Joint analysis of longitudinal square root of CD4 cell count and weight

Fixed effects Weight Square root of CD4

Estimate 95% CI Fixed effects Estimate 95% CI

Intercept 57.644 [52.331, 62.957] Intercept 14.968 [13.208, 16.728]

Transferred (ref)

Active 1.503 [−1.659, 4.665] Active −1.134 [−2.747, 0.479]

Died −1.852 [−6.128, 2.424] Died −2.083 [−4.226, 0.059]

Missed −2.122 [−5.746, 1.502] Missed −2.012 [−3.843, −0.180]

Sex Alcohol

Male (ref) User(ref)

Female −7.197 [−9.452, −4.941]† Non-users 0.530 [−0.602, 1.662]

Educational level

Tertiary (ref)

Not educated −4.230 [−9.204, 0.744]

Primary −5.406 [−10.108, −0.704]†

Secondary −0.260 [−5.127, 4.608]

Time 0.423 [0.319, 0.528]† Time 0.431 [0.357, 0.506]

Time2 −0.007 [−0.010, −0.005]† Time2 −0.008 [−0.010, −0.006]†

Functional status

Working (ref)

Ambulatory −4.265 [−6.778, −1.752]† Ambulatory −2.329 [−3.591, −1.068]†

Bedridden −1.838 [−6.070, 2.395] Bedridden −5.606 [−7.764, −3.448]†

Time × functional
status

Working × time
(ref)

Ambulatory ×
time

0.198 [0.086, 0.311]† Ambulatory × time 0.110 [0.042 , 0.178]†

Bedridden ×
time

−0.046 [−0.338, 0.245] Bedridden × time 0.112 [−0.073, 0.297]

† Indicates the significance of covariates at 5% level of significance

of selected appropriate joint model for the longitudinally measured CD4 count and
weight of HIV/TB co-infected patients was shown in Table 7.

As can be seen from the fitted joint model (Table 7), covariates like sex, educational
level and functional status were the factors significantly contributing to the prediction
of HIV/TB co-infected patients weight at baseline. Table 7 also suggests that the linear
time effect has a positive effect on the mean change of weight whereas the quadratic
time change has negative effect overtime at 5% level of significance. To this end,
weight change of the patients were differ by functional status since the estimated
coefficient for ambulatory functional status group with linear time interaction have
significant effect.
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From the fitted joint model, the baseline CD4 cell count was differ by patient
status and functional status since the estimated coefficients for missed patient status
category in comparison with transferred category, ambulatory and bedridden func-
tional status category in comparison with working functional status category have
significant effects at 5% level of significance. With regard to the mean change in
square root of CD4 measurements overtime, the linear time effect has a positive sign
and found to be statistically significant. Nevertheless, the quadratic time effect has a
significant negative effect on the mean change of CD4 count overtime. Further, the
mean change in CD4 cell count of the patients differ by functional status category
since the estimated coefficient of ambulatory functional status with time interaction
in comparison with working functional status category with time interaction have
a significant effects on the mean change of CD4 count overtime at 5% level of
significance.

The estimated variance-covariance matrix for the final joint model was

�̂ =

⎡
⎢⎢⎣

σ̂ 2
a1 σ̂a1b1 σ̂a1a2 σ̂a1b2

σ̂b1a1 σ̂ 2
b1

σ̂b1a2 σ̂b1b2
σ̂a2a1 σ̂a2b1 σ̂ 2

a2 σ̂a2b2
σ̂b2a1 σ̂b2b1 σ̂b2a2 σ̂ 2

b2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

78.9581 0.1228 −224.94 −0.5296
0.1228 0.0219 −1.3535 0.02124

−224.94 −1.3535 907.20 −0.1613
−0.5296 0.02124 −0.1613 0.0777

⎤
⎥⎥⎦

and the resulting correlation matrix was

R =

⎡
⎢⎢⎣

ρ̂a1a1 ρ̂a1b1 ρ̂a1a2 ρ̂a1b2
ρ̂b1a1 ρ̂b1b1 ρ̂b1a2 ρ̂b1b2
ρ̂a2a1 ρ̂a2b1 ρ̂a2a2 ρ̂a2b2
ρ̂b2a1 ρ̂b2b1 ρ̂b2a2 ρ̂b2b2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0.093 −0.841 −0.214
0.093 1 −0.303 0.514

−0.841 −0.303 1 −0.019
−0.214 0.514 −0.019 1

⎤
⎥⎥⎦

From the estimated variance-covariance matrix (�̂) of the estimated joint model
for the random effects, it can be seen that variability was lower for square root of
CD4 count (σ̂ 2

a1 = 78.95) than weight (σ̂ 2
a2 = 907.20). Beside, the correlation matrix

shows that (R) the baseline subject specific baseline CD4 measurement and weight
were negatively correlated (ρ̂a1a2 = −0.841). On the other hand, there was a mod-
erate positive association between subject specific change in square root of CD4 and
weight of the patient overtime (ρ̂b1b2 = 0.541). There was a negative cross correla-
tion between the baseline weight and time slope of square root of CD4 measurement
(ρ̂b1a2 = −0.303) overtime. Similarly, there was a negative correlation between sub-
ject specific baseline weight and the patient specific change in square root of CD4
overtime (ρ̂b2a1 = −0.214) overtime. It can thus be concluded that there was a mod-
erate positive association between the mean change of weight and square root of CD4
counts overtime.
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4 Conclusion

In this study univariate and bivariate linear mixed methods were considered for fit-
ting two continuous response variables measured longitudinally. Based on separate
analysis, the evolution of weight was significantly differ with respect to sex (female),
baseline age, time, quadratic time, missed patient status category, secondary educa-
tion category and the interaction of linear time with working functional status. Like
wise, the baseline CD4 measurement was differ by patient status and functional status
since the estimated coefficients for missed patient status category in comparison with
transferred category, ambulatory and bedridden functional status category in compar-
ison with working functional status category have significant effect. The results of
this study also demonstrates that the joint modeling of longitudinally CD4 count and
weight measurements fits the data better than those obtained from the separate model.
To sum up, the joint model suggests that there was a moderate positive association
between the mean change of weight and square root of CD4 count overtime.
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