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Abstract Crude oil volatility index (OVX) is a new index published byChicagoBoard
Option Exchange since 2007. In recent years it emerged as an important alternative
measure to track and analyze the volatility of future oil prices. In this paper we firstly
model and analyze the dynamic relationship between OVX changes and future crude
oil price returns with time-varying coefficients, modeled using the Kalman filter, in
the regression models. Empirical results show a weak negative relationship between
OVX changes and future crude oil price returns movement, and extremely high/low
levels ofOVXcannot predict future positive/negative returnswell. Secondly, this paper
explores whether OVX can predict future realized volatility of crude oil price returns .
The empirical findings suggest that OVX serves as an unbiased but not an efficient esti-
mate of the future realized volatility and it includes information of the future realized
volatility. Finally the incorporation of information of OVX in measuring market risk
is analyzed. The empirical result indicates that Kalman filter based model provides
the improved performance than the linear regression model in terms of forecasting
accuracy for realized volatility prediction and the reliability for VaR estimate.
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1 Introduction

The price of crude oil fluctuates severely over a wide range in the past ten years.
From around $60 per barrel in June 2006, the price of West Texas Intermediate (WTI)
crude oil peaked at $145.31 in July 2008, falled to $30.28 6 months later, and then it
fluctuated in the range of $60 to $110 for about 5 years. In the third and fourth quarter
of 2014, the crude oil price plummeted to $50. The instability of oil price increases the
risk exposure for both investors and crude oil exploration and processing industries.

Chicago Board Option Exchange (CBOE) publishes the Crude Oil Volatility Index
(OVX) which is calculated with the VIX methodology from May 2007. OVX is an
up-to-the-minute market estimate of the expected 30-day volatility of crude oil prices
and it has been calculated for options on the United States Oil Fund. It uses real-time
bid/ask quotes of nearby and second nearby options with at least 8 days to expiration,
and weights these options to derive a constant, 30-days measure of expected volatility.
Empirical studies suggest that OVX provides a newmeasure to analyze the variance of
future oil prices. In this paper, we examine the information content of OVX regarding
the crude oil spot price returns and future realized volatility.

The relationship between implied volatility and underlying stockmarket returns has
received significant interests in the literature. It has beenwell documented that there is a
strong asymmetric negative contemporaneous relationship between the changes of the
implied volatility index and the underlying index returns. Fleming,Ostdiek [1],Whaley
[2,3], Simon [4], Giot [5] and Car and Wu [6] all identified the statistically significant
negative and asymmetric contemporaneous relationship betweenVIXandS&P100 (or
S&P 500) returns. Furthermore, an analogous relationship has also been documented
in other equity markets. For example, Simon [4] and Giot [5] studied Nasdaq, Dowling
and Muthuswamy [7] focused on the Australian stock market, Siriopoulos and Fassas
[8] studied FTSE 100 and later Chen and Lai [9] investigated the relationship between
VHSI and HSI. Whether implied volatility can predict future asset returns or not is
another research issue that attracted significant attentions in the literature, for example,
Giot [5] investigated the information content of VIX/VXN levels and future S&P
100/Nasdaq 100 index returns; Banerjee et al. [10] assessed the relationship between
future returns and current implied volatility levels and innovations.

How much incremental information the implied volatility brings to future realized
volatility of underlying asset returns has also been discussed widely in the literature.
Through a comprehensive review of ninety-three papers dealing with volatility fore-
cast performance of several approaches including historical, stochastic and implied
volatility based forecasts, Poon and Granger [11] documented the general conclusion
that estimates of future realized volatility based on implied volatility often outper-
formed alternative methods. Subsequent to the endeavor of Poon and Granger, recent
researches dealing with the US equity markets suggested again that, implied volatil-
ity is usually a superior estimator of future volatility. Specifically, Giot [12] assessed
the information content of VIX and VXN as volatility estimators in a daily market
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risk evaluation framework. His findings suggested that their forecasts provided mean-
ingful results. Jiang and Tian [13] demonstrated the model-free implied variance,
reflected by the new VIX, was a more efficient forecast for future volatility. Likewise,
Fleming, Ostdiek and Whaley [1] and Christenson and Prabhala [14] used regression
model to test whether VIX (VXO) is a stock market volatility predictor. Corrado and
Miller [15] showed that the CBOE implied volatility indices (VXO, VIX and VXN)
outperformed historical volatility as estimators of future realized volatility of the cor-
responding underlying indices (S&P100, S&P500 and Nasdaq100). In contrast to the
general conclusions, Canina and Figlewski [16] examined volatility implied in S&P
100 index options from 1983 to 1987 and suggested that implied volatility is a poor
indicator of subsequently realized volatility. Becker and Clements [17] indicated that
combinations of various model-based forecasts of S&P 500 realized volatility outper-
formed its implied volatility index-VIX. Outside of the US, recent empirical findings
were mixed and suggested a slight lead of implied volatility. In particular, Dowling
and Muthusswamy [7] found that their implied volatility index for Australian stock
market under-performed historical volatility as a predictor of future realized volatil-
ity. Similarly, Siriopoulos and Fassas [8] suggested that VFTSE included information
about future volatility beyond that contained in past volatility. Interested readers are
referred to Siriopoulos and Fassas [18] for the comprehensive review on the incremen-
tal information content of all the publicly available implied volatility indices across
the world to realized volatility of the corresponding underlying equity markets.

Many economic relationship is dynamic and time varying, which requires esti-
mation of the state of a system that changes over time using a sequence of noisy
measurements made on the system. Previous researches have analyzed the relation-
ship either by using static linear regression model, or by dividing sample periods into
several distinct sub-periods. This static approach cannot capture the time evolvement
of the relationship. Also the static coefficients cannot reflect the immediate changes of
two sides, which may reduce the forecasting accuracy. Many researchers have applied
theKalmanfilter to evaluate the dynamic evolvement (see [19–22] and [23] etc.). Using
time-variant parameters obtained from Kalman filter can reveal the hidden dynamic
relationship and evaluate it more accurately.

The research in this paper focuses on the information content of OVX for both crude
oil spot price returns and future realizedvolatility usingKalmanfilter.The contributions
of this paper are two folds. Firstly we found that OVX contains information for the
future realized volatility of crude oil returns. The shocks of the information on the
crude oil returns and risk movement are dynamic and time varying. We propose the
regression model with the time varying coefficients to model them. Secondly we
found that the extraction and modeling of the hidden information in the OVX, using
the Kalman filter model, can help improve the forecasting performance of the future
realized volatility and VaR estimated, in terms of reliability and accuracy.

The rest of the paper is structured as follows. Section 2 provides a brief introduction
of Kalman filter. Section 3 examines the relationship between OVX and 1,5, 10, 20
and 60-day forward crude oil spot price returns. Section 4 investigates whether OVX
can predict future realized volatility and the application in calculating VaR is also
discussed in this section. Finally, a brief conclusion is provided in Sect. 5.

123



474 Ann. Data. Sci. (2015) 2(4):471–487

2 Methodology

Kalman filter defines and solves a recursive solution to the discrete linear filtering
problem, with the underlying assumption that the posterior density at every time step
is Gaussian. The mean and covariance can then be used to describe the underlying
distribution [24]. The basic notion of Kalman filter model is to estimate the state of a
process, in a way that minimizes the mean squared error [25].

The Kalman filter model is defined as follows:

xt = At xt−1 + wt−1 (1)

zt = Ht xt + vt (2)

where At and Ht are known matrices defining the linear functions. wt−1 and vt refer
to the random variables for the process and measurement noise respectively. They are
assumed to be independent and normally distributed, and follow randomwalk process,
i.e., wt ∼ N (0, Qt ) and vt ∼ N (0, Rt ) .

For the constant Rt , we can take some off-line sample measurements in order to
determine the variance of the measurement noise. The maximum likelihood method
is used in each step to estimate Rt [26].

If the elements of Qt are set with very small numbers, it will require more data
and longer time for the estimator to converge. The state variables cannot respond
instantaneously to the new measurement. The maximum likelihood method is used to
estimate Qt [26].

We define x̂−
t ∈ Rn as a prior state estimate at step t , given prior information of the

process before step t . x̂t ∈ Rn is defined as a posterior state estimate at step t given
measurement zt . We also define prior and posterior estimate errors as e−

t ≡ xt − x̂−
t

and et ≡ xt − x̂t .
The prior estimate error covariance is given by P−

t = E
[
e−
t et

′]. The posterior
estimate error covariance is Pt = E

[
et et ′

]
.

In order to derive the equations for the Kalman filter, we begin with the goal of
finding an equation that computes posterior state estimate x̂t as a linear combination of
prior x̂−

t , a weighted difference between an actual measurement zt and a measurement
prediction Hx̂−

t as shown below.

x̂t = x̂−
t + K

(
zt − Hx̂−

t

)
(3)

where
(
zt − Hx̂−

t
)
is themeasurement innovation, or the residual. Thematrix K refers

to the gain that minimizes the posterior error covariance. [27] and [28] shows one form
K that minimizes Pt in Eq. (4):

Kt = P−
t H ′ (HP−

t H ′ + R
)−1

(4)

Ultimately the filtering process would lead to the conditional expectation of the
state vector given the information set at time t .
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3 OVX and Crude Oil Price Returns

3.1 Data Description

In this paper, daily data of OVX and crude oil spot prices, from 1 June 2007 to 31
July 2015, are used for the analysis of the contemporaneous relationship. OVX used in
this study is obtained from Yahoo finance and crude oil spot prices are obtained from
U.S. Energy Information Administration. Both data sets are made publicly available
at the website of their respective publishers. Although the data set of crude oil spot
prices includes WTI spot prices and Europe Brent spot prices, this research uses
WTI spot prices only to represent the oil price, since these two data series moves
synchronously.

We plot the OVX and crude oil spot price from 1 June 2007 to 31 July 2015 in
Fig. 1. It shows that when oil prices were at a high level, the corresponding OVX
values were usually very small. Secondly, when oil prices dropped suddenly, OVX
values rocketed up during the same period. Thirdly, oil prices usually grew slowly
for a period of time after it dropped, which indicates, the high level OVX values may
forebode future positive oil price returns.

Following Simon’s work [4], this study uses daily logarithmic changes for OVX
and oil price. Correspondingly, we define rOV X,t = ln(OV Xt ) − ln(OV Xt−1) and
r1Oil,t = ln(Oil_Pricet ) − ln(Oil_Pricet−1) as the daily logarithmic returns. One
advantage of using logarithms is that the logarithms can avoid negative estimation of
volatility and oil price.

Descriptive statistics for OVX and crude oil spot price are calculated and listed
in Table 1. The table reports that the daily logarithm returns of OVX are stationary
time series with mean approximately equal to zero. As for OVX, the null hypothesis
of Jarque–Bera test of normality is rejected.Table 1 also contains summary statis-
tics of daily logarithm returns of oil prices. The means of logarithm returns are
very close to zero. The Jarque–Bera statistic robustly rejects the normal distribution
hypothesis.

Fig. 1 OVX (left axis) versus crude oil spot price (right axis) from 1 June 2007 to 31 July 2015
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Table 1 Descriptive statistics

Statistics OVX rOV X,t Oil r1Oil,t

Obs. 2059 2058 2059 2058

Mean 36.472 0.000 85.631 −0.000

Max 100.420 0.425 145.310 0.164

Min 14.500 −0.440 30.280 −0.128

Median 33.450 −0.004 88.990 0.000

Std. Dev. 14.616 0.049 19.896 0.024

Skewness 1.471 0.847 −0.318 0.038

Kurtosis 5.849 14.190 3.107 8.484

Jarque–Bera 1438.744 10984.345 35.741 2579.074

3.2 Empirical Analysis

In the literature, the implied volatility index is usually regarded as “investor fear gauge”
[3] since it spikes during periods when the market is in turmoil. Siriopoulos and Fassas
[18] tested the relationship between stock market returns and implied volatility by a
regression analysis of daily changes of the volatility index against the daily positive
and negative returns of the corresponding underlying stock index. Giot[5] classified
implied volatility levels with respect to their 2-year rolling history and then used the
dummy variables to assess the relationship between implied volatility and forward
looking stock index returns. He found extremely high (low) levels of the implied
volatility indices indeed contained information to future returns.

In this paper, we analyze the relationship between logarithm returns of OVX and oil
pricewithKalmanfilterwhich assumes that the coefficients are time-varying instead of
static. Since Giot [5] suggested positive (negative) forward looking returns of S&P100
or Nasdaq100 can be triggered by extremely high (low) levels of the implied volatility
indices. We use two dummy variables ( Dhigh,t and Dlow,t ) to indicate extreme large
and low levels of the implied volatility indices. Following Giot’s [5] method, we also
use the 20 equally spaced percentiles based on a rolling 2-year history of OVX to
determine whether OVX is extremely large or low. Particularly, if OV Xt falls into the
largest percentile Dhigh,t=1, and if OV Xt falls into the smallest percentile Dlow,t=1.
In order to distinguish the different impact of positive and negative previous returns,
asymmetric effect is also considered in this research. The simple regression models
are as follows:

r1Oil,t = β1r
+
OV X,t−1 + β2r

−
OV X,t−1 + γ1Dhigh,t−1 + γ2Dlow,t−1 + εt (5)

r5Oil,t = β1r
+
OV X,t−5 + β2r

−
OV X,t−5 + γ1Dhigh,t−5 + γ2Dlow,t−5 + εt (6)

r10Oil,t = β1r
+
OV X,t−10 + β2r

−
OV X,t−10 + γ1Dhigh,t−10 + γ2Dlow,t−10 + εt (7)

r20Oil,t = β1r
+
OV X,t−20 + β2r

−
OV X,t−20 + γ1Dhigh,t−20 + γ2Dlow,t−20 + εt (8)

r60Oil,t = β1r
+
OV X,t−60 + β2r

−
OV X,t−60 + γ1Dhigh,t−60 + γ2Dlow,t−60 + εt (9)
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where r+
OV X,t−i equals the daily OVX return when the i-day previous OVX return is

positive, and equals to zero when the i-day previous OVX return is negative. r−
OV X,t−i

goes just the opposite. And r1Oil,t , r
5
Oil,t , r

10
Oil,t , r

20
Oil,t , r

60
Oil,t are the forward looking

1-, 5-, 10-, 20- and 60-day relative changes in the level of the crude oil spot price,
which means r iOil,t = ln(Oil_Pricet ) − ln(Oil_Pricet−i ) .

Time varying modification with Kalman filter, the transition function is given by
Eq. (10). ⎡

⎢⎢
⎣

β1,t+1
β2,t+1
γ1,t+1
γ2,t+1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

β1,t
β2,t
γ1,t
γ2,t

⎤

⎥⎥
⎦ + wt (10)

The measurement function is given by Eq. (11).

r ioil,t = [
r+
OV X,t−1 r

−
OV X,t−1 Dhigh,t−i Dlow,t−i

]

⎡

⎢⎢
⎣

β1,t
β2,t
γ1,t
γ2,t

⎤

⎥⎥
⎦ + vt (11)

As Harvey [29] indicated, when the process equation is non-stationary the initial
distribution of the state variables should be specified in terms of diffuse prior. Here
we consider the case when Q and R are determined by the first four hundred data
points.

Estimates of β1 and β2 are described in Table 2. For the five sets of estimates the
mean values of both β1 and β2 are negative, which indicates positive (negative) OVX
changes associate with negative (positive) oil price returns, however, the standard
deviations of β1 and β2 are larger and larger, which indicates as time passed by the
impact of OVX changes is diminishing. Moreover, the differences between β1 and β2
are not consistent which cannot testify the asymmetric effect.

Table 2 also presents the estimates of γ1 and γ2. γ1 indicates the impact of extremely
high level OVX to oil price returns and γ2 indicates the impact of extremely low level
OVX to oil price returns. We can find that although γ1 is positive and γ2 is negative
for all the five equations, the standard deviations are very large, which cannot provide
the convincing evidence that extremely high level OVX is a signal of future positive
returns and extremely low level OVX is a signal of future negative returns. This
result is different from the result found by Giot [5] based on VIX/VXN. As Giot
[5] summarized extremely high levels of implied volatility is a signal of ’buy’ entry
points for traders who want to take long positions in the underlying index. This result
doesn’t lend strong support for Giot’s result when using OVX and crude oil spot
prices since crude oil price is also affected by global demand, supply and inventory
of world’s leading countries (see [30,31] and [32] etc.) which is different from equity
market. The outcome of taking extremely high/low level of OVX as trading signals
is shown in Table 3. Results in Table 3 show that extremely high/low level of OVX
doesn’t indicate that crude oil market are oversold/overbuy at least using existing
data.
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Table 2 Coefficients estimation results

β1 β2 γ1 γ2

1-Day forward looking returns

Kalman Mean −0.1686 −0.1417 0.0189 0.0043

Filter Std. Dev. 0.1600 0.1299 0.0155 0.0111

5-Day forward looking returns

Kalman Mean −0.1281 −0.1683 0.0500 −0.0035

Filter Std. Dev. 0.2698 0.3452 0.0469 0.0269

10-Day forward looking returns

Kalman Mean −0.1074 −0.1845 0.0071 −0.0184

Filter Std. Dev. 0.3987 0.6118 0.0484 0.0297

20-Day forward looking returns

Kalman Mean −0.0510 −0.2531 0.0662 −0.0537

Filter Std. Dev. 0.8033 1.2086 0.0749 0.0538

60-Day forward looking returns

Kalman Mean −0.1396 −0.0381 0.1542 −0.0145

Filter Std. Dev. 2.2810 3.4210 0.1046 0.0901

Table 3 Outcome of taking extremely high/low level of OVX as trading signals

1-Day 5-Day 10-Day 20-Day 60-Day

high r −0.0009 −0.0111 −0.0376 −0.0563 −0.0277

#149 Std. Dev. 0.0399 0.0995 0.1138 0.1589 0.2747

low r −0.0007 −0.0028 −0.0048 −0.0109 0.0013

#264 Std. Dev. 0.0122 0.0303 0.0422 0.0662 0.1006

#149 and #264 indicate the trading numbers

4 OVX and Future Realized Volatility of Crude Oil

4.1 Data

Firstly we estimate the realized volatility to test the information content of implied
volatility and evaluate how it can help forecast realized volatility. Following Siri-
opoulos and Fassas [18], we compute the squared return without mean-reversion
assumption. We also use non-overlapping observations and compute the realized
volatility, RVm , separately for each calendar month. This method can improve the
predictive power of implied volatility and avoid over estimation of past volatility. In
particular, the ex-post realized volatility during the next calendar month is calculated
according to the following equation:

RVm =
√√√√365

nm

Nm∑

t=1

(rOil,t )
2 (12)
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where Rt is the return of stock index on day t and nm is the number of calendar days
in month m. We annualize the volatility according to the actual 365 days counting
convention, since the calculation of volatility index is based on calendar days instead
of trading days [33].

According to the calculation method (see [33]) of implied volatility index, the
volatility index recorded at the close of the last trading day in month m − 1 can
represent the market forecast of future volatility of the underlying index in month m,
in essence. In this analysis we use OV Xm to denote the volatility index recorded at
the close of the last trading day of month m .

Moreover, the information content of OVX at a relatively short time-horizon (5
days and 10 days) is examined as follows. By definition, the forward looking time
horizon of implied volatility index is approximately equal to 30 calendar days and
the implied volatility index is expressed in annualized terms. Therefore, we should
transform annualized implied volatility index to the required 5- and 10-day interval
by square root time rule. The forward looking implied volatility index is presented in
Eq. (13).

I Vi,t =
√

i

365
OV Xt (13)

Thus I Vi,t is the expected volatility over the next i days.
5-day (10-day) forward-looking realized volatility is computed by taking the square

root of the sum of the (future) squared returns over [t + 1, t + 5] ( [t + 1, t + 10] )
period as in Eq. (14).

RVi,t =
√√√√

i∑

j=1

r2t+ j , i = 5, 10 (14)

As for the 5- and 10- day realized volatility, they are both defined from non-
overlapping data. As noted by Christensen and Prabhala [14], the use of realized
volatility calculated from overlapping data in regression analysis may potentially lead
to strong auto-correlation problems in the regression’s residuals.

Table 4 presents the descriptive statistics of volatility and log-volatility series.
According to Christenson and Prabhala [14] and Hansen [34], log-transformed data
brings skewness and kurtosis of their volatility data closer to a normal distribution.
However, Fleming [35], Fleming, Ostdiek and Whaley [1] and other studies used
untransformed volatility data. Corrado and Miller [15] performed parallel regressions
using both the original volatilitymeasures and the log-transformed volatilitymeasures.
But by the definition of implied volatility index, the original volatility measures can be
interpreted directly. Our sample contains 411 non-overlapping 5-day observations, 205
non-overlapping 10-day observations and 98 non-overlapping monthly observations
on realized volatility and implied volatility covering the period from June 2007 to July
2015. All distributions exhibit positive skewness and kurtosis and the null hypothesis
of Jarque–Bera test of normality is rejected. This indicates the return deviates from
the normal distribution.
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Table 4 Descriptive statistics

Statistics OV Xm RVm IV5,t RV5,t I V10,t RV10,t

Obs. 98 98 411 411 205 205

Mean 36.402 33.591 4.266 4.492 6.012 6.557

Max 88.930 119.330 11.579 21.664 15.402 27.902

Min 15.610 11.121 1.725 0.736 2.440 1.703

Median 33.640 27.844 3.907 3.700 5.504 5.469

Std. Dev. 14.671 19.403 1.728 3.093 2.407 4.071

Skewness 1.459 2.039 1.484 2.147 1.455 2.107

Kurtosis 5.483 7.704 5.866 8.880 5.690 8.449

Jarque–Bera 60.538 158.239 291.542 907.788 134.178 405.275

4.2 Empirical Analysis

We assess the relationship between implied volatility index and realized volatility
based on a linear regression of the form:

RVm = α0 + α1 I Vm−1 + εm (15)

Christensen and Prabhala [14] suggested three hypotheses that can be tested regard-
ing Eq. 15. First, if IV contains at least some information about future realized
volatility, coefficient α1 should be statistically significant against a null hypothesis
of α1 = 0 . Second, if IV is an unbiased estimate of realized volatility, then the inter-
cept of Eq. 15 should be zero and coefficient should equal one. This joint hypothesis
can be tested using F statistic [36]. Lastly, if IV is indeed an efficient estimate, the
residuals should be pure white noise and uncorrelated with any other variable.

In the first step, we use ordinary least square to estimate the coefficients in Eq. 15
and test three hypotheses proposed by Christensen and Prabhala [14]. The results are
summarized in Table 5.

From results in Table 5, we find α1 is statistically different from zero, which indi-
cates that OVX contains information regarding future realized volatility of crude oil
spot prices. Testing the null hypothesis of α1=1, 5- and 10-day period data reject this
hypothesis. The joint hypothesis of α0 = 0 and α1 = 1 are accepted for all the three
data set, which suggests OVX is an unbiased estimation of future realized volatil-
ity. However, the Durbin–Watson (DW) statistic values indicates that OVX isn’t an
efficient predictor of future realized volatility, since for all the three sets of data are
significantly different from two (indicating residuals are autocorrelated).

In the second step, we transform Eq. 15 with Kalman filter and analyze the para-
meters in a dynamic system:

[
α0,k+1
α1,k+1

]
=

[
1 0
0 1

] [
α0,k
α1,k

]
+ wk (16)
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Table 5 Descriptive statistics of the OLS estimation

α0 α1 MSE F stats DW stats R square

5-day −0.013 1.348 0.415 536.095 1.760 0.567

0.000 0.000 0.000 0.013

10-day −0.017 1.379 0.559 401.565 1.786 0.664

0.000 0.000 0.000 0.108

Monthly −0.063 1.096 11.6 217.526 1.563 0.694

0.034 0.000 0.000 0.016

1.MSEs are multiplied by 1000
2. For 5-day data, H0: α1 = 1 , p value is 0.000. The joint hypothesis
H0: α0 = 0 and α1 = 1 , p value is 0.000 and F statistic is 20.419.
3. For 10-day data, H0: α1 = 1 , p value is 0.000. The joint hypothesis
H0: α0 = 0 and α1 = 1 , p value is 0.000 and F statistic is 20.588.
4. For monthly data, H0: α1 = 1 , p value is 0.199. The joint hypothesis
H0: α0 = 0 and α1 = 1 , p value is 0.039 and F statistic is 4.102

Table 6 Descriptive statistics of
the Kalman Filter estimation

MSEs are multiplied by 1000

α0 α1 MSE

5-day Mean −0.015 1.380 0.359

Std. Dev. 0.007 0.123

10-day Mean −0.024 1.454 0.460

Std. Dev. 0.009 0.098

Monthly Mean −0.047 1.012 6.534

Std. Dev. 0.057 0.161

RVm,k = [ 1 I Vm−1,k ]
[

α0,k
α1,k

]
+ vk (17)

where wk and vk have the same meaning as Eqs. 1 and 2. We use the first quarter of
the observations to initialize the covariance matrix of process noise Q, measurement
noise R. These volatility series are synchronized, so that realized volatility in month
m is aligned with implied volatility observed on the last trading day of month m − 1.

The results of Kalman filter are presented and analyzed in Table 6.
Results in Table 6 indicate that Kalman filter achieves a smaller mean squared error.

Moreover, the mean values of α0 are very close to zero and the mean values of α1 are
around one. The results are very similar to the OLS estimates.

4.3 Quantification of Market Risk

In this paper, we quantify market risk based on the information content of OVX to
future realized volatility. More specifically, we assess the added value of OVX based
volatility forecasts when these forecasts are used to quantify and estimate short-term
market risk level. We consider the widely used Value-at-Risk (VaR) framework which
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provides, at a given percentage level, the most likely loss for an investor. In this
framework, we use the estimated RV calculated from OVX to substitute the predicted
conditional standard deviation in the calculation of VaR as in Eq. 18.

VaRt+1|t = Fα(zt ; θ)σt+1|t (18)

where the distribution is assumed to be normal and Fα(zt ; θ) is the relevant quantile at
the 100 ·α% level from the normal distribution. σt+1|t is the forecast of the conditional
standard deviation at time t + 1.

Furthermore we introduce RiskMetrics model, which can easily be used by market
practitioners, as a competingmodel to evaluate the performance of the proposedmodel.
The RiskMetrics model is defined in the following equation.

σt |t−1 =
√

α0r2t−1 + α1σ
2
t |t−1 (19)

In which α0 and α1 are estimated based on the historical data.
In order to back-test the VaR results, we use Kupiec LR test in the paper [37].

Given the ex-post observed returns {rt+1} and ex-ante forecast {VaRt }, the empirical
failure rate f̂ is expected to be equal to the number of returns smaller than the VaR.
If the number of violations differs considerably from α × 100% of the sample, then
the accuracy of the underlying risk model is called into question. The null hypothesis
H0 : f = α against H1 : f �= α can be tested with the LR statistics, which takes the
form as follows.

LR = −2 ln[(1 − α)T−NαN ] + 2 ln[(1 − N/T )T−N (N/T )N ] (20)

where N is the number of violations in the sample, T is the total number of observa-
tions. Under the null hypothesis, the test statistic is χ2 distributed with one degree of
freedom.

We apply both methods to estimate VaR of crude oil returns. The VaR for 5- ,
10-day and 1-month are tested using the same period as in the last section. These VaR
forecasts {VaRt } , pertaining to returns defined on [t, t + 1] , can then be back-tested
against the observed returns {rt+1} . For back-testing of VaR forecasts, we compute the
empirical failure rates andKupiec LR tests for both left and right quantile at 1%, 2.5%
and 5 % since investors can hold short positions of crude oil. Empirical results for the
two models based on OVX (estimated with Kalman filter and OLS) and RiskMetrics
based on historical volatility, using time series of different frequencies, are shown in
Table 7. The confidence level of LR test is 0.05. We find that in general Kalman filter
based VaRmodel outperforms the OLS based VaRmodel and RiskMetrics model. The
results of Kalman filter with α = 95% are illustrated in Figs. 2, 3 and 4.

5 Conclusion

Implied volatility (IV) is a new measure of markets’ expected risk derived from the
price of a market traded option and it has attracted much attention in recent years
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Fig. 2 5-day VaR estimates of the OVX based model with Kalman filter (α = 95%)

Fig. 3 10-day VaR estimates of the OVX based model with Kalman filter (α = 95%)

Fig. 4 Monthly VaR estimates of the OVX based model with Kalman filter (α = 95%)
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because of its importance to financial markets. This research examines the relationship
between OVX and crude oil spot returns. The results indicate that, firstly, the time-
varying coefficients confirm the negative but weak relationship between OVX changes
and crude oil spot returns, and the relationship diminishes as time goes on. Secondly
the asymmetric effect is not significant and consistent with different time horizons.
Finally, our results suggest neither extremely high or low level of OVX can predict
long-term forward looking returns.

This paper also examines the relationship between OVX and realized volatility
of crude oil spot returns with linear regression model and investigates the forecasting
capability of OVXwithKalman filter. The t-test indicates OVX is an unbiased estimate
of future realized volatility, but theDWtest indicatesOVX is not an efficient estimate of
future realized volatility. But OVX contains information of future realized volatility
since α1 statistically is not equal to zero. A forecasting method involving Kalman
filter provides better performance than linear regression model in forecasting future
realized volatility based on OVX. Finally, application for quantifying market risk is
investigated. Empirical results show it’s feasible to use OVX to estimate VaR and
Kalman filter method dominates other methods in these cases.
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