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Abstract One of the motivations for the arise of the multiple criteria data envelop-
ment analysis (MCDEA) model was the need to yield more reasonable input-output
multipliers than those derived from standard data envelopment analysis (DEA), with-
out using priori information. The problem of unreasonable multipliers occurs when
some production units are efficient in standard DEA simply because the optimization
problem allows those units to select few inputs/outputs to attach positive multipliers,
discarding all of the others. Notwithstanding, MCDEAmay fail in providing multipli-
ers schemes free of non-null values. Therefore, in this paper, we propose an alternative
procedure, based on goal programming, for calculating positive multipliers within a
MCDEA framework. This procedure is applied to a previously reported problem, con-
cerning the performance evaluation of national teams that participated in the 2012
UEFA European Football Championship (UEFA EURO 2012), where the MCDEA
model has not succeeded in providing strictly positivemultipliers schemes. The results
derived by the proposed procedure indicate that, to assure non-null multipliers, it is
necessary a mild detachment of non-dominated solutions.
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1 Introduction

Data envelopment analysis (DEA) [1] is a non-parametric method based on mathe-
matical programming for measuring relative efficiency of production units, referred
as decision-making units (DMUs).

DEA calculates relative efficiency for each DMU as the weighted sum of its outputs
divided by the weighted sum of its inputs, on a bounded ratio scale.

Notwithstanding, DEA presents some widely reported inconveniences, amongst
which we may highlight [2]:

(i) lack of discrimination among efficient DMUs, which occurs when the number of
evaluated DMUs is small in comparison with the total number of variables (inputs
and outputs) used in the evaluation; and

(ii) inadequacy ofweighting coefficients (hereinafter, calledmultipliers), derived from
multipliersDEAoptimization problem,which could be unreasonable, for example,
in situations where large multipliers are attached to variables of less importance
and small (or even null) multipliers to important variables.

Problems (i) and (ii) are intertwined because an excessive number of variables
compared to the number of evaluated DMUs allows each DMU to select few variables
to which they attach positive multipliers, discarding all the others, to maximize its
own relative efficiency.

To address these two problems, Li and Reeves [3] developed a multiple objec-
tive linear programming approach, called multiple criteria data envelopment analysis
(MCDEA). However, there are cases in which MCDEAmay not succeed in providing
multipliers schemes free of non-null values (see, e.g., [4]).

For that reason, the objective of this paper is to propose an alternative procedure,
based on goal programming [5], for calculating strictly positive multipliers within a
MCDEA framework.

The proposed procedure is applied to a problem previously reported by Rubem and
Brandão [4], concerning performance evaluation of national teams that participated in
2012 UEFA European Football Championship (UEFA EURO 2012).

The remainder of this paper is organized as follows: in Sect. 2, we address multipli-
ers flexibility in DEA, and review main approaches used to avoid the inconvenience
this flexibilitymay generate. Section 3 describes theMCDEAmodel used in this analy-
sis and UEFA EURO 2012 performance evaluation to be further investigated. In Sect.
4, we present the goal programming procedure here developed to search for non-null
multipliers and apply it to the aforementionedMCDEA-based performance evaluation
problem. Finally, the last section presents some conclusions and suggestions for future
work.

2 Multipliers Flexibility in DEA

Flexibility of multipliers has been regarded as one of the major advantages of DEA.
Such characteristic allows, for instance, the identification of inefficient DMUs that
have low performance, even when selecting their best feasible multipliers [2].
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Nevertheless, total flexibility of multipliers derived fromDEA’s optimization prob-
lem may bring an inconvenience: important factors could be neglected in the analysis.
This happens when multipliers of some inputs/outputs are null or contradict a priori
knowledge [6], as mentioned in Sect. 1.

This inconvenience of DEA is addressed in the literature, mainly, by multipliers
restrictions methods. The main purpose of these methods is to establish bounds within
which multipliers may vary, preserving some flexibility [2]. The works of Allen et
al. [6] and Pedraja-Chaparro et al. [7] provide a comprehensive revision on the incor-
poration of value judgements for restricting flexibility of DEA multipliers, some of
which are mentioned hereinafter.

Dyson and Thanassoulis [8] developed an approach, further generalized by [9],
which imposes direct numerical bounds on multipliers. These bounds depend on
context and information provided by an expert. Such bounds shall be defined after
analysing the multipliers derived from the original DEA problem. Thus, a standard
DEA model must be run to determine multipliers ranges for each input and output,
because the method in [8] is highly dependent on those ranges. Only after the analysis
of multipliers for all inputs and outputs and all DMUs, restrictions could be intro-
duced. In case of unfeasible solutions, restrictions shall be relaxed until unfeasibility
disappears.

Charnes et al. [10] proposed a ‘cone-ratio’ DEAmodel in an attempt to restrict mul-
tiplier flexibility directly inmultipliers space. For that, relative ordination of inputs and
outputs is incorporated in the analysis, to allow better multipliers and, thus, efficiency
results become more consistent with a priori knowledge.

Thompson et al. [11] developed the concept of ‘assurance region’, introducing
homogeneous linear restrictions for multipliers in their domain. Such approach allows
successive increment of an assurance region, until efficiency levels meet expert’s
preferences.

Wong and Beasley [12] provided a multiplier restriction method by setting bounds
on proportions of individual inputs (or outputs) to total input (or output).

All aforementionedmethods require priori information and involve subjective value
judgment [2,3]. Such methods present some disadvantages, related to subjectivity [2]:

(i) value judgements or priori information can be incorrect or biased, or the ideas may
not be consistent with reality; and

(ii) there may be a lack of consensus among experts or decision-makers, and this can
slow down or adversely affect analysis.

In fact, preserving the DEA’s spirit, in the sense of not including priori information,
may be desirable. Within this context, Li and Reeves [3] departed from a multiple
objective perspective to introduce MCDEA, where one of the purposes was to yield
multipliers that are more reasonable, without requiring priori information.

However, the literature reports cases in which MCDEA fails in providing strictly
positive multipliers schemes. This condition may sometimes lead to situations where
all DMUs neglect the same input/output in the analysis (see, e.g., [4]).

To deal with such situations, and based on possible non-uniqueness of multipliers
schemes [2], in this paper, we propose the usage of goal programming [5], in search for
possible positive multipliers that correspond to MCDEA’s non-dominated solutions.
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3 MCDEA

MCDEA models [3] incorporate two additional objective functions to standard DEA
multipliers optimization problems. In most cases, no single optimal solution satisfies
all objectives simultaneously, requiring a set of non-dominated solutions. For further
details on multiple objective linear programming see, for example, [13].

In (1), we present the output-oriented MCDEA model proposed by Rubem and
Brandão [4], which differs from the input-oriented formulation of Li and Reeves [3].
In addition, distinctively from [3], where MCDEA model was based on CCR [1],
the formulation shown in (1) is based on BCC [14], as done by [15], although still
combined to input orientation.

Min do(or Min ho =
∑r

i=1
vi xio + v∗)

Min M

Min
∑n

k=1
dk

s.t.
∑s

j=1
u j y jo = 1

∑s

j=1
u j y jk −

∑r

i=1
vi xik + dk − v∗ = 0,∀k

M − dk ≥ 0,∀k
u j , vi , dk ≥ 0,∀ j, i

v∗ ∈ R (1)

In (1), the first objective function is the same of standard output-oriented BCCmodels.
Nevertheless, traditionally, in MCDEA a deviation variable do = (ho − 1) is used
in place of ho, which originally denotes the inverse relative efficiency (i.e., ho =
1/E f fo) of the DMU under evaluation (DMUo); vi and u j are multipliers of inputs
and outputs, respectively; xio and y jo are inputs and outputs of DMUo, respectively;
and v∗ represents a scale factor. DMUo is efficient if, and only if, do = 0(or ho = 1).

The second objective function comprises minimization of the maximum deviation
(minimax), and the third objective function represents minimization of the sum of
deviations (minisum).

Variable M denotes maximum value of deviations dk (k = 1, . . . , n), as ensured
by third constraint.

It is noteworthy that, although using BCC’s variable returns-to-scale assumption,
negative efficiency values are avoided, due to output orientation. As reported in previ-
ous works [15–17], negative efficiency values, although implicit, usually appear when
combining BCC’s assumption to advanced input-oriented DEA models.

Under MCDEA’s framework, a DMU is minimax efficient if, and only if, value
do corresponding to the solution that minimizes second objective function is null.
Analogously, a DMU is minisum efficient if, and only if, value do corresponding to the
solution that minimizes third objective function is null [18,19]. Thus, when a DMU
is minimax or minisum efficient, it must be necessarily efficient in standard DEA,
because, by definition, both minimax and minisum efficiencies require do = 0 [3].

MCDEA’s additional objectives, used to measure relative efficiency, tend to restrict
efficiency results obtained by DMUs, reducing as well flexibility of multipliers in the
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optimization process [18,19]. However, there are cases in which MCDEA may not
succeed in providing strictly positive multipliers, and this may not seem reasonable.
This is the case of MCDEA analysis performed by Rubem and Brandão [4].

3.1 Illustrative Example of MCDEA-Based Analysis

Hereinafter,we reproduce theMCDEA-basedperformance evaluationofUEFAEURO
2012 national teams, presented by Rubem and Brandão [4], which resulted in null
multipliers for the same input of all DMUs.

DMUs are sixteen national football teams engaged in the championship, and the
evaluation was based on market’s expectation and favouritism, to measure to which
extent these two factors determine actual performance of teams.

For that purpose, two proxies were used as inputs: sum of players’ market value
and total points in FIFA’s ranking, whose calculation was based on data available
at www.financefootball.wordpress.com/ and www.fifa.com/, respectively; while the
output was final tournament ranking, retrieved from www.uefa.com; which had to
be converted into a cardinal scale. This conversion followed MACBETH-based [20]
procedure proposed by [21].

Table 1 displays input and output data, originally reported by Rubem and Brandão
[4], and reproduced here for ease of reference.

It is noteworthy that Rubem and Brandão [4] opted for using BCC’s assumption
because it seemed unreasonable to assume input-output proportionality and, besides
that, the output variable is bounded. In addition, as teams seek to improve performance
rather than reduce market value and FIFA scores, the authors used output orientation.

Results exhibited in Table 2 were originally presented by Rubem and Brandão [4],
and refer to the application of theMCDEAmodel in (1) to the normalized data of Table
1. This normalization avoids distortions arising from different input-output ranges and
allows consistent analysis of multipliers.

Figure 1, reproduced from [4], shows the weights space decomposed into indif-
ference regions for each DMU, and, thus, the corresponding area in the indifference
region for each non-dominated solution.

This area gives a clear idea of possible weights combinations for each objective
function, allowing a stability evaluation for each non-dominated solution [19]. In this
sense, large indifference regions indicate that the evaluation does not alter with moder-
ate changes in weights of objective functions. Based on that, Rubem and Brandão [4]
selected for each DMU the non-dominated solution that exhibited the largest indiffer-
ence region. These solutions may be directly identified in Fig. 1, and their respective
efficiency scores are in bold at Table 2.

With these MCDEA solutions, discrimination was improved, as shown in Rubem
and Brandão [4]. Indeed, the number of efficient teams reduced from six (Spain, Italy,
Czech Republic, Poland, Greece an Ireland) in standard DEA (solutions 1 in Table 2)
to two (Italy and Greece) in their MCDEA approach (solutions in bold).

Nonetheless, the MCDEA-based analysis performed by Rubem and Brandão [4]
did not succeed in providing better multipliers schemes, as shown in Table 3, which
exhibits multipliers for the MCDEA non-dominated solution of each DMU corre-
sponding to the largest indifference region. Table 3 was also extracted from [4].

123

www.financefootball.wordpress.com/
www.fifa.com/
www.uefa.com


444 Ann. Data. Sci. (2015) 2(4):439–451

Table 1 Data for UEFA EURO 2012 efficiency evaluation [4]

DMU Input 1: market
value (million e)

Input 2: points in
FIFA ranking

Final tournament
ranking

Output: M-MACBETH
ranking

Spain 625 1456 1 100

Germany 475 1288 3 30

England 415 1145 5 17

Portugal 350 996 4 30

France 345 964 8 17

Netherlands 320 1234 15 10

Italy 310 977 2 54

Russia 165 975 9 10

Croatia 155 1053 10 10

Sweden 130 910 13 10

Ukraine 110 572 12 10

Czech Republic 105 771 6 17

Poland 95 518 14 10

Denmark 90 1019 11 10

Greece 85 953 7 17

Ireland 70 907 16 10

Table 2 MCDEA efficiency scores for each non-dominated solution [4]

DMU Solution 1 Solution 2 Solution 3 DMU Solution 1 Solution 2 Solution 3

Spain 1 0.945180 Croatia 0.350741 0.318826

Germany 0.384146 0.369772 Sweden 0.424683 0.360825 0.409836

England 0.245192 0.238541 Ukraine 0.738533 0.403329 0.473684

Portugal 0.304365 0.284085 0.280631 Czech Republic 1 0.706464 0.837897

France 0.322025 0.287594 0.284492 Poland 1 0.442416 0.536353

Netherlands 0.180309 0.179712 Denmark 0.561097 0.457184

Italy 1 1 Greece 1 0.804054

Russia 0.331614 0.304642 Ireland 1 0.527638 0.688073

Actually, when comparing the results from Table 3 to the multipliers derived from
standardDEA, except for Spain, the number of null multipliers for all DMUs remained
unaltered or even increased [4].

Thus, using the criterion proposed by those authors, that is, choosing a preferable
non-dominated solution based on its stability, the second input (points in FIFA ranking)
was always disregarded by DMUs.

In the next section, we propose an alternative procedure to search for strictly posi-
tive multipliers, which shall preferably generate one of the MCDEA’s non-dominated
solutions. The proposed procedure will be applied to the same data analysed byRubem
and Brandão [4], in an attempt to derive non-null multipliers for the input ‘points in
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Fig. 1 a Spain, b Germany, c England, d Portugal, e France, f Netherlands, g Italy, h Russia, i Croatia, j
Sweden, k Ukraine, l Czech Republic,m Poland, n Denmark, o Greece, p Ireland [4]

FIFA ranking’, restricted, if possible, to MCDEA non-dominated solutions selected
for DMUs in that work.

4 Goal Programming Procedure for Non-null Multipliers

In this paper, we propose the use of a goal programming procedure, in an attempt to
find strictly positive multipliers, which shall preferably generate one of the MCDEA’s
non-dominated solutions.
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Table 3 Multipliers for MCDEA non-dominated solution corresponding to largest indifference regions [4]

DMU v1 v2 u1 Eff DMU v1 v2 u1 Eff

Spain 1.027778 0 1 0.945180 Croatia 10.27778 0 10 0.350740

Germany 3.425926 0 3.333333 0.369762 Sweden 10.27778 0 10 0.409836

England 6.045752 0 5.882353 0.238541 Ukraine 10.27778 0 10 0.473684

Portugal 6.045752 0 5.882353 0.280631 Czech Republic 6.045752 0 5.882353 0.837897

France 6.045752 0 5.882353 0.284492 Poland 10.27778 0 10 0.536353

Netherlands 10.27778 0 10 0.179712 Denmark 10.27778 0 10 0.561097

Italy 1.903292 0 1.851852 1 Greece 6.045752 0 5.882353 1

Russia 10.27778 0 10 0.331614 Ireland 10.27778 0 10 0.688073

Goal Programming (GP) was originated in the work Charnes and Cooper [5], with
later developments attributed to [23–25], among others. Examples of GP applications
to various areas can be seen in [26].

GP is a type of multiple objective programming, which seeks a solution that best
meets aspiration levels predefined by decision maker.

In GP’s basic approach, objectives of multiple objective programming problems
are turned into goals, by defining a numerical aspiration level for each objective.
Then, the model searches for a solution that minimizes the achievement function,
which is generally represented by the weighted sum of undesirable deviations between
aspiration levels and results actually achieved.

However, the proposal presented hereinafter is based on multiple goal approach
[27,28], where each goal is associated with an achievement function that minimizes
undesirable deviations.

Min n1 + p1
Min n2 + p2
Min n3 + p3
Min n4

s.t.
∑s

j=1
u j y jo = 1

∑s

j=1
u j y jk −

∑r

i=1
vi xik + dk = 0,∀k

M − dk ≥ 0,∀k
V − vi ≤ 0,∀i
do + n1 − p1 = f ∗

1

M + n2 − p2 = f ∗
2∑n

k=1
dk + n4 − p4 = f ∗

3

V + n4 − p4 = ε

u j , vi , dk, n1, n2, n3, n4, p1, p2, p3, p4 ≥ 0,∀ j, i, k

v∗ ∈ R (2)
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In this sense, the procedure presented in (2) seeks non-null inputs multipliers, by
defining aspiration levels for all three MCDEA objectives as the corresponding values
of non-dominated solutions, and for the inputs multipliers a minimum value, set in
advance.

Thus, the proposed procedure comprises two stages. On the first stage, we shall
run the MCDEA model and select which non-dominated solution is preferable. If
multipliers derived are non-null or reasonable, the second stage is avoided; otherwise,
we shall solve the GP problem described in (2).

In (2), n1, n2, n3, n4, p1, p2 and p3 are undesirable deviations to goals of the four
objective functions; f ∗

1 , f ∗
2 and f

∗
3 are the values of the corresponding MCDEA’s

objective functions associated with preferable non-dominated solution derived and
used as aspiration levels in the corresponding goals; and ε is a non-null value used
as aspiration level in the goal for inputs multipliers (in the application hereafter,
ε = 0.01).

4.1 Application

Hereinafter, the procedure proposed in (2) is applied to the MCDEA-based perfor-
mance evaluation of the national teams engaged in UEFA EUO 2012, previously
analysed by Rubem and Brandão [4], and reproduced in Sect. 3.1.

To verify the possibility of obtaining non-null inputs multipliers to the non-
dominated solutions selected by those authors, the GP problem in (2) is applied to
each DMU (national football team).

In this application, we seek to match the values obtained for the three MCDEA
objective functions ( f ∗

1 , f ∗
2 and f ∗

3 ) in the preferred non-dominated solutions, exhib-
ited in Table 4, and match or surpass the predefined aspiration level (ε, herein set as
0.01) for the inputs multipliers.

For the model implementation, we resorted to iMOLPe, and used the weighted-
sum method, assigning equal weights to each achievement function. Such assignment
of equal weights implies that all four achievement functions have the same relative
importance. Table 5 presents non-dominated solutions, which resulted in non-null
multipliers, derived from the GP problem in (2), as previously described.

From Table 5, we note that using the proposed procedure it was not possible to meet
all goals simultaneously for any of the DMUs; otherwise, all achievement functions
would be null, and we would find non-dominated solutions with non-null multipliers.

However, for DMUs Portugal, France, Italy, Sweden, Czech Republic, Greece and
Ireland, it was possible to meet two goals, namely, the first (standard DEA objective)
and the fourth (non-null inputs multipliers objective).

In addition, for all DMUs, the proposed procedure helped us finding at least one
strictly positive inputs multipliers scheme, even though such solutions do not corre-
spond exactly to a non-dominated MCDEA solution.

With regard to the multipliers schemes for the input ‘points in FIFA ranking’, it
was always attached the minimum value admissible (i.e., 0.01).

Thus, the GP procedure proposed herein, for finding non-null inputs multipliers
schemes, reached its purpose, despite of mild deviations from the non-dominated
MCDEA solutions, displayed at Table 4.
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Nevertheless, the problem of presenting a value for ε shall be further investigated,
for example, by means of a sensibility analysis.

A comparative advantage of the proposed procedure is that it allows more trans-
parency than methods of multipliers restrictions. In other words, when using the
GP-based procedure, the decision-maker may identify how far the solution with the
“ideal” multipliers is from the non-dominated solution.

5 Conclusions

In this paper, we proposed an alternative procedure, based on goal programming, for
calculating strictly positive inputs multipliers within a MCDEA framework.

The proposal was applied to a problem previously examined by [4] on performance
evaluation of national teams engaged in UEFA EURO 2012, in which MCDEAmodel
did not succeed in providing non-null inputs multipliers.

The results derived from the application of the proposed procedure revealed that,
to assure non-null multipliers, a mild detachment of non-dominated solutions was
necessary.

In future works, we intend to use other goal programming approaches for calcu-
lating alternative multipliers schemes (e.g., lexicographical ordering of achievement
functions ormaximizing the lesser of unwanted deviations). Another possibility would
be to turn one or more of the goals into objective functions (e.g., maximizing standard
DEA efficiency could cease to be a goal and become the objective function).
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