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Abstract Twin support vector machine (TWSVM), an useful extension of the tradi-
tional SVM, becomes the current researching hot spot in machine learning during the
last few years. For the binary classification problem, the basic idea of TWSVM is to
seek two nonparallel proximal hyperplanes such that each hyperplane is closer to one
of the two classes and is at least one distance from the other. TWSVM has lower com-
putational complexity and better generalization ability, therefore in the last few years
it has been studied extensively and developed rapidly. Considering the many variants
of TWSVM, a systematic survey is needed and helpful to understand and use this
family of data mining techniques more easily. The purpose of this paper is to closely
review TWSVMs and provide an insightful understanding of current developments,
at the same time point out their limitations and highlight the major opportunities and
challenges, as well as potential important research directions.

Keywords Twin support vector machine · Support vector machine ·
Machine learning · Data mining · Optimization · Nonparallel · Structural risk
minimization principle

1 Introduction

Support vector machines (SVMs) [1–7] using the well established concepts in sta-
tistical learning theory (SLT) and optimization theory, maybe the most widely used
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techniques for data mining, and have been successfully applied in many fields ranging
from text categorization, face verification, speech recognition, information and image
retrieval, to remote sensing image analysis, time series forecasting, information secu-
rity, bankruptcy prediction and etc. [8–20]. For the standard SVM, the principal of
maximizing the margin between two parallel support hyperplanes leads to solving a
convex quadratic programming problem (QPP), dual theory makes introducing the
kernel function possible, then the kernel trick is applied to solve nonlinear cases.

Recently, different with the standard SVM searching for two parallel hyperplanes,
some nonparallel hyperplane classifiers have been proposed, such as the generalized
eigenvalue proximal support vector machine (GEPSVM) [21] and the twin support
vector machine (TWSVM) [22], which have become one of the researching hot spots
in the field of matching learning. For the TWSVM, it seeks two nonparallel proxi-
mal hyperplanes such that each hyperplane is closer to one of the two classes and is
at least one distance from the other. This strategy results the fundamental difference
between TWSVM and the standard SVM, i.e, the former solves two smaller sized
QPPs, whereas the latter solves a larger one, which increases the TWSVM training
speed by approximately fourfold compared to that of SVM. Furthermore, experimental
results in [22] have shown the effectiveness of TWSVM over standard SVM and even
GEPSVM on UCI datasets. Therefore, in the last few years, TWSVM has been studied
extensively and developed rapidly. Considering the many variants of TWSVM, a sys-
tematic survey is needed and helpful to understand and use this family of data mining
techniques more easily although there are several limited reviews about TWSVMs
[23,24]. The goal of this paper is to closely review TWSVMs and provide an insight-
ful understanding of current developments, at the same time point out their limitations
and highlight the major opportunities and challenges, as well as potential important
research directions.

Section 2 of the paper reviews four representative TWSVMs: original TWSVM,
twin bounded support vector machine (TBSVM) [25], improved TWSVM (ITSVM)
[26] and nonparallel SVM (NPSVM) [27]. Section 3 describes the variants and exten-
sions of TWSVMs for different learning problems. Section 4 introduces several appli-
cations of TWSVMs. Finally, concluding remarks and future research directions are
provided in Sect. 5.

2 TWSVM, TBSVM, ITSVM and NPSVM

In this section, we review four representative nonparallel hyperplane classifiers, on
which almost all the improved models are based. Here we consider their originally
proposed models for the binary classification problem with the training set

T = {(x1,+1), . . . , (x p,+1), (x p+1,−1), . . . , (x p+q ,−1)}, (1)

where xi ∈ Rn, i = 1, . . . , p + q. Let l = p + q and

A = (x1, . . . , x p)
� ∈ R p×n, B = (x p+1, . . . , x p+q)� ∈ Rq×n . (2)
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2.1 TWSVM

Unlike the standard SVM solving one QPP and similar to the GEPSVM [21,28],
TWSVM [22] constructs two smaller QPPs

min
w+,b+,ξ−

1

2
(Aw+ + e+b+)�(Aw+ + e+b+) + c1e�−ξ−,

s.t. − (Bw+ + e−b+) + ξ− � e−, ξ− � 0, (3)

and

min
w−,b−,ξ+

1

2
(Bw− + e−b−)�(Bw− + e−b−) + c2e�+ξ+,

s.t. (Aw− + e+b−) + ξ+ � e+, ξ+ � 0,

(4)

to seek a pair of nonparallel hyperplanes

(w+ · x) + b+ = 0 and (w− · x) + b− = 0, (5)

such that the positive hyperplane (w+ · x) + b+ = 0 is proximal to the positive class

(measured by the quadratic loss
1

2
(Aw+ + e+b+)�(Aw+ + e+b+)) and far from the

negative class (measured by the hinge loss ξ− = max{0, e− + (Bw+ + e−b+)}), and
vice visa for the negative hyperplane (w− · x) + b− = 0, see Fig. 1. ci , i = 1, 2 are
the penalty parameters and e+ and e− are vectors of ones of appropriate dimensions.

Fig. 1 Geometrical illustration
of TWSVM in R2: The “+”
(class 1) and “∗” (class 2) points
are generated following two
normal distributions
respectively, two nonparallel
lines (red and blue lines) are
obtained from linear TWSVM
[26]. (Color figure online)
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In order to get the solutions of the above QPPs, their dual problems

max
α

e�−α − 1

2
α�G(H� H)−1G�α,

s.t. 0 � α � c1e−,

(6)

and

max
γ

e�+γ − 1

2
γ �H(G�G)−1 H�γ,

s.t. 0 � γ � c2e+,

(7)

are solved respectively, where

H = [A e+] ∈ R p×(n+1), G = [B e−] ∈ Rq×(n+1), (8)

therefore the solutions of problems (3) and (4) can be obtained by

(w�+, b+)� = −(H� H)−1G�α, (9)

(w�−, b−)� = −(G�G)−1 H�γ. (10)

Thus an unknown point x ∈ Rn is predicted to the Class by

Class = arg min
k=−,+ |(wk · x) + bk |, (11)

where | · | is the perpendicular distance of point x from the planes (wk · x) + bk =
0, k = −,+.

TWSVM has several advantages such as

(1) The dual problems (6) and (7) has q and p variables respectively as opposed to l =
p + q in the standard SVM. This strategy of solving a pair of smaller sized QPPs
instead of a large one makes the learning speed of TWSVM be approximately
four times faster;

(2) By using the quadratic loss function, TWSVM fully considers the prior informa-
tion within classes in data and is less sensitive to the noise;

(3) TWSVM is useful for automatically discovering two-dimensional projections of
the data;

However, it still has the following drawbacks:

(I) In the primal problems (3) and (4) of TWSVM, only the empirical risk is mini-
mized, whereas the structural risk is minimized in the standard SVM;

(II) The inverse matrices of H� H and G�G are approximately replaced by H� H+ε I
and G�G + ε I respectively in order to deal with the singular case and avoid the
possible ill conditioning, where I is an identity matrix of appropriate dimensions,
ε is a small positive scalar to keep the structure of data. This replacements means
TWSVM only get the approximate solutions;
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(III) Though TWSVM solves two smaller sized QPPs, it needs to compute the
inverse matrices before training the models. So the computational complexity
of TWSVM should include two parts: the complexity of computing the inverse
matrices and the complexity of solving the dual problems. For a large data set,
TWSVM will fail since it is in practice intractable or even impossible to com-
pute the inverse matrices by the classical methods, though Sherman-Morrison-
Woodbury [29] formula or the rectangular kernel technique [30] were used in
[22];

(IV) The above TWSVM is only for the linear classification problem since it can not
be extended to the nonlinear case directly as standard SVMs usually do. For the
nonlinear case [22], two kernel-generated surfaces

K (x�, C�)u+ + b+ = 0 and K (x�, C�)u− + b− = 0, (12)

instead of hyperplanes (5) were considered, where

C� = [A B]� ∈ Rn×l , (13)

and K is an appropriately chosen kernel. Two primal problems different with (3)
and (4) were constructed and their corresponding dual problems were solved.
Similar with the linear case, the nonlinear TWSVM still has the drawbacks (i)
(ii) and (iii) and the folloing (V) and (VI) . Furthermore, the nonlinear TWSVM
with the linear kernel is not equivalent to the linear TWSVM [26], which is also
different with the standard SVM;

(V) TWSVM needs fast solvers such as the sequential minimization optimization
(SMO) [31] algorithm for the standard SVMs;

(VI) TWSVM loses the sparseness by using the quadratic loss function for each class
to make the proximal hyperplane close enough to the class itself, which results
that almost all the points in this class contribute to each final decision function.

2.2 TBSVM

The twin bounded support vector machines (TBSVM) [25] was proposed to overcome
the drawbacks (I) and (II). For the linear case, two primal problems constructed in
TBSVM are

min
w+,b+,ξ−

1

2
c3(‖w2+‖ + b2+) + 1

2
(Aw+ + e+b+)�(Aw+ + e+b+) + c1e�−ξ−,

s.t. − (Bw+ + e−b+) + ξ− � e−, ξ− � 0,

(14)

and

min
w−,b−,ξ+

1

2
c4(‖w−‖2 + b2−) + 1

2
(Bw− + e−b−)�(Bw− + e−b−) + c2e�+ξ+,

s.t. (Aw− + e+b−) + ξ+ � e+, ξ+ � 0,

(15)
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where ci , i = 1, 2, 3, 4 are the penalty parameters and e+ and e− are vectors of
ones of appropriate dimensions. Compared with the primal problems (3) and (4) of

TWSVM, the regularization terms
1

2
c3(‖w2+‖+b2+) and

1

2
c4(‖w−‖2 +b2−) are added

to minimize that the structural risk, and this modification leads to two dual problems

max
α

e�−α − 1

2
α�G(H� H + c3 I )−1G�α,

s.t. 0 � α � c1e−,

(16)

and

max
γ

e�+γ − 1

2
γ � H(G�G + c4 I )−1 H�γ,

s.t. 0 � γ � c2e+.

(17)

with nonsingular matrices (H�H + c3 I ) and (G�G + c4 I ). Different with the fixed
small scalar ε in TWSVM, the parameter c3 or c4, is the weighting factor which
determines the tradeoff between the regularization term and the empirical risk. For the
nonlinear case, two other regularization terms (‖u+‖2 + b2+) and (‖u−‖2 + b2−) are
introduced to implement the structural risk minimization principle. However, TBSVM
still has the drawbacks (III)∼(VI). Though it claimed that the successive overrelaxation
(SOR) [32] technique was used to solve the dual problems to speed up the training
procedure, and seems to be able to deal with the large scale problems, it in fact took no
account of the computation of the inverse matrices. Its similar model [33], a coordinate
descent margin based TWSVM (CDMTSVM), was presented and a coordinate descent
method was proposed for fast training which handles one data point at a time, but the
inverse matrices still need to be computed at first.

2.3 ITSVM

The improved twin support vector machine (ITSVM) [26] was proposed to overcome
the drawbacks (I)∼(V). By introducing the different Lagrangian functions for the
primal problems (14) and (15) in the TBSVM, we get the improved dual formulations

max
λ,α

−1

2
(λ� α�)Q̂(λ� α�)� + c3e�−α,

s.t. 0 � α � c1e−,

(18)

and

max
θ,γ

−1

2
(θ� γ �)Q̃(θ� γ �)� + c4e�+γ,

s.t. 0 � γ � c2e+,

(19)

respectively, where
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Q̂ =
(

AA� + c3 Î AB�
AB� B B�

)
+ E, Q̃ =

(
B B� + c4 Ĩ B A�
B A� AA�

)
+ E, (20)

and Î is the p × p identity matrix, Ĩ is the q × q identity matrix, E is the l × l matrix
with all entries equal to one. The pair of nonparallel hyperplanes (5) are then obtained
from the solutions (λ∗, α∗) and (θ∗, γ ∗) of (18) and (19)

w∗+ = −(A�λ∗ + B�α∗), b∗+ = −(e�+λ∗ + e�−α∗), (21)

and

w∗− = −(B�θ∗ + A�γ ∗), b∗− = −(e�−θ∗ + e�+γ ∗). (22)

ITSVM overcomes several drawbacks listed above of the TWSVM. (1) ITSVM
implements the structural risk minimization principle since its primal problems are
the same with those of TBSVM; (2) ITSVM has no inverse matrices to be computed
before training since it only needs to solve the QPPs (18) and (19); (3) Linear ITSVM
can be easily extended to the nonlinear case since the dual problems (18) and (19)
can be applied with the kernel functions just as the standard SVMs do, i.e., take the
K (A, B�), K (A, A�), K (B, B�), K (B, A�) instead of AB�, AA�, B B�, AB�,
B A� in Q̃ and Q̂; (4) SOR technique is also used to solve the dual problems (18)
and (19). Here we should point out that the computational complexity of SOR for
ITSVM is different with that for TBSVM. Since the dual problems (18) and (19) have
l = p + q variables respectively, ITSVM has the same scale with the standard SVM
and is almost 2 times larger than TWSVM or TBSVM, which means that ITSVM
sacrifices more model training time to skillfully avoids the computation of the inverse
matrix. At a first glance, it seems that ITSVM has more computational complexity than
TWSVM or TBSVM, in fact when the complexity of computing the inverse matrices
are considered in TWSVM or TBSVM, ITSVM is faster since

O(p3) + �i teration × O(p) > �i teration × O(l), (23)

where O(p3) is the complexity of computing p × p inverse matrix, and �i teration ×
O(p) is of SOR for p sized problem, �i teration × O(l) is of SOR for l sized prob-
lem (�i teration is the number of the iterations, experiments in [32] has shown that
�i teration is almost linear scaling with the problem size) [26].

2.4 NPSVM

The nonparallel support vector machine (NPSVM) [27] was proposed to further over-
come the sparseness drawback (VI). By taking the ε-insensitive loss function instead
of the quadratic loss function in TWSVM, TBSVM or ITSVM, NPSVM constructs
two primal problems
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min
w+,b+,η

(∗)
+ ,ξ−

1

2
‖w+‖2 + c1

p∑
i=1

(ηi + η∗
i ) + c2

p+q∑
j=p+1

ξ j ,

s.t. (w+ · xi ) + b+ � ε + ηi , i = 1, · · · , p,

− (w+ · xi ) − b+ � ε + η∗
i , i = 1, · · · , p,

(w+ · x j ) + b+ � −1 + ξ j , j = p + 1, · · · , p + q,

ηi , η
∗
i � 0, i = 1, · · · , p,

ξ j � 0, j = p + 1, · · · , p + q,

(24)

and

min
w−,b−,η

(∗)
− ,ξ+

1

2
‖w−‖2 + c3

p+q∑
i=p+1

(ηi + η∗
i ) + c4

p∑
j=1

ξ j ,

s.t. (w− · xi ) + b− � ε + ηi , i = p + 1, · · · , p + q,

− (w− · xi ) − b− � ε + η∗
i , i = p + 1, · · · , p + q,

(w− · x j ) + b− � 1 − ξ j , j = 1, · · · , p,

ηi , η
∗
i � 0, i = p + 1, · · · , p + q,

ξ j � 0, j = 1, · · · , p, (25)

where ε � 0 is the sparseness parameter, ci � 0, i = 1, · · · , 4 are penalty para-
meters, ξ+ = (ξ1, · · · , ξp)

�, ξ− = (ξp+1, · · · , ξp+q)�, η
(∗)
+ = (η�+, η∗�+ )� = (η1,

· · · , ηp, η
∗
1, · · · , η∗

p)
�, η

(∗)
− = (η�−, η∗�− )� = (ηp+1, · · · , ηp+q , η∗

p+1, · · · , η∗
p+q)�,

are slack variables. Figure 2 illustrates its geometrical explanation in R2, where class
1 locates as much as possible in the ε-band of the positive hyperplane (w+·x) + b+ = 0

Fig. 2 Geometrical illustration
of NPSVM in R2: The “+”
(class 1) and “∗” (class 2) points
are generated following two
normal distributions
respectively, two nonparallel
lines (red and blue bold lines)
are obtained from linear
NPSVM [27]. (Color figure
online)
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(measured by the ε-insensitive loss function) and far from class 2 (measured by the
hinge loss ξ− = max{0, e− + (Bw+ + e−b+)}), and vice visa for the negative hyper-
plane (w− · x) + b− = 0.

The corresponding dual problems has the similar formulation with that of standard
SVM but almost 1.5 times larger

min
π

1

2
π�Λπ + κ�π,

s.t. e�π = 0,

0 � π � C,

(26)

where Λ ∈ R1.5l×1.5l is semi-definite positive, therefore (26) can be solved efficiently
by the SMO-type technique. NPSVM also implements the structural risk minimization
principle, has no inverse matrices to be computed, introduces the kernels directly to
deal with the nonlinear case, and most importantly has the sparseness because of the
ε-insensitive loss function and hinge loss function adopted simultaneously in each
primal problem. NPSVM overcomes all the listed drawbacks of TWSVM and in some
sense is a true nonparallel classifier with solid theoretical foundation.

3 Variants and Extensions of TWSVMs

TWSVMs have attracted many interests in recent years and many improved algorithms
were proposed. In this section, we will review them based on the problems they solved.

3.1 Variants of Binary TWSVMs

3.1.1 ν-TWSVMs

ν-NPSVM [34] is an equivalent formulation of NPSVM inheriting all the advantages
of NPSVM model, but has more excellent properties. It is parameterized by the quan-
tity ν to let ones effectively control the number of support vectors, since the value of ν

is the lower bound of the percentage of support vectors. Furthermore, for each class,
different sparseness can be obtained by using different parameter ν, which enable
us to solve unbalanced classification problems. A ν-TWSVM based on the original
TWSVM was proposed in [35], which was interpreted as a pair of minimum gener-
alized Mahalanobis-norm problems on two reduced convex hulls, and an improved
geometric algorithm (GA) was developed to improve its efficiency. A rough margin-
based ν-TWSVM incorporating the rough set theory [36] was proposed in [37] to give
the different penalties to the misclassified points. The twin parametric-margin SVM
(TPMSVM) [38], motivated by the TWSVM and the par-ν-SVM [39], determines a
pair of parametric-margin hyperplanes, which can automatically adjust a flexible mar-
gin and are suitable for the heteroscedastic error structure. Its least squares version can
be found in [40]. [41] smoothed the TPMSVM by introducing a quadratic function
and suggested a genetic algorithm GA-based model selection for TPMSVM.
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3.1.2 Least Squares TWSVMs

A least squares version of TWSVM (LSTWSVM) [42] was proposed in line with the
lease squares SVM (LSSVM) [43]. The solution of the two modified primal problems
reduces to solving just two systems of linear equations and leads to an extremely fast
and efficient performance. Weighted LSTWSVM [44] put different weights on the
error variables in order to eliminate the impact of noise data and obtain the robust
estimation, and also for the imbalanced problem [45]. 1-norm LSTWSVM [46] was
designed for automatically selecting the relevant features, by replacing all the 2-norm
terms in the regularized LSTWSVM [47] with 1-norm ones and then converting its
formulation to a linear programming (LP) problem. A least squares version of twin
support hypersphere (TSVH) [48,49] can be referred to [50], where TSVH aims to find
a pair of hyperspheres not hyperplanes by solving two smaller sized QPPs, each QPP
is based on the support vector data description (SVDD) [51]. A multiple-surface clas-
sification (MSC) algorithm, named projection twin support vector machine (PTSVM)
[52–54], seeks projection directions such that the projected samples of one class are
well separated from those of the other class in its own subspace, and a recursive algo-
rithm for PTSVM was proposed to further boost the performance. Its least squares
version, LSPTSVM, was formulated in [55], where a regularization term was added
to ensure the optimization problems are positive definite and for better generalization
ability. A nonlinear LSPTSVM for binary nonlinear classification by introducing non-
linear kernel into LSPTSVM was proposed in [56]. FLSPTSVM (feature selection
for LSPTSVM) [57] can perform the feature selection and reduce the number of ker-
nel functions required for the classifier. Nonparallel plane proximal classifier (NPPC)
[58] was very similar to the LSTWSVM by introducing a technique as used in the
proximal support vector machine(PSVM) [30] classifier, which leads to solving two
small systems of linear equations in input space.

3.1.3 Localized TWSVMs

Weighted TWSVM with local information (WLTSVM) [59] explored the similarity
information between pairs of samples by finding the k-nearest neighbors for all the
samples. Ye et al. [60] proposed a reduced algorithm termed localized TWSVM via
convex minimization (LCTSVM), which effectively reduced the space complexity of
TWSVM by constructing two nearest neighbor graphs in the input space. Wang et al.
[61] improved LCTSVM to be a fast LCTSVM suitable for large data sets, in which
the number of TWSVMs was decreased. Local and Global Regularized Twin SVM
(TWSVMLG) [62] not only exploited the local information of the dataset but also con-
sidered the local correlation among each local region, where they first pre-constructed
a number of local models of the training set and built the decision functions in each
local model with a global regularization. Since the relative density degrees reflect the
local geometry of the sample manifold and the scatters of the two classes points, Peng
and Xu [63] presented the bi-density TWSVM (BDTWSVM) which incorporated
the relative density degrees for all training points using the intra-class graph. [64]
incorporated a manifold regularization term into LSTWSVM (ManLSTWSVM) to
discover the local geometry inside the samples. LSTWSVM via maximum one-class
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within-class variance, termed as (MWSVM) [65], applied the one-class within-class
variance to the classifier, and a localized version (LMWSVM) of MWSVM was further
proposed to remove the outliers effectively.

3.1.4 Sparse TWSVMs

Sparse nonparallel SVM (SNSVM) [66], a little difference with NPSVM [27] on the
regularization terms used, is a sparse TWSVM since it also took the ε-insensitive loss
function instead of the quadratic loss function in TWSVM. Peng [67] proposed a rapid
sparse TWSVM (STSVM) in the primal space to improve the sparsity and robustness,
where for each nonparallel hyperplane, the STSVM employed a back-fitting strategy
to iteratively and simultaneously added a support vector. [68,69] formulated an exact
1-norm linear programming formulation of TWSVM to improve the robustness and
sparsity, which leaded to a extremely simple and fast algorithm.

3.1.5 Structural TWSVMs

Qi et al. [70] designed a novel structural TWSVM (S-TWSVM) only considering one
class’s structural information for each model, which was different with all existing
structural classifiers such as [71,72]. This made S-TWSVM further reduce the com-
putational complexity of the related QPPs, and improved the model’s generalization
capacity. A robust minimum class variance TWSVM (RMCV-TWSVM) [73] intro-
duced the variance matrices for the two classes as the regularization term for better
generalization performance. Peng and Xu [74] constructed two Mahalanobis distance-
based kernels according to the covariance matrices of two classes of data for optimizing
the nonparallel hyperplanes, the Mahalanobis distance-based SVM (TMSVM) is suit-
able especially for the case that the covariance matrices of two classes of data are
obviously different. For the TPMSVM [38], Peng et al. [75] presented a structural
version (STPMSVM) by focusing on the structural information of the corresponding
classes based on the cluster granularity.

3.2 Other Binary TWSVMs

[76] attempted to improve computing time of TWSVM by converting the primal
QPPs of TWSVM into smooth unconstrained minimization problems. The smooth
reformulations were solved using the well-known Newton-Armijo algorithm. Shao
and Deng [77] considered a margin-based TWSVM with unity norm hyperplanes
(UNH-MTSVM), the resulted optimal problems were solved efficiently by converting
them into smooth unconstrained minimization problems. Ghorai et al. [78] refor-
mulated TWSVM by considering unity norm of the normal vector of the hyper-
planes as the constraints, the resulting nonlinear programming problem was solved by
sequential quadratic optimization method. A classifier named norm-mixed TWSVM
(NMTWSVM) was presented in [79], its main idea was to replace the hinge loss of
the other class in the primal problems with the L1-norm-based loss. The geometric
analysis showed that the dual problems of NMTWSVM can be interpreted as a pair of
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minimum generalized Mahalanobis-norm problems (MGMNPs) on the two reduced
affine hulls(RAHs) composed of two classes of points.

A feature selection method based on TWSVM (FTSVM) was designed in [80],
where a multi-objective mixed-integer programming problem was solved by a greedy
algorithm, in addition, the linear FTSVM was extended to the nonlinear case. Another
feature selection method based on LSTWSVM (FLSTSVM) [81] incorporated a
Tikhonov regularization term to the objective of LSTWSVM, and then minimized its
1-norm measure. FLSTSVM can reduce input features for the linear case and deter-
mined few kernel functions for the case. [82] treated the kernel selection problem for
TWSVM as an optimization problem over the convex set of finitely many basic kernels.

Shao et al. proposed a TWSVM probability model (PTWSVM) [83] to estimate
the posterior probability, they first defined a new ranking continues output and then
mapped it into probability by training the parameters of an additional sigmoid func-
tion. For imbalanced data classification, [84] used under-sampling to give the adaptive
weights for each class, which overcomed the bias phenomenon in the TWSVM. Differ-
ent with standard TWSVMs, [85] constructed two nonparallel hyperplanes simultane-
ously by solving a single quadratic programming problem, and was consistent between
its predicting and training processes. Twin support tensor machine (TWSTM) [86,87],
following the idea of support tensor machine (STM) [88–90], is also an interesting
research direction.

3.3 Variants of Twin Support Vector Regressions (TWSVRs)

Some variants of twin support vector machines for regression problems (TWSVRs)
are introduced in this section. The training set of the regression problem is given as

T = {(x1, y1), · · · , (xl , yl)} ∈ (Rn × Y)l , (27)

where xi ∈ Rn, yi ∈ Y = R, i = 1, · · · , l. [91] proposed twin support vector
regression (TSVR) which was similar to TWSVM in spirit, as it derived a pair of
ε-insensitive up-bound and down-bound nonparallel planes around the data points. Its
lease squares version was developed in [92]. [93] improved the TSVR by formulating
it as a pair of linear programming problems instead of QPPs. Weighted TSVR [94]
assigned the samples in the different positions with different penalties, which can avoid
the over-fitting problem to a certain extent. ε-TSVR [95] implemented the structural
risk minimization principle by introducing the regularization term in primal problems
of TSVR, and the SOR technique was used to solve the optimization problems to
speed up the training procedure. [96] adopted the regularization to convert original
TSVR into a well-posed problem and employed the L1-norm based loss function
and regularization to introduce robustness and sparsity simultaneously. Similar to the
par-ν-SVR [39,97] proposed an efficient twin parametric insensitive SVR (TPISVR),
which was suitable for the case that the noise is heteroscedastic.

The smoothing technique was applied to convert the original constrained mini-
mization problems of TSVR to unconstrained ones such that Newton algorithm with
Armijo inexact stepsize could be adopted effectively [98]. A primal version for TSVR
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(PTSVR) was presented in [99] by introducing the smooth function to approximate its
loss function, PTSVR directly optimized the QPPs in the primal space based on a series
of sets of linear equations. A least squares version for TSVR (PLSTSVR) was also
considered in the primal space [100]. [101] introduced a simple and linearly convergent
Lagrangian SVM algorithm for the dual of TSVR. [102] proposed the reduced TSVR
(RTSVR) using the notion of rectangular kernels to obtain significant improvements
in execution time over the TSVR. Regressors based on TSVR for the simultaneous
learning of a function and its derivatives were discussed in [103,104], and showed
their significant improvements in computational time and estimation accuracy.

3.4 Multiclass TWSVMs

To solve the multiple classification problem with the training set

T = {(x1, y1), · · · , (xl , yl)}, (28)

where xi ∈ Rn, i = 1, · · · , l, yi ∈ {1, · · · , K } is the corresponding pattern of xi ,
there are two types of strategies, one is the “decomposition-reconstruction” strategy
[2] by solving a series of smaller optimization problems, while the other one is the
“all-together” strategy [105] by solving only one single optimization problem. An
interesting model proposed in [106] belonging to the first strategy, termed as multiple
birth support vector machine (MBSVM), solved multi-QPPs simultaneously to seek
for K nonparallel hyperplanes

(wk · x) + bk = 0, k = 1, · · · , K . (29)

Compared with the straightforward multiclass extension of TWSVM or GEPSVM
[107–109], MBSVM took into account the computational complexity, the “min” deci-
sion criterion of TWSVM is changed into the “max” one of MBSVM. The geometric
interpretation of MBSVM with x ∈ R2 is shown in Fig. 2, where the kth hyperplane
is at least one distance from the kth class points, and is closer to the other classes, a
test pattern is assigned to a class depending on which one it lies farthest to (Fig. 3).

[110] combined the decision tree with the TWSVM together (DTTSVM) for the
multi-class classification, which can overcome the possible ambiguous occurred in
MBSVM. Twin-KSVC took the advantages of both TSVM and K-SVCR (support
vector classification-regression machine for k-class classification) [111] and evaluated
all the training points into an “1-versus-1-versus-rest” structure [112]. A multi-class
LSTWSVM based on optimal directed acyclic graph (DAG) was proposed in [113],
an average distance measure and a non-repetitive sequence number rearrangement
method were offered to reduce the cumulative errors caused by DAG structure.

3.5 Semi-Supervised TWSVMs

Semi-Supervised Learning (SSL) has attracted an increasing amount of interest in
the last decade [114]. For the Semi-supervised binary classification problem with the
training set
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Fig. 3 A toy example learned
by the linear MBSVM [106]
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T = {(x1, y1), · · · , (xl , yl)} ∪ {xl+1, · · · , xl+q}, (30)

where xi ∈ Rn , yi ∈ {−1, 1}, i = 1, · · · , l, xi ∈ Rn , i = l + 1, · · · , l + q, and the set
{xl+1, · · · , xl+q} is a collection of unlabeled inputs known to belong to one of the two
classes, several novel approaches for making use of the unlabeled data to improve the
performance of classifiers have been proposed, in which Laplacian SVM (LapSVM)
[115] using the graph Laplacian was a state of the art method. Follow the idea of
LapSVM, a novel Laplacian TWSVM (Lap-TSVM) for the SSL problem was pro-
posed in [116], which can exploit the geometry information of the marginal distribution
embedded in unlabeled data to construct a more reasonable classifier and be a useful
extension of TSVM. Furthermore, by choosing appropriate parameters, Lap-TSVM
degenerates to either TSVM or TBSVM. A variant of Lap-TSVM, named as Lapla-
cian smooth TWSVM (Lap-STSVM) was developed in [117]. They converted the
constrained QPPs of Lap-TSVM into unconstrained minimization problems (UMPs)
in primal space, and the smooth technique was then introduced to make these UMPs
twice differentiable, therefore a fast Newton-Armijo algorithm was further designed
to solve the UMPs efficiently, which converges globally and quadratically.

The PU problem where the training set consists of a few Positive examples and
a large collection of Unlabeled examples, another kind of semi-supervised learning
problem, is now gaining more and more attention [118]. Formally, its training set is

T = {(x1, y1), · · · , (xl , yl)} ∪ {xl+1, · · · , xl+q}, (31)

where xi ∈ Rn, yi = 1, i.e. xi is a positive input, i = 1, · · · , l; xi ∈ Rn , i.e. xi is an
unlabeled input known to belong to one of the two classes, i = l + 1, · · · , l + q. For
the PU problem, Biased TWSVM (B-TWSVM) based on the Biased SVM (BSVM)
[119] was proposed in [120], while [121] applied NPSVM for the PU learning. Both of
them firstly converted the PU problem into an unbalance binary classification problem,
then applied different weights to the positive examples and the unlabeled examples
separately.
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3.6 Knowledge-based TWSVMs

In this section, a review of the methods incorporating prior knowledge into TWSVMs,
however restricted to the Universum TWSVM, TWSVM with the Privileged informa-
tion, and Robust TWSVM is given.

Supervised learning problem with Universum samples is a new research subject in
machine learning. The concept of Universum sample was firstly introduced in [122],
which was defined as the sample not belonging to either class of the classification
problem of interest. The authors proposed a new SVM framework, called U -SVM and
their experimental results show that U -SVM outperforms those SVMs without con-
sidering Universum data. Therefore, TWSVM with Universum (called U -TSVM) was
proposed in [123] combining the advantages of TWSVM and U -SVM. Its weighted
version can be found in [124]. A nonparallel SVM that can exploit prior knowledge
embedded in the Universum (U -NSVM) [125] was different with U -TSVM since it
solves one QPP to get two nonparallel hyperplanes simultaneously.

In human learning, there is a lot of teacher information such as explanations, com-
ments, comparisons and so on along with the given examples. Vapnik et al. [126]
called this kind of additional prior information as the privileged information, which is
only available at the training stage and never available for the test set, i.e, the training
set is

T = (x1, x∗
1 , y1), · · · , (xl , x∗

l , yl) (32)

where xi ∈ Rn ,x∗
i ∈ Rm ,yi ∈ {−1, 1},i = 1, · · · , l. They proposed a new learning

model, called Learning Using Privileged Information (LUPI), to accelerate the con-
vergence rate of learninge specially when the learning problem itself is hard. [127]
proposed a fast TWSVM using privileged information (called FTSVMPI), and focused
on an interesting topic: how to exploit the privileged information to improve the per-
formance of the Visual Tracking Object (VOT) problem.

Some uncertainty is often present in many real-world problems. For example, when
the inputs are subjected to measurement errors, it would be better to describe the inputs
by uncertainty sets Xi ⊂ Rn, i = 1, · · · , l, since all we know is that the input belongs
to the set Xi , so the training set should become

T = {(X1,Y1), · · · , (Xl ,Yl)}, (33)

where Xi is a set in Rn , Yi ∈ {−1, 1}. The goal is to explore a robust model which can
deal with such data set. There are many methods of constructing the robust SVMs such
as [128,129]. Robust TWSVM (R-TWSVM) [130] via second order cone program-
ming (SOCP) formulations for classification was an improved extension of TWSVM,
since there were only inner products about inputs in the dual problems which kernel
trick can bey directly applied for nonlinear cases and the inverse of matrices were not
needed any more.

The prior knowledge in the form of multiple polyhedral sets were incorporated
into the linear TWSVM and LSTWSVM, termed as knowledge based TWSVM
(KBTWSVM) and knowledge based LSTWSVM (KBLSTWSVM), were formulated
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in [131]. A 1-norm regularized KBTWSVM resulted in a linear programming was
proposed in [132].

3.7 Multi-instance and Multi-task TWSVMs

Multiple-instance learning (MIL), being useful in many applications including text
categorization, natural scene classification, image retrieval and so on, has received
intense interests recently in the field of machine learning. In MIL framework, the
training set consists of positive and negative bags of instances which are points
in the n-dimensional real space Rn , and each bag contains a set of instances. In
each positive training bag, there must be at least one positive instance, whereas a
negative bag contains only negative instances. The aim of MIL is to construct a
classifier learned from the training set to correctly label unseen bags. A number
of MIL methods based on SVMs emerged [133,134]. Based on TWSVM, [135]
extended the idea of MI-SVM [133] to construct the MIL nonparallel classifier (MI-
NSVM). The method was mainly divided into two steps: The first step was to gen-
erate a spare hyperplane and estimate the score of each instance in positive bags.
The second step, MI-NSVM seeked the “most positive” instance of each positive
bag by the information obtained in the first step, and then generated the second
hyperplane. MI-TWSVM [136] also aimed at generating a positive hyperplane and
a negative hyperplane, such that the former one is close to at least one instance
(“witness” instance) in every positive bag and is far from all instances belonging
to negative bags, and the latter one is close to all instances belonging to nega-
tive bags and is far from the “witness” instances in positive bags. Instead of hav-
ing QPPs, the MI-TWSVM optimization problem were bilevel programming prob-
lems (BLPPs). [137] improved MI-TWSVM by implementing the structural risk
minimization (SRM) principle and solving a series of QPPs instead of the BLPPs.
[138] proposed a least squares version for MIL based on LSTWSVM which used
an iterative strategy by solving two linear systems of equations and a QPP alterna-
tively.

Multi-task learning (MTL) is a learning paradigm which seeks to improve the
generalization performance of a task with the help of other tasks [139]. When there
are relations between the tasks to learn, it can be advantageous to learn all tasks
simultaneously instead of following the more traditional approach of learning each
task independently of the others. SVMs have been explored for multi-task learning
[140,141], and [142] embeded multi-task learning into TSVMs and made use of the
contribution of correlation of tasks.

3.8 Large scale TWSVMs

Considerable efforts have been devoted to the implementation of efficient optimization
method for solving the QPP in standard SVMs, such as the chunking and decomposi-
tion methods [1,31,143–145]. For TWSVMs, though [25,33] and other authors applied
the SOR technique or the coordinate descent method, they in fact took no account of
the computation of the inverse matrices and will fail facing the real large scale prob-
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lems. Since NPSVM [27,66] skillfully avoided the computation of the inverse matrices
and applied the SOR or SMO to solve the QPPs, they can deal with the large scale
problems really.

For some applications such as document classification with the data appearing in
a high dimensional feature space, linear SVM in which the data are not mapped, has
similar performances with nonlinear SVM. For linear SVM, many methods have been
proposed in large-scale scenarios such as [146,147], while for linear TWSVM, L1-
NPSVM [148] based on the NPSVM [27] and L2-TWSVM [149] on ITSVM [26],
were designed to deal with large-scale data based on an efficient solver—dual coordi-
nate descent (DCD) method, which is a popular optimization technique, updates one
variable at a time by minimizing a single-variable subproblem. Since the dual prob-
lems in L1-NPSVM or L2-TWSVM have the same formulations with that of standard
L1-SVM or L2-SVM, and [147] proposed the DCD method for them, pointed out
that the DCD method makes crucial advantage of the linear kernel and outperforms
other solvers when the numbers of data and features are both large, therefore the DCD
method can by applied for linear TWSVM naturally with several minor modifica-
tions.

4 Applications of TWSVMs

As SVMs has many applications, TWSVMs can also be applied into the corresponding
fields. This sections reviews the limited applications of TWSVMs because of their few
years developments.

Speaker recognition is to decide which person is talking from a group of known
speakers, [150] combined TWSVMs with Gaussian Mixture Model (GMM) [151] for
text-independent speaker recognition where GMMs were used to extra features. [152]
addressed the task of gesture recognition using surface electromyogram (sEMG) data,
and proved TWSVM to be an effective approach in meeting the learning problem from
multi-class data where patterns in different classes arise from different distributions,
since TWSVM is a more natural choice for applying to unbalanced datasets. Human
activity recognition (HAR) is an important research branch in computer vision, and
[153] proposed a framework for HAR with the combination of local space-time fea-
tures and LSTWSVM. Speech emotion recognition is used to solve the problem of
“how to speak”, just like speaker recognition is proposed to solve “who is speaking”,
TWSVM was applied into this problem tentatively [154].

Clustered microcalcifications (MCs) in mammogram can be an indicator of breast
cancer, [155] presented a mass detection system based on TWSVM to distinguish the
masses from normal breast tissues accurately, [156] extracted combined image fea-
tures from each image block of positive and negative samples, and trained TWSVM
with the 164 dimensional features of each sample to test at every location in a mam-
mogram whether the MCs was present or not. [157] boosted the TWSVM for higher
accuracy in MCs detection. A predictive model for heart disease diagnosis using fea-
ture selection based on LSTWSVM was developed in [158], where the selection of
significant features improved the accuracy. Ding et al. [159] applied TWSVM to the
intrusion detection to improve the speed of detection and accuracy.
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5 Remarks and Future Directions

This paper has offered an extensive review of TWSVMs, including four basic models:
original TWSVM, the improved versions TBSVM, ITSVM and NPSVM. Based on
the four models, the extensions and variants of TWSVMs are reviewed, such as the
ν-TWSVMs, least squares TWSVMs, localized TWSVMs, sparse TWSVMs, struc-
tural TWSVMs, and linear programming TWSVMs for the binary classification prob-
lems; TWSVRs for the regression problems; Multi-class TWSVMs for the multi-class
problems; Semi-supervised TWSVMs for the semi-supervised problems; Knowledge-
based TWSVMs for the problems with the Universum set, Priviledged information,
or uncertain information; Multi-instance and Multi-task TWSVMs; and also the large
scale TWSVMs. Some of these models have already been used in several real-life
applications, such as speaker recognition, intrusion detection and etc. Researchers
and engineers in data mining, especially in SVMs can benefit from this survey in
better understanding the essence of the TWSVMs. In addition, it can also serve as a
reference repertory of such approaches.

In this paper, we can see the development of TWSVMs following the way of
modifying the corresponding optimization models, since the essence of TWSVMs
is to construct appropriate optimization models (linear programming, quadratic pro-
gramming, nonlinear programming, second order cone programming) for different
learning problems. TWSVMs have better generalization ability, are more flexible than
TWSVMs because of searching for the nonparallel hyperplanes. However, there’s no
such thing as a free lunch. Just as we pointed out for the ITSVM and NPSVM models
in Sect. 2, ITSVM sacrifices more model training time than TWSVM to skillfully
avoids the computation of the inverse matrices, while NPSVM sacrifices further more
model training time than ITSVM to get the sparsity. We can not count on two smaller
QPPs to get better performance than one large OPP as the declaration in the original
TWSVM, since the costly computation of inverse matrices are not considered.

As we can see, the extensions or variants of TWSVMs were mostly based on the
original TWSVMs or TBSVM, so there is a great space for development based on the
ITSVM and NPSVM. And new practical problems remaining to be explored present
new challenges to TWSVMs to construct new optimization models. These models
should also have the same desirable properties as the models in this paper includ-
ing: good generalization, scalability, simple and easy implementation of algorithm,
robustness, as well as theoretically known convergence and complexity [160].
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