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Abstract Weused fractal geometry and fractal dimension introductory argumentation
as a framework to start understanding dynamical and complex biological systems to
then introduce Hurst exponent estimation of chaos/no-chaos balance trend to explore
the phenomenology and the information content of EEG data through time. We
searched for measure proxy dynamical variables as potential biomarkers and/or endo-
phenotypes that help us to figure out the multidimensionality and different time-scale
of simultaneous and crossed functional phenomena that manifests in the brain during
executing any challenging task. We found consistencies in the way intra- and inter-
individual differences express themselves through the EEG time series data analysis,
and some degree of specificity and specialization in the frontal, temporal and occip-
ital locations as well as brain interhemispheric cross-talk interaction modulating the
chaos/no-chaos balance in the brain, during a projective process of imaging a dancing
choreography. We recorded the brain activity of N = 9 professional dancers while
executing the instruction of to imagine (by mean of a typical projective visualization)
a future dancing performance as part of the requirement for to approve a specialization
modern dance course and workshop (Kosmos In Movement, 2015).
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1 Introduction

Try to answer the question of how the brain processes data and concurrently per-
forms executive functions has been approached from many points of view. Most of
themmainly concern to functional relationships and dependence betweenmultiple and
variable areas or locations in the brain [1–3]. In general, it is well understood a hier-
archical topology with more or less specific areas dedicated to sensorial, processing
and executive functions [4–6]. In the cortex, this differentiation is carried out by the
cortical columns, which are the structural and functional units which are processing
and rendering information along the cortex. The cortex areas locally differentiate by
the relative proportion of the nervous cell types that compose the six layers that every
cortical column has (Fig. 1).

Since 1924, when Hans Berger recorded the first wave of electrical activity coming
from a human brain [7], this organ has been extensively explored across the study of
the EEG. The bio-electrical signal generated by the brain can be recorded from the
scalp by means of placing electrodes sensible enough to detect the tiny differences of
voltage that comes from the activity of the brain surface. All this happening below
a layer of skin, a plate of bone, and three layers of laminar tissue filled with liquid.
Once the electrical signal is amplified, it is seen as a continuous trace that moves up
and down in time around a central (0 µvolts) stationary tendency (Fig. 2).

Quantitative analysis of the EEG data has been done mainly on spectral analysis
by means of Fourier or wavelets decomposition [8–11]; auto-correlation, cross-
correlation [12,13]; and coherence analysis [14,15]. Much of the research has been

Fig. 1 Brain cortical structure. A Brain areas in the whole brain; B Functional structure of cortical layers
I–VI;CBrainmain areas in the plane. a Frontal; bTemporal; c Parietal; and d Occipital.DNeurons depicted
in a cortical column
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Fig. 2 Typical EEG traces from three different electrode locations

Fig. 3 Sensitivity to initial
conditions. The arrow indicates
tiny different initial conditions
for both phenomena

also dedicated to the study of evoked response potentials, which search in the sponta-
neous reaction of neurons in response to specific stimulus [16,17].

All of these approaches have thoroughly explored the linear aspects of the EEG
phenomenology, expressed in terms of average differences between variables sub-
mitted to a scientific question, through the artifact of an experiment. Much of these
explanations are constructed in terms of a set of variables that, in one way or another,
in conjunction involves energy intensity differences and a set of temporal (synchrony,
phase) and frequency (tuning) correlations between brain (electrode) locations and
electrical activity.

Just recently, complementary to this classic approach, a non-linear scope has
emerged with the aim to re-understand old and new phenomena by looking at them
with new eyes, with the eyes and language of dynamic, complex and unpredictable
systems [18–20]. The language of this approach is written in fractal algorithms which
can be as simple as a one variable equation, but with the property of amplify its ren-
dering through iterate a recursive function that applies the original and rather simple
instruction over the result just obtained after apply the same operation. In this way,
we get a dynamic system, a system that cannot be easily characterized by linear math,
because in this non-linear realm, chaos and uncertainty governs and where we can
assert that not always bigger is better. Here all depends on everything, and on just one
thing: initial conditions [21–23].

The fact that dynamical systems are very sensitive to initial conditions is understood
in terms of that any difference that we may consider tiny or negligible in the elements
that drive the course of a phenomenon now, after some iteration of the process will
unavoidable conduce to very different trajectories (and consequences) in the future of
the systems (Fig. 3).

The only light that can slightly narrow and delimitate the otherwise totally unpre-
dictable possible future trajectories of a dynamical system is the detailed knowledge
that we can have of the conditions that put the system in motion at the beginning. It
sounds more or less reasonable when we think about isolated systems, with very clear
and defined boundaries and known initial conditions. And in restricted conditions like
such it does works, but when we are talking about living systems what happen here
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is that any moment in the life of a living being sets a new set of initial conditions for
quasi-predictable futures.

In this scenario, it looks like the only we can expect to find when studying living
organisms, is variability. In fact, it has been shown that even in the most carefully
designed experimental protocols made to ensure experimental replicability, there are
unexpected differences in the individuals, even out of the range of the reasonable
expected along normal differences, and even in largely selected genetic mouse strains
[24].

In understanding human diseases and their recovery, rather little attention has been
posed on to know more about the people in the mid-range of the normally distributed
statistically average people. Those who live the everyday life in standard conditions
and that neverwould go to a hospital to take an electroencephalogramof him or herself,
without, or unless, having received precise indication from a clinician.

In studying the brain, a lot of knowledge has been accumulated investigating the
plethora of neurological conditions that populate the DSMs, but rather little is known
about how the brain works in normal or standard conditions, when people face daily
challenges on-the-go, and/or have to solve different problems on-demand. In this
last kind of investigation we expect to be faced to the crude human variability and
unpredictability. And it will be much more expected now under the light, scope and
language of dynamical systems.

2 Fractal Dimension (D)

Fractal dimension is central in fractal geometry because it breaks the classical integer
Euclidean spatial dimensions in which we are comfortable to think (dimension ‘0’ for
a point; ‘1’ for a line; ‘2’ for a plane; and ‘3’ for a volume), by intercalating fractional
values of dimensions, for natural and mathematical objects, in-between the Euclidean
dimensions. Classical geometry deals with ideal lines, figures, forms and objects, those
we never find in nature, unless made by human beings. Fractal dimension qualify the
degree of roughness built up over an ideal smooth Euclidean dimension, in such a
way that while D increases from dimension 1 to 2, for example, what it is saying is
that a line (of dimension 1) can gradually reach a plane (dimension 2). How can it be
possible? Figure 4 depicts the random walk trajectory of a single photon, released at
the center of an area, and that have to move across an optically dense region until reach
the limit and escape off the encircled area. We can see that the cumulated trajectory
of the photon between starting and escape point can, progressively, fill the plane area.
Depending on the circumstances, sometimes the photon finds a fast way to scape
while, in others, it take substantially longer. But in both cases the way the photon
moves across the dense area is the same and depends on the angles of interaction
between the photon and the particles that made the medium. The trajectory traced by
photons in these circumstances can be described by a fractal trajectory called random
walk (Brown noise or Brownian motion) that eventually can overlay all the necessary
points to cover a 2D plane. So, fractal dimension for this mathematical object known
as random walk has a D value of 1.5.
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Fig. 4 Example of Compton scattering Brownian motion (Random walk) of a photon

3 Chaos, Non-chaos and Hurst Exponent

Another way to study the meaning of the trajectory of a 1-D system in the range
of the fractal dimension is to look at into temporal aspects of the time series like
auto-correlation; self-similarity; and short- and long-memory underlying processes.
For example, Brownian motion describes a trajectory that is totally uncorrelated with
respect to previous behavior, so it is impossible to predict future positions or trajecto-
ries. It can be said that random walk has no preferred locations or that the “preferred”
locations are equally distributed in time and space. Something similar occurs with
white noise, which is the kind of sound that contains equal representation of all the
audible range of frequencies. There is no information in white noise, not in brown
as well. There are not underlying processes driving the behavior of these trajectories
because they are statistically driven, no tendency and no long-memory processes.

Total unpredictability renders for chaos but complex systems, as living organisms,
are characterized by oscillate between order and chaos (and between cooperation
and competition) [25–27], so we need to look for other range of noise (out of white
and brown) to search for more interesting dynamics, those who may involve quasi-
predictable trajectories, self-similar information-driven procedures with short or long-
memory underlying processes involved. We can find this kind of phenomena in the
realm of pink (fractal) noise, which moves between white and brown (Fig. 5) and
have the property to transiently manifests self-organized behavior which can vary in
the degree of self-similarity, autocorrelation, short/long memory and fractal content,
in a way that it is possible to deduce an information driven processing modulating
the overall behavior of the trajectory. These fractal objects are understood as dynamic
attractors, which are a kind of biased tendencies for statistical distribution in time and
space where the trajectory of the system is intermittently attracted to so they appear
characterized as very organized short-life items emerging stochastically from a chaotic
uncorrelated background.
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Fig. 5 Examples of white, pink and brown noise time series

Interestingly, in nature many time-dependent processes falls into the category of
fractal noise [28–30] and the EEG brain signal is one of them [35,36].

The formula D = 2 − H , relates Fractal Dimension (D) with H (Hurst exponent).
While the former measure the degree of roughness of the trajectory in a 1-D → 2-D
fractional dimensional range, the latter estimate the rate of chaos in the signal with
values that range from 0 (total unpredictability or chaos), to 1 (total predictability), a
proxi way to evaluate the self-organized (order) content in a chaotic medium [31].

4 Chaos and Self-Organized Content in the Brain

Transient fractal self-organized elements has beendescribed emerging from the chaotic
background of the EEG brain activity [32] to count for the ordered counterbalance
that the brain must do against total unpredictability, to render time-space organized
patterns of activity that must be reasonable related with information processing.

Many recent approaches to non-linear dynamics and predictability in chaotic
physiological environments suggest that the more ordered is the process, the more
pathological it is, so we have to be cautious in interpret results under our own view
of what is good or bad for the organism. It may seem counterintuitively to think that
keeping chaos as a rule for functioning is healthier than maintain strict order and regu-
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larity. It has been shown that physiological parameters like heart beat rate are healthy
when the time series of the beat rate have a rather unpredictable trajectory in between
physiological ranges than a predictable one. When we find predictability and extreme
regularity of the physiological function it is a sign of illness [33–35]. Along we get
older in life our brain activity loses complexity and the functional trajectories of brain
processing turn to be less chaotic or more predictable [36].

Looking at the chaos/order balance in the EEG brain activity, it has been shown
a relationship between Hurst Exponent (H) and the EEG brain frequency bands that
characterize diverse modes of the functional brain. High values of H arise in delta
band (0–4 Hz), while lowest values of H has been detected for alpha band (8–13 Hz).
Going up from alpha to beta (13–30 Hz) and gamma band (30–64 Hz), it is observed
a gradual increase of H values which can be interpreted in terms of the functional
constraints toward order that demand brain data processing while working with more
complicated information [31].While delta wave can be considered as a very structured
self-dedicated house-keeping process it is not strange that high H values reflects high
organization and not-chaotic processes happening in the brain. Delta waves charac-
terize the kind of brain activity that predominates during deep highly synchronized
slow-wave sleep, so it is reasonable to think in this activity as a very organized self-
dedicated process that the brain performs while we rest our consciousness.

When the brain is submitted to a cognitive challenge (like an intelligence test),
H values rises with the transition that separate the solving of the easy and difficult
questions. In the same transition, the average inter-channels beta correlations (R) fall
from 0.4 to 0.15 when the brain is faced to the difficult part of the test indicating a
separationof functioning (electrodes desynchronization) to solve themoredifficult part
of the test [37]. This reflects the same decay in synchrony and amplitude tendency that
is observed in the whole brain frequency range when we travel from low frequencies
(delta) band, to high frequency (gamma) band in the sleep-awake-cognitive axis of
brain attention and cognitive processing.

All these consistencies of the phenomena and the non-linear tools that can be used to
characterize them allow the use of these proxi indicators of the functional substructure
underlying the phenomena that we are seeing, an EEG trace. At this point, we reach a
point in which never mind about the reductionist’s conflict about if what we are seeing
is the cause of the brain phenomena or just a kind of resonant effect of the hidden and
still not fully understood machinery that allow the brain to work. Strong dependence
(or sensitivity) to initial conditions annihilates the problem because complex systems
doesn’t conciliate with the idea of cause and effect. In this new mathematical realm
of non-linearity and fractal geometry, the only thing we know is that an EEG trace
occurs in the brain concurrently with the behavior that we are observing or testing. We
also know that this electrical oscillatory signal contains the whole range of detectable
frequencies that we are able to capture with our apparatuses, and that in this whole
range of frequencies there will be all the trajectories involved in all the brain processes
that are occurring at the moment. Contrary of what we can think, all this apparent
cacophony of noise superficially seen in an EEG trace is plenty of information and his
behavior (pattern of oscillation) reflects the functional underlying mechanisms that
render the processes that must be implemented for the brain to deal with the on-going
present.

123



428 Ann. Data. Sci. (2015) 2(4):421–438

5 Individual Differences for Data Processing

It can be reasonable expected that every person on the planet have a different neural
architecture, resembling the general pattern depicted in Fig. 1, but differing in a mul-
tiplicity of free scale dimensions (structural, functional, behavioral, psychological,
experiential, etc.). Besides, it is evident that each person on earth has more than tiny
differences in initial conditions so we expect trajectories that exponentially separate
from each other while minimizing similitudes in the future.

For complex adaptive systems like all the living organisms, and like us, humans
beings, living in a descriptive-explanatory domain with respect to what we refer as
reality, it is easy to see that every single moment of our own life sets for a new set of
initial conditions which are the only things that worth wide to know in a dynamical
system, as early as possible, to have a minimal foresight confidence about possible
future trajectories.Whenwe study human beings, unlesswe are studying thembecause
they are part of a specific medical condition category, we start to find individual
differences as the norm. We can measure them in terms of how close or far can be
located different trajectories of functional processing, in comparing them as proxy
non-linear variables that measure the tendency to chaos against self-organization in
the data variability (trajectory).

These individual differences that we start to detect can be very informative about the
chaos/order balance in thebrain processes. Ifwe think about a developingbrain as a sys-
tem that learns successful correlations, between order/chaos; competition/cooperation
brain functioning; and a set of external conditions, it is expected that the brain will
operates progressively learning until to get the lowest energy expenditure and the
highly efficiency that can be reached in the given conditions. Depending on the infi-
nite particular different routes (trajectories) that could been followed by this learning
brain during the past, we will expect finding infinite different strategies learned to
face problems in life, but all of them had to deal with the same energy and informa-
tion processing resources optimization, the chaos/order and competition/cooperation
balance.

6 Experiment

With the aim to test these non-linear methods for understanding and estimating valu-
able variables of dynamical systems, we recorded the brain activity of 9 (N=9)
professional dancers while executing the instruction of to imagine (through a typical
projective visualization) a future dancing performance that will be one of the eval-
uations required for to approve a specialization modern dance course and workshop
(KIM Kosmos In Movement, 2015).

EEG signal was recorded with the brain-interface device Emotiv Epoc® [38,39] at
128 Hz sample rate during 2 min performing the required task with the eyes closed.

The EEG system recorded from 14 channels/electrode location according to the
standard system 10/20 (AF3, F7, F3, FC5, T7, P7, O1/O2, P8, T8, FC6, F4, F8, AF4).
Electrodes were referenced bilaterally to the mastoid bone behind the ear. All subjects
(N = 9; 6 females and 3 males; CT, FA, FCH, JC,MB, MP, PL, RA, LC), were young
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Fig. 6 Hurst exponent (H) estimation for the three brain areas depicted in color (blue= frontal; red=
temporal; green= occipital), for 8 subjects (FA, FCH, JC, MB, MP, PL, RA, LC). L Left hemisphere, R
Right hemisphere. (Color figure online)

adults between 20–30 years old, and rested during 5 min in comfortable relaxation
previous to the experiment.

EEG data was then pre-processed for artifact cleaning in 1–64 Hz whole range
filtering using EEGLAB [40] and ADJUST [41] toolbox, running onMatLab platform
2008a.

In the first step for this exploratory approach we integrated the whole frequency
EEG range from 1 to 64 Hz, for both hemispheres left (L) and right (R) and for three
dedicated brain areas: frontal (AF3–AF4), temporal (T7–T8) and occipital (O1–O2).

7 Results

7.1 Hurst Exponent Variation by Subject and Brain Location

All long-term (2 min) H estimation for 15,360 data points in the time series, for each
channel rendered for frontal, temporal and occipital areas and for the eight subjects,
gave results of H < 0.5 meaning that the signal moves in the range of anti-persistence
and short-memory dynamics. It means that any high or low value of the data series will
tend to be followed by values that counterbalance immediately any possible trend.

It is interesting that for all subjects, higher values of H were consistently obtained
for the temporal region which shows the lower tendency to anti-persistence of the
three areas. It also seem to be a slightly difference between frontal and occipital areas,
being the latter the one that has the more short-memory processes going on.

7.2 The Chaos of the Data and the Chaos of the Chaos Oscillation (M-chaos)

When estimating the degree of self-similarity, long-memory tendency or persistence
of a time series, this estimation, not been an average, is a better picture of the inner
trend toward order or chaos that express the underlying mechanism in correlation with
the oscillatory bio-electrical signal manifestation.
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The value of H obtained for the whole duration of the experiment (2 min) were
rather low for all subjects, as one expect to find when the brain is in a state of relaxed
attention or daydreaming, not involved in nothing special, but kindly ready to face any
experiential challenge.

Aswe indicated a precise projective visualizationwith a very specific goal (themen-
tally preparation of a dance performance), we went to look for more self-organizing
processes at a different time scale.

We first study the Hurst exponent sensitivity to N (number of data points considered
in the time series for the H estimation). We found that for many different data series a
maximumH arise around processing between 160 and 320 data points, which in terms
of time means around 1.3 (±0.5 s) seconds to then decrease slowly and gradually
while N increase. We took then this consistent and also intuitive timeframe of around
1 s, which seems to be a good pace-marker for a moving time-frame window of 1 s
length.

Cutting the entire EEG signal of 15,360 data points in shorter time series of 128
data points each (1 s duration), 120 new data set of 128 points each, allowing us to
recalculate H′ but this time over a time series containing a time series of H values.

Figure 7 shows five representative different time series oscillation of Hurst values
for frontal brain area, over time, in 120 timeframes of 1 s duration each.

By revealing a new time series, nowmade of primaryHvalues, in a very preciseway,
by looking at the oscillation of the chaos/order tendencies over time, we were looking
at the chaos of the chaos. Individual differences in the trajectory of the chaos/no-chaos
oscillation are evident for the three areas under study.

We could then compare two new, rather simple, but very informative modified H′
values, obtained by averaging all 120 H (1 s duration each) values. This gave us a
proxy linear indicator of the short-term timescale control process that must be at the
root of chaos/no-chaos balance. As it was said, the other H′ estimation was obtained
by the recursive operation of to apply the Hurst exponent estimation over the time
series of 120 (Fig. 7) short-term (1 s) data H values coming from the original time
series of EEG data.

We used our approximations consisting in to operate linearly (by means of average,
standard deviation, coefficient of variation, and linear correlation); and non-linearly
(by mean of Hurst exponent estimation), over the same data set of 120 H values to
obtain and compare three kind of chaos: (i) the chaos governing the primary long-
term manifestation of the control process in the brain. This is based on the EEG data
information; (ii) the chaos governing the secondary long-term manifestation of the
chaos oscillation M-chaos (for meta-chaos) estimated by iterate the H function over
the primary 120 H values of the chunked original EEG data by second; and (iii) the
linear average of H values for chaos tendency in the short-term scale of 1 second.

In the figures, all this secondary approximations to estimate the chaos content
variation coming from the analysis of the second order chaotic signal trajectory, are
usually referred as H′ or HH operations.

In resume, the estimation of short-term (moment-to-moment) control of data
processing in the brain comes from averaging a set of consecutive H values obtained
from EEG data time series of 1 second duration (128 data points). Two estimation of
long-term control of the data process can also be obtained. The first one corresponding
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Fig. 7 Hurst exponent time series oscillation (HH) for frontal area, for five representative subjects (CT,
FCH, JC,MB, MP, PL). Left and Right hemispheres for Hurst oscillation are indicted with color. Red Right
and Blue Left. (Color figure online)
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Fig. 8 HH short-term values comparison for eight subjects and three brain areas. L Left hemisphere and
R Right hemisphere

to the primary long-term estimation of H calculated from the 15,360 data points cov-
ering the 2 min of EEG recording. The second correspond to the secondary long-term
estimation o H (now also referred as H′), calculated from the 120 averaged values of
the short-term (1 s) H estimations.

7.3 Quantitative Linear Descriptive Characterization of Non-linear Estimator
of Chaos

Figure 8 compare HH short-term estimations (averages) for eight subjects and for
the three brain areas. Similar to the individual differences distribution of long-term
primary estimation in Fig. 6, HH short-term render high values of 0.6 < H′ < 0.8,
reflecting strong trend for persistence, long/memory processes and self-organization.
Among brain areas, comparative higher values of H′ appear again for temporal brain,
while frontal and occipital differences are almost undistinguishable in the majority of
the subjects for both hemispheres.

Figure 9 show the relationship between HH short- and HH long-term estimation of
M-chaos. In this casemore differences are appreciated among brain areas, but conserv-
ing interhemispheric consistency in its differences distribution. The graph depicts the
values of (HH long-term /HH short-term) sowhen the plotted values are greater than 1,
means that the control processing of the chaos/no-chaos balance is mainly modulated
for the long-term control, prevailing over short-term fine tuning modulation. By the
contrary, plotted values <1, mean that the control processing of the chaos/no-chaos
balance is carried out by the short-term, moment-to-moment, fine tuning control, pre-
vailing over long-termmodulation. It is also observed that occipital (green) areas seems
to have a preferred modulating control at the long-term scale of intervention, while
temporal areas (red) tend to be the more fine tune, moment-to-moment, short-term
modulated.

Figure 10 shows great differences observed in the values of H′ coefficient of vari-
ation (CV), reflecting the degree of individual variability. More specific individual
differences cluster very clearly in frontal areas for subjects RA, PL, MP andMB with
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Fig. 9 HH short-term vs HH long-term values comparison for three brain areas and eight subjects. L Left
hemisphere and R Right hemisphere

Fig. 10 HH Coefficient of variation (CV = S.D./H ′ short term AVERAGE) comparison for three brain
areas and eight subjects. L Left hemisphere and R Right hemisphere

low short-term M-chaos variability (CV ∼15 %); and subjects LC, FA, FCH and JC,
showing higher values of variability (CV ∼ 25–30 %)

Figure 11 shows the HH short-term (H′ averages) interhemispheric (LEFT/RIGHT)
linear correlation R values for frontal, temporal and occipital areas in the nine subjects.
Frontal hemisphere show high values of interhemispheric correlation, while temporal
and occipital areas are more individually variable but with less values of interhemi-
spheric linear R correlation.

7.4 H, HH Short-Term and HH Long-Term for M-Chaos Comparison

Figure 12 depicts the relationship between primary and secondary operations used
to characterize short- and long-term chaos trajectory estimated for chaos and M-
chaos (HH). Comparing long-term (H) versus short-term (H′) timescales, short-term
estimated values of H from 120 s of data points (M-chaos), has higher values of H′
than the long-term trend (H) estimated directly from the EEG whole data time series.
The plot pattern is similar when comparing H versus HH long-term (data not shown)
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Fig. 11 Interhemispheric (Left/Right) linear correlation of HH short-term averaged values, for the three
brain areas under study, and for the nine subjects

When comparing M-chaos (HH) short-term vs M-chaos (HH) long-term, there are
reduced differences in the values of H′ for both hemispheres. Individual differences
can be found in some brain areas and some subjects, which varies between tendencies
in short- versus long-term control processing, and vice versa.

8 Discussion

The faculty to project our thoughts into the future, by means of create images in our
brain while imagination, is maybe one of the pinnacles of human brain capacities
evolution. Through this window toward the future, human beings has been able to
create, emerging from an entirely abstract realm, a whole world of material entities,
which has transformed our existence in a remarkable way.

Punctuated along the course of this human quest, remarkable men and women, by
the only exercise of their minds, have driven the crucial inflections of our existence,
and brought us now to the very present of our current human modern society. To use
this interesting phenomenon that is commonly referred as imagination, we study some
aspects of the linear and non-linear behavior of the electrical brain signal oscillation
(EEG), during a projective mental task that consisted in to visualize body movements
and choreography for an invented dance, which was actually going to be performed
in the near future.

The experiment was executed by professional dancers as part of the require-
ment for the final exam of a specialization program in modern dance. We explore
inter-individual differences in terms of functional fractal dimensions and Hurst
exponent to look and describe the phenomenology of the chaos/no-chaos and competi-

123



Ann. Data. Sci. (2015) 2(4):421–438 435

Fig. 12 H, HH short-term and HH long-term M-chaos comparison by brain areas and subjects. L Left
hemisphere and R Right hemisphere

tion/cooperation balances of the brainworking processes and the potential information
content variation of the EEG data through time.

After to find rather discrete estimated values of H analyzing the complete sequence
of 15,360 data points of the EEG time series, we found higher estimated H values
when we took shorter segments of data (equivalent to 1 second length) along the time
course of the experiment. In this new condition average H values 0.7 tell us another
story about the persistence and long-memory process that must be operating at the
short-term timeframe of one second.

In the long-term, seems to be that underlying process is working relaxed, maintain-
ing anti-persistence and volatility. In this way, the brain could be using two different
temporal scales to allocate different processes that require dissimilar phase space
conditions to solve the question ahead. In our experiment, the brain of professional
dancers was asked to work in the design of movements and choreography of a future
performance. We can imagine at least two different aspects to take into consideration:
(i) the creative part of the problem; and (ii) the technical part of the problem. For
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the first one we would prefer to work in a more unpredictable environment, where a
mind state similar to daydreaming will be allowing the free interplay of possibilities
with creative purposes. In the other hand, another part of the process may require
the involving of more moment-to-moment, mid-analytical processing that will require
more self-organization, long-memory and persistent activity.

Our preliminary results can suggest that brain could be able to modulate its ongo-
ing processes by operating at two timescales ranges of modulation. The short-term
modulation corresponding to a fine tune, moment-to-moment supervision, suggested
by the high Hurst Exponent (H) average value around 0.7, indicating long-memory
persistent processes in the working substructure. The second, long-term modulation,
more relaxed, having short-memory and anti-persistent processes with similar values
for H found recently in basal resting conditions for the EEG alpha band [31].

The fact that we were also able to study the oscillatory behavior through a 1 second
windowed timeframe of the EEG signal, gave us the opportunity not only to see the
chaotic general trend of the whole experiment during the total time length, but also
the lot of information contained in the way that chaos/no-chaos balance (M-chaos)
oscillate between certain numeric boundaries, opening a new time-space to explore
and start the quest for finding fractal dynamic functional regularities as bio-markers
for individual differences and groups’ clustering.

Interhemispheric linear correlation of the M-chaos time series could be related to
the competition/collaboration aspect of the brain functioning. In the classical linear
way of thinking, we use to expect that collaboration be related to synchronization,
and that the contrary will be expected for competition, say desynchronization. In this
point we must be very careful because we have to remember that in the realm of non-
linearity, many times things happen apparently counter-intuitively. For example, if we
remember that synchronization is a phenomena rather spontaneous in nature (the only
thing you need is to put in some kind of contact two or more oscillators in the proper
arrange, and just wait for spontaneous synchronization), maybe some part of the brain
must help avoiding extreme or out of range synchronization that in the long run will
conduce inevitable to total temporal homogeneity. This will be equivalent to trivial,
pathological information or no-information at all. Sowe need to explore this fieldmore
deeply to find, when and how the interhemispheric synchronization/desynchronization
balance serves to specific brain tasks.

Even working with a wide EEG frequency range (1–64 Hz) for this exploratory
utilization of non-linear analysis tools, we found considerable individual differences
associated with brain location and processing modalities. Further research will be
focused on specific EEG bands to dissect more precisely the range and the variability
of these differences.

Finally, a great deal of information and future exploration arises when we start
to apply a non-linear way of thinking to understand new and old aspects of long-
lasting elusive questions about brain and human behavior. Changing gradually the
paradigmatic starting points for scientific research and exploration, turning slightly
to a better comprehension of complex systems like us, will be the wide-opening field
of research that is it called to populate all the science and philosophy during the next
following decades.
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The study of the temporal multidimensionality of the brain processes manifested
and visualized through the ongoing cortical brain electrical activity, continue opening
new ways to increase our knowledge and understanding of the brain and how it works.
The potential applications of all this new findings can help us to learn more precisely
the complex and fascinating nature of the human brain, and through learning about
it to achieve a better management and drive of our evolutionary brain faculties and
human capacities.
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