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Abstract This paper introduces factor space theory, which provides a general coor-
dinate system to describe the real world and a theoretical base for data science. Based
on the theory, factorial databases is presented, which carries a new kind of statistics
to do intelligent analysis for coming tide of Big Data.
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1 Introduction

Big Data stylishly leads the current tide, various parlances dazzle people in delightful
surprise with confusion. However, we are acutely aware that the core task in the
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tide is promoting the intelligence in Big Data. As the journal’s preface emphasized
[1], data science ‘should have its own scientific contents such as axioms, laws and
rues, which are fundamentally important for experts in different fields to explore their
own interests from Big Data’. Even though there are remarkable achievements in
this area, data science still lacks theoretical base on intelligence. As Tsien Hsueshen
emphasized [2], ‘To develop intelligent engineering, most important task is building
the mathematical theory towards intelligence! ’ This paper aims to introduce Factor
space, which provides a general coordinate system for description of things in the
world, which is the very mathematical base for data science.

Factor space [3] was published in the same year coincidently with the formal con-
ceptual analysis [4] and rough sets [5]. The three branches were the pioneers in intelli-
gence mathematics, but the former one had focused on genetic analysis for uncertainty
several years.

Factor space is a bridge connecting randomness and certainty. Both ends can be
ex-transferred each other according to the varying of the dimension of factors [6].
Based on the idea, intentionally or unintentionally, Kolmogorov presented the funda-
mental space �, a factor space, in the axiomatic definition of probabilistic field. He
drives randomness into an inevitable framework, took a march of mathematics toward
random phenomena. Without the idea of factor space, probability could not realize
modernization in the thirties of the last century.

Factor space is a bridge connecting fuzziness and certainty also. This bridge and the
bridge mentioned above shows a duality: The fuzziness on the ground, the universe
U , can be viewed as the randomness in the sky, the power P(U ) of U . Based on the
idea of factor space, Wang presented the theory of Fuzzy Shadows [7] to treat fuzzy
set as the covering function of a random set, which provides a firm base to fuzzy sets
theory and has been applied in fuzzy controllers [8] and several areas. As a summary,
the book “Fuzzy System Theory and Fuzzy Computer” [9] was published in 1997.

The trace of factor space on intelligence was shown in the books ‘Mathematical
theory of Knowledge Representation’ [10], ‘Theory and Applications of Factorial
Neural Networks’ [11], ‘Attribute method in Thinking and Intelligence Science’ [12]
etc. Some represented papers can be found in [13–27].

Factor space has common goals with formal concept and rough sets, the authors
of this paper emphasize the importance of background relation (called the formal
background by R. Wills) and take deep study on the relation. Factor space provides a
population theory to information systems in rough sets. All branches will cooperate
to establish firm mathematical bases for data science.

Organization of the paper: Sect. 2. Introduction to factor and factors space; Sect. 3.
Knowledge representation; Sect. 4. Factorial databases; Discussions including a brief
conclusion and main tasks are given in Sect. 5.

Limited to time, all proofs of propositions are omitted.

2 What is Factor and Factor Space?

Gene is the key of biology, which forms, generates, and identifies all living objects.
There exists a key opening the door to recognize all things in the universe, which is
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Fig. 1 Factor state space

the generalized gene, we call it the Factor. The name of gene was called Mendelian
factor originally; a factor is a fact-or, where ‘fact’ stands for any thing and ‘-or’ is the
matter who describes, determines, and identifies all things. The Chinese translation
of factor, YINSU, mostly fix to the mentioned meaning, factor is the best name for
generalized gene.

A gene likes a switch with two or more states plugged in a node upon chromosome,
each state determines a biological property/quality. Gene is the quality-root of living
beings. A factor switches a series of states. For example, Color is a factor, which
switches three basic states: Red, Yellow and Blue. Factor is the quality-root of things.

From the view of mathematics, a factor f is essentially a mapping, which defined
on a domain O; every object is mapped into X f , the range of f . A state of X f can be
an attribute, a feature, a characteristic, or a degree etc., they form a dimension with
respect to f . A factor is the name of the dimension, which hooks a series of attributes.
Factor is the attribute of attributes.

Any concrete object has complex quality, which can’t be recognized except taking
‘photo’ from a specified angle/aspect. Factor is the angle of analysis. Without factor,
no analysis can be taken.

An object can be analyzed by many factors, and get a record, for example, Height
(John)=1.75 m, Weight (John)=70 kg, Age (John)=25, Sex (John)=Male, etc. Tak-
ing a synthesis after analyses, the Cartesian product of those dimensions form a coordi-
nate system, it is the factor state space, which is a coordinate system with dimensions
named by factors. John has been mapped as a point in the coordinate system. Factor
space provides a general coordinate system to describe all things in the universe (see
Fig. 1).

Not only does factor space extend the field of vision, but also bring the flexibility
to the coordinate system: For a given task, factor space decreases its dimensions as
low as possible! There needs to introduce some operations on factors. For example,
Color, Aroma, Taste are three simple factors in foods, and Color–aroma, Color–
taste, Aroma–taste, Color–aroma–taste are complex factors. We can say that factor
Color is simpler than Color–aroma, and denote that Color≤Color–aroma,…, the
partial order relation ‘≤’ relation can be defined on factors. Based on the poset, we
can further define lattice operations ∨ and ∧ on the set F of factors. For example,
Color ∨ Aroma = Color–aroma,…, Color–aroma ∧Color–taste=Color,…, where,
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we call ‘∨’ the conjunction and ‘∧’ the disjunction since ‘∨’ combines simple factors
to become a complex factor and ‘∧’ decomposes complex factors to simple ones.
(F,∨,∧) forms a lattice. Moreover, we can say that the factor Color–aroma–taste is
complete, if no more factors are needed for food-evaluation. We call it the complete
factor, denoted 1, relatively, we can add the empty factor 0, which stands for none of
aspect, and there is no state to be mapped. For example, 0(John)=none. We can further
define the complementary c. Colorc = Aroma ∨ Taste,…. Finally, (F,∨,∧,c , 1, 0)
forms a Boolean algebra.

The following definition is cited from paper [10] with a little change:

Definition 2.1 A factor space defined on universe of discussion U is a family of sets
ψ = ({X ( f )}( f ∈F); U ) satisfying:

(1) F = (F,∨,∧,c , 1, 0) is a complete Boolean algebra;
(2) X (0) = {∅};
(3) For any T ⊆ F, if{ f | f ∈ T } are irreducible (i.e., s �= t ⇒ s ∧ t = 0(s, t ∈ T )),

then

X ({ f | f ∈ T }) =
∏

f ∈T
X ( f )

(∏
stands for Cartesian product

)
;

(4) ∀ f ∈ F , there is a mapping with same symbol f : U → X ( f ).

F is called the set of factors, f ∈ F is called a factor on U. X ( f ) is called the state
space of factor f . Set Fo = { f ∈ F | f �= 0, there is no g ∈ F; 0 �= g < f }. Any
f ∈ Fo is called an atom factor of F .

Factor f is said to be simple than g or g is said to be complex than f if f ≤ g. For
any F ′ ⊆ F , easily denote F ′ = ∨{ f | f ∈ F ′} by a same symbol. A complex factor
can be written as the conjunction of simpler factors or the set of those simpler factors.
We have that F = P(Fo) = {g|g ⊆ Fo}.

3 Knowledge Representation

Knowledge is the accumulation of brain’s right reflection upon the real world. People
get knowledge from distinguishing. To distinguish object u from object v, there comes
comparing. Any two objects have both common properties and different properties;
they are either the same or different, and they are neither the same nor different. A factor
indicates which aspect we compare from. John and Mary are the same with respect to
their nationality, but they are different with respect to sex. Nationality and Sex indicate
two different aspects, they are two factors. Without factor’s indication, comparing can
not be taken. Mathematically speaking, a comparison is a judgment: ‘Are u and v
different under factor f ?’ They are different under f if and only if their images are
different under mapping f . i.e., f (u) �= f (v). Two objects are called distinguishable
if they are different under f . A group of objects are called distinguishable if any two
of them are distinguishable.

Basic Problem 1 Given a finite set of objects U and a group factors f1, . . . , fn defined
on U , how to reduce the number of factors to distinguish objects in U?
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Proposition 3.1 If there are two objects u, v ∈ U, for any fi they are indistinguish-
able, then basic problem is no answer, and the problem is called un-compatible.

Proposition 3.2 If a group of objects are distinguishable under f and f ≤ g, then
they are distinguishable under g.

Note. If a group of objects are distinguishable under f but indistinguishable under g,
then they are distinguishable under f \g = f ∧ gc. Of course, f ∧ gc ≤ f .

Proposition 3.2 shows that the more complex factor, the easier to distinguish. We
hope to select factor as simple as possible. Can we select a simplest factor to do
U -distinguishing? No, even though a group of objects are distinguishable under both
f and g and h = f ∧g �= ∅, they may be indistinguishable under h. So that, there may
not exists a unique simplest factor f ∗, under which, the U -objects are distinguishable.
We are forced to find out reduced factors defined as follows:

Definition 3.1 Given a group of objects U . Set D = { f ∈ F |U is distinguishable by
f }, we call a factor f ∈ D is a irreducible or reduced factor for distinguish U if there
is no g ∈ D (g �= 0) such that g < f (g < f means that g ≤ f and g �= f ).

For u, v ∈ U , set D(u,v) = { f | f ∈ Fo, f (u) �= f (v)}, where Fo is the set of
atom factors. Any f ∈ D(u,v) is a atom factor. An atom factor is irreducible, and
disjunction of two atom factors is 0. To distinguish all objects in U , we need to take a
congress, selecting one representative f(u,v) from each group D(u,v). The conjunction
f = ∨ f(u,v) of those representatives must make U distinguishable. It is easy to prove
that f is a reduced factor for U -distinguishing. Elections of representative result
different reduced factors, we have the following consequence:

Proposition 3.3 The set of all reduced factors for distinguishing U under F is

D = {∨{ f(u,v) ∈ D(u,v)|u, v ∈ U } (3.1)

We leave the concrete algorithm of factor reduction in Sect. 4.

Note. It is noted that the symbol ‘∨’ is not called conjunction but disjunction in rough
sets. Attribute reduction (i.e., factor reduction) is a hot topic in rough sets until now.
Since it concerns with factor and factors’ operation, especially, concerns with atom
factor, such a simple problem becomes complex, even confusion. Related review can
be seen in [28].

3.1 Classification

When the result of comparing is indistinguishable, there comes the class relation.
Given a factor space ψ = ({X ( f )}( f ∈F); U ), for g ≤ F , set

R(g) = {(u, v} ∈ U × U |u and v are indistinguishable under g}

which is called the class relation on U under g. R(g) is an equivalent relation, and the
quotient set is C = U/R(g) = {[a] = {u|g(u) = a}|a ∈ X (g)}.

.
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Definition 3.2 Set a mapping

χ(g) : U → C = U/R(g)

u| → [g(u)],

which is called a factor classification of U under g. When g is a simple factor f, χ( f )
is called a single factor’s classification, when g = f1 ∨ . . .∨ fn, χ( f1 ∨ . . .∨ fn) is
called a multiple factors’ classification.

Proposition 3.4 The division C( f1 ∨ . . .∨ fn) is the product of divisions C( f1), . . .,

C( fn):

C( f1 ∨ . . . ∨ fn, ) = C( f1)× . . .× C( fn), (3.2)

where C( f1)×. . .×C( fn) = {[a] = [a1]∩. . .∩[an]|[a1] ∈ C( f1), . . ., [an] ∈ C( fn)}.

3.2 Concept-Forming

What is an object? An object is an investigated grain with variable granularity. In the
beginning, it is the whole university with maximal granularity. We can say that when
a person was in the moment of his born, the brain has a zero-concept with whole
universe as its extension. The process of object-distinguishing, from rough to fine
granularity, is the accumulation of knowledge. It indeed is the process of concept-
forming, which generates a group of son-concepts from a father-concept by means of
taking a classification on the extension of father-concept under certain factor F .

Concept is the basic unit of knowledge. Knowledge is an embeddable network with
the insert part: A father concept α breeds to a group of son-concepts.

Concept has two forms of description: Intension and extension. Intension is a state-
ment introducing what properties the concept has. Extension is the range of objects
having those properties.

Intension essentially tells us what division on the state spaces is taken.
Given a factor space ψ = ({X ( f )}( f ∈F); U ) with F = f1 ∨ . . . ∨ fn . Consider

the power of X (F), P(X (F)) = (P(X (F)),∪,∩,c ) forms a Boolean algebra.

Definition 3.3 For any a1 ∈ X ( f1), . . ., an ∈ X ( fn), a = (a1, . . ., an) is called a
quality-atom in ψ . Denote the set of all quality-atoms as A, which is an equivalent
representation of X (F). We can naturally define (P(A),∨,∧,∼) by isomorphism and
call it the statement Boolean algebra on ψ , where P(A) is the power of A, and the
operations ∨,∧, ∼ are isomorphism to ∪, ∩, c respectively.

Definition 3.4 A quality-atom a is real if there exists an object u ∈ U such that
F(u) = a. The set R of real quality-atoms is called the background relation of factor
set F = { f1, . . ., fn}, denoted R = R(F).

Adopting the symbol R aims to emphasize that background relation is the real
attribute configuration in between factors.
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It is obvious that

R = F(U ) = {a = (a1, . . ., an)|∃u ∈ U ; F(u) = a} (3.3)

Consider the inversed mapping of F on R

F−1 : R → P(U )

a = (a1, . . ., an)| → [a] = {u ∈ U | F(u) = a}.
Extend the domain of mapping F−1 from R to its power P(R)

F−1 : P(R) → P(U )

∨{ak}| → ∪{[ak]}..
Proposition 3.5 The extended mapping F−1 is isomorphisc between (P(R),∨,∧,∼)
and (P(U ), ∪, ∩, c).

Definition 3.5 For any A ⊆ R, Set B = F−1(A). α = (A, B) is called a concept,
A and B are called its intension and extension respectively. The Boolean algebra
(J, ∨,∧, ∼) generated by all concepts with their operations is called the concept
Boolean algebra. For any a ∈ R, α = (a, [a]) is called an atom concept, and the set
of all atom concepts is denoted as Jo.

Common expressions do not adopt any concepts in the Boolean algebra except
public concepts. A public concept is stated by disjunctive normal form, which is a
super rectangle in R.

Definition 3.6 Given a factor space ψ = ({X ( f )}( f ∈F); U ) with F = f1 ∨ . . .∨ fn ,
a concept α = (A, B) ∈ J is called a basic concept if

1. Its intension is rectangle within R: A = A1 × . . .× An ⊆ R;
2. The rectangle can not be extended within R. i.e„ there is no B = B1×. . .×Bn ⊆ R

such that B ⊇ A.

It is obvious that all basic concepts form a semi-lattice.

Definition 3.7 Given B ⊆ U and A ⊆ X (F), (A, B) is called an involution if
F(B) = A and F−1(A) = B.

Proposition 3.6 For any basic concept α = (A, B) ∈ J, involution. (A, B) is an
involution.

Note. Involution criterion was presented by Wills in formal concept analysis. It is ea
sy to prove that Definition 3.7 is consistent with his definition on involution. Here, we
need to be alert that the concepts in Wills papers are not general concepts, but basic
concepts. Furthermore, attributes a, b, . . . must not have different attribute name. If
there are some attributes having the same attribute name, then they do not obey the
involution criterion.

Basic Problem 2 Given a finite set of objects U and a group factors f1, . . ., fn defined
on U , how to reduce the number of factors to get all atom concepts?

Since this is a finite sample of factor space, we leave the problem in Sect. 4.

123



240 Ann. Data. Sci. (2014) 1(2):233–251

Fig. 2 Truth field of
α(u) → β(u)

Fig. 3 Truth field of
α(x) → β(y)

3.3 Causal Reasoning

Based on concepts, reasoning is another important topic in knowledge representa-
tion. Reasoning/inference is a logical terminology. Sets theory describes concept from
extension, which is isomorphic to first order predicate logic. In mathematical logic, a
proposition is a sentence, which can be judged either Yes or No. A proposition is called
a predicate if it has the form α(u) (read ‘u is α’), where α is a concept and u is an
object in universe of discussion U. α(u) is true if and only if u ∈ B (extension of α). B
is the true-field of α. The operations of two concepts α = (A, B) and β = (A′, B ′)
are isomorphic to the operations of predicates: The true-field of α ∨ β and α ∧ β are
B ∪ B ′ and B ∩ B ′ respectively. The true-field of ∼ α is Ec.

The inference α(u) → β(u) (if u is α then u is β) is a predicate with true-field
T = (B\B ′)c = B ∪ B ′c. It likes digging a ‘moon’ from U (see Fig. 2). α(u) → β(u)
is a tautology if and only if T = U , i.e., B ⊆ B ′. The essence of inference is ‘obtained’.

Factor space theory extends the inference form from α(u) → β(u) to α(x) → β(y)
(see [29]):

In a factor space ψ = ({X ( f )}( f ∈F); U ) with F = f ∨ g, where f may be a
complex factor f = f1 ∨ . . . ∨ fn . To simplify, set X = X ( f ) and Y = X (g) and
U = X × Y . Consider the true-field of the inference α(x) → β(y) (if x is α then
y is β), where x ∈ X, y ∈ Y, B ⊆ X ( f ), B ′ ⊆ X (g). The extension of α in U is
B × Y , and the extension of β in U is X × B ′. The true-field of α(x) → β(y) is
T = ((B × Y )\(X × B ′))c = (X × B ′)∪ (Bc × Y ) = (B × B ′)+ (Bc × Y ). Its shape
resembles the alphabet H (see Fig. 3).
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Fig. 4 T ∗ = T ∩ R ⊇ R

Definition 3.8 We call factors f and g independent if ( f ∨ g)(U ) = f (U )× g(U ).
A group of factors are called independent if any two of them are independent.

If F = { f1, . . ., fn, g} is a set of independent factors, then all concept Boolean
algebra is isomorphic to (P(X (F)), ∪, ∩, c), and then knowledge representation will
be mediocre. When F is a set of independent factors, it is not possible to make an
inference α(x) → β(y) to be a tautology unless E = ∅. It means that there is no
valuable causal reasoning if factors are independent.

But, when f1, . . ., fn are not independent, the situation becomes complex. Factors
are interdependent, they are reciprocal causation, interact as both cause and effect. The
decision variable g occurring in existing models of decision making is also a factor.
However, we call f and g the conditional and resulted factors respectively. A factor
space ψ = ({X ( f )}( f ∈F); U ) is called a causality factor space if F = f ∨ g consists
of conditional and resulted factors. The tableau representing a sample S in causality
factor space is called a causality analysis table. Any decision making essentially is a
causal reasoning in a factor space.

Generally, R = F(U ) �= X (F), and we must delete all fictitious quality-atoms.
Then, the real state space of F is not X (F) but R! The true-field of α(x) → β(y) is
not T but T ∗ = T ∩ R = [(B × B ′)+ (Bc × Y )] ∩ R. α(x) → β(y) is a tautology
if and only if T ∗ = R, i.e., [(B × B ′)+ (Bc × Y )] ⊇ R (see Fig. 4).

Set I = {α(x) → β(y)|T (α(x) → β(y)) = R}, which is the set of all tautologies
on the factor space. It is obvious that

Proposition 3.7 If α(x) → β(y) ∈ I, E(α′) ⊆ E(α) and E(β ′) ⊇ E(β), then
α′(x) → β ′(y) ∈ I , where E(γ ) is the extensions of concept γ .

Denote v(α(x) → β(y)) as the information value of tautology α(x) → β(y).
We know that a wider extension of antecedent gives rise to a narrower extension of
succedent, and a higher information value of tautology:

v(α(x) → β(y)) ≥ v(α′(x) → β ′(y)) if E(α′) ⊆ E(α) and E(β ′) ⊇ E(β).

Set I = {α(x) → β(y) ∈ I | there is no α′(x) → β ′(y) in I ; v(α′(x) → β ′(y)) >
v(α(x) → β(y)}
Definition 3.9 α(x) → β(y) is called a valuable tautology if α(x) → β(y) ∈ I. A
valuable tautology is called an extracted rule if β is an atom concept.
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Basic Problem 3 Given a factor space ψ = ({X ( f )}( f ∈F); U ) with F =
{ f1, . . ., fn, g}, how to get all valuable tautologies?

This is the rule extraction problem in decision making or classification. To answer
the problem, there is a fundamental theorem.

Theorem 3.1 Any valuable tautology is determined by background relation R:

α(x) → β(y) ∈ I if and only if E(β) = {y|∃x ∈ E(α); (x, y) ∈ R}.

By means of the theorem, we can get the succedent E(β) of a valuable tautology
for a given antecedent E(α) by following trilogy:

1. Doing cylinder extension from E(α), get E(α)× Y ;
2. Intersecting the cylinder with R, get (E(α)× Y ) ∩ R;
3. Projecting to y, get E(β) = {y|∃x ∈ E(α); (x, y) ∈ R}.

The concrete algorithms for basic problem 4 are discussed in Sect. 4.

3.4 Background Base B(R)

From Theorem 3.1, we know that background relation R is the most important con-
cept in factor space. Given a factor space ψ = ({X ( f )}( f ∈F); E), how to get the
background relation R? It is not difficult to get R by copying all factorial tableaus in
practice. There is no need to record the information of objects from the leftist column,
only record where they image to. Each sampling tableau cutting out leftist column is
a part of R, R is the union of those parts. Even though it is not difficult to get R, the
number of R-points is time-consuming to manage in big databases. We need to do
information compression.

R is a topological concept, no matter how to divide the states a1, a2, a3 in
R = Height(U ), its character and function in knowledge structure relies on the
order of a1, a2, a3 only, no main relation with their concrete division. We can set
X∗(Height) = {1, 2, 3}, replacing a1, a2, a3 by 1,2,3 respectively. X∗(Height) is a
integer state space, called the offset of X (Height). There comes the offset transforma-
tion. We omit the definitions and propositions in detail. Offset transformation embeds
a state space into a Euclidian space. The transformation is very easy when all states
are degrees.

R is an existence, existence is a connection, if 2.1 m and 2.3 m belongs to R =
Height(U ), why would there not be a man whose height is 2.2 m in the world? Even
none in present, there would be one in the future. Furthermore, R is convex in practice
usually. We can make the following assumption:

Assumption 3.1 The background relation R∗ is integer-convex.

Definition 3.10 Under the Assumption 3.1, we call the set of vertexes of R∗ the
background base of R, denoted as B(R).

Since R∗ is convex, which can be generated from B(R). The base is much smaller
than R. From R to B(R), an information compression is made. It can be seen as the
first mining.
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4 Factorial Databases

Definition 4.1 Given a factor spaceψ = ({X ( f )}( f ∈F); E)with a name # of concept
α = (E, F), a sample S (a group of sample points) ⊆ E with T = (#; S, F) is called
a factorial database.

T is a general record system. When it becomes a tableau, the tableau is the same
as the tableau of information system in rough sets except emphasizing the name of
universe. Putting a clear name in each tableau is necessary for information fusion.

The first task of factorial databases is finding out the background relation R.

4.1 Explanation of R and B(R)

Comparing intension and extension, intension is more essential than extension. Indeed,
extension is infinite and variable. For example, the extension of Man includes living
men, dead or not yet born, it is infinite; the extension of Young Man is variable. John
is a young man at someday, while he may not be young some years later. Therefore,
strictly speaking, extension is unrealizable, it makes that R is not calculate-able. But,
R = F(E) is a subset in X (F), it is an intension. It consists of finite quality-atoms,
and it is stable: For any sample S, no matter what operations are taken, it does not cut
off R. It is always true that F(S) ⊆ R and R = ∪{F(S)|S occurs in a sample}. Given
a factor space ψ = ({X ( f )}( f ∈F); E), Go = F(So) is the image of first sample So

in the beginning, it may not the be the real background R. After a series of sampling
operations, R = F(So) ∪ . . . ∪ F(St ) becomes stable gradually, we call it is nature.
A nature background relation R is not fictitious symbol but a real entity in factorial
databases.

4.2 How to Determine the Background Base B(R)?

Let S∗ = {nk = (nk1, . . ., nkn)}(k=1,...,m) be an integer-valued sample. To determine
its base B(S∗), firstly, along each axis, we select the maximum or minimum of S∗.i.e.,
For t ∈ {1, . . ., n}, set

∗t = argmink{nkt }; t∗ = argmaxk{nkt } (4.1)

Proposition 4.1 For any t ∈ {1, . . ., n},n∗t and nt∗ are two vertexes of S∗ from lower
and upper upon factor ft .

We call n∗t and nt∗ the t-lower vertex and t-upper vertex respectively. All of them
are called the natural vertexes.

Apart the natural vertexes, to find out other vertexes of S, we need to delete inner
points of S∗. According to convex analysis, An inner point n = (n1, . . ., nn) ∈ S∗
requires that n is a convex combination of {nt }(t∈T ) ⊆ S∗\{n}. i.e., ∃λt ≥ 0 for t ∈ T
with

∑
λt = 1; n = ∑

λt nt . To judge if a point is inner along the way, we will face
an N-hard problem. Therefore, we present a new way as follows:
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Denote n∗ = 1/m
∑{λt nt |nt ∈ S∗}, where m is the number of points of S∗, which

is the center of S∗.

Proposition 4.2 A point n = (n1, . . ., nn) ∈ S∗ is an inner point of S∗ if there are
two points a, b ∈ S∗\{n} such that (a − n, n∗ − n) < 0, (b − n, n∗ − n) < 0 and
(a, b) ≥ 0, where (x, y) is the inner product of x and y.

Algorithm InnerPointJudgment[S∗,n] (Inner point judgment[S∗, n])
Input S∗ and n=(n1, . . ., nn)
Calculate n∗;
If there are two points a, b ∈ S∗\{n} such that (a−n, n∗−n) < 0, (b−n, n∗−n) < 0
and (a, b) ≥ 0, then make judgment: n is an inner point of S∗; Else, No judgment.
The complexity of the algorithm is O(mn), where m is the number of points in S∗, n
is the number of dimension of state space, i.e., the number of reduced factors.

Algorithm BackgroundBase[S∗] (Background base[S∗])
Input S∗.
N := ∅;

1. For t = 1, . . ., n, Calculating ∗t and t∗; N := N ∪ {n∗t , nt∗};
2. For each n=(n1, . . ., nn) ∈ R∗\N , do InnerPointJudgement on n; If n is an inner

point of S∗, then delete n from S∗ : S∗ := S∗\{n}
Finally, get output: B(S∗) := S∗. The complexity of the algorithm is O(m2n)

Related paper can be seen in [30].
Inversely, we can generate S∗ from B(S∗)

Proposition 4.3 Given a background base B, we can get background R such that
B = B(R).

Now we can see how important background base is: Background base B(R) is equiva-
lent to background relation R, it is information compression of R without information
loss.

4.3 Basic Problems in Factorial Databases

Basic Problem 1 Given a sample S = {u1, . . ., um} ⊆ U and a group factors
f1, . . ., fn defined on U , how to reduce the number of factors to distinguish any
two objects in S?

Any two objects in S are distinguishable if and only if all indistinguishable classes
are singletons.

Treating X ( f ) = {a1 < . . . < an} as a poset with total order <.

Algorithm IndexPermutation[S, f ] (Index permutation[S, f ])
Input S = {u1, . . ., um}
(1) := 1; (2) := 2, . . ., (m) := m;
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For j = 1 to m
For k = 1 to j − 1

If f ( j) < f (k) then take permutation for ( j) and (k) :∗:= ( j); ( j) :=
(k); (k) :=∗;
Output 1. New order: (1), . . ., (m);

2. Sub-classes: C1, . . .,Cr .
The number of comparing operations is m(m − 1).

The result of the algorithm is dividing classes according to the order of indices:
(see paper [31])

S = (u(1), . . ., u(n1); u(n1+1), . . ., u(n1+n2); . . .; u(n1+...+nr−1+1), . . ., u(m)),

f (u(1)) = . . . = f (u(n1)) = a1, . . ., f (u(n1+...+nr−1+1)) = . . . = f (u(m)) = ar .

The number of objects in sub-classes are n1, n2, . . ., nr . Set

d = 1 − [n1(n1 − 1)+ . . .+ nr (nr − 1)]/m(m − 1)

Definition 4.2 d is called the distinguishing number of f on S.

Algorithm DistinguishingReduction[S; f1, . . ., fn] (Distinguishing reduction[S; f1,

. . ., fn])
Input S; F = { f1, . . ., fn}
C := S;
Set of reduced factors R := ∅;
Step 1. Select factor f from F such that d is maximal on C ;

Do IndexPermutation[C, f ];
If C = Ck is divided into a group of son-classes, i.e., r > 1, then set the first

son-class as new class Ck := Ck1; Return to step 1; Else, there is no son-class of C ,
which is not dividable, then set the next younger brother-class Ck+1 as the new class
C := Ck+1; Return to step 1; The process stop when there is no divisible sub-class
existed.

Basic Problem 2 Given a finite set of objects E and a group factors f1, . . ., fn defined
on E , how to reduce the number of factors to get all atom concepts?

There are algorithms similar to algorithms in basic problem 1.

Definition 4.3 Let k be the number of sub-classes of E in the classification under
factor f , which is called the classifying number of f .

Algorithm ClassifyingReduction[E; f1, . . ., fn] (Classifying reduction[E; f1, . . .,

fn])
Input E; F = { f1, . . ., fn}
C := E ;
Set of reduced factors R:=empty;
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Step 1. Select factor f from F such that the classifying number k is maximal on C ;
Do IndexPermutation[C, f ];
Record basical concepts corresponding to sub-classes;

If C = Ck is divided into a group of son-classes, i.e., r > 1, then set the first
son-class as new class Ck := Ck1; Return to step 1; Else, there is no son-class of C ,
which is not divisible, then record the atom concept corresponding to C; Set the next
younger brother-class Ck+1 as the new class C := Ck+1; Return to step 1; The process
stops when there is no dividable sub-class existed.

Basic Problem 3 In a causality factor space ψ = ({X ( f )}( f ∈F); U ) with F =
{ f1, . . ., fn, g}, for a finite sample S ⊆ U , how to extract rules with minimal number
of reduced factors?

There is the classify-in method. ‘Classify’ indicates that conditional factors classify
U into classes finer and finer such that g-classes swallow f -classes more and more.
Since the essential of reasoning is ‘contained by’, once a f -class A ⊆ B (g-class),
a tautology A → B is extracted. Class A sacrifices itself to extract a rule A → B,
this is the idea of classify-in method’. This idea comes from paper [32] and improved
to get good tests by Huadong Wang [33]. Comparing with decision tree methods ID3
and C4,5 on cancer diagnosis. Bao et al. [34] presents a slightly different method to
deal with the basic problem for quantitative factors.

Given a class C including m objects, which is divided by factor f as a group of
sub-classes {Ci }, where Ci includes ni objects. We call Ci a determined class if for
any u ∈ Ci there is a common state g(u) ∈ X (g). Intuitively speaking, a determined
class is swallowed by a g-class.

Definition 4.4 Set

c = (1/m)
∑

{ni |Ci is a determined class}

which is called the determined degree of conditional factor f on C for resulted factor g.
Algorithm ClassifyInRuleExtraction[S; f1, . . ., fn, g] (Classify-in rule extraction
[S; f1, . . ., fn, g])
Input S; F = { f1, . . ., fn, g}
C := S;
Set of reduced factors R:= ∅; Rule set L:= ∅;
Step 1. Select factor f from F such that the determined degree c is maximal on C ;

Do IndexPermutation[C, f ]; R := R ∪ { f };Get finer classes
Record basic concepts corresponding to sub-classes;
Extract determined classes as rules; Put those rules into L;

If C = Ck is divided into a group of son-classes, i.e., r > 1, then set the first
son-class as new class Ck := Ck1; Return to step 1; Else, there is no son-class of C ,
which is not dividable, then record the atom concept corresponding to C; Set the next
younger brother-class Ck+1 as the new class C := Ck+1; Return to step 1; The process
stop when there is no dividable sub-class existed.
Output: All extracted rules

123



Ann. Data. Sci. (2014) 1(2):233–251 247

Applying algorithm ClassifyInRuleExtraction[E; f1, . . ., fn, g] to decision mak-
ing
Given a testing point i′ = (i1, . . ., in), what is the resulted value?

Solution: If there is a sample point in E having same antecedent value, then take
its g-value as the resulted value; Else, declare: No recognition.
The training accuracy= 100 %; the indistinguishableness is high when the sample of
background R is not mature. But, there is no need to worry about the indistinguishable,
Getting solution from experts, Put the new point into S such that S becomes more
mature.
Another way: Viewing each vertex i = (i1, . . ., in, j) as a rule a1i1 ∧ . . .∧anin → b j

(If x1 is a1i1 ∧ . . . ∧ xn is anin then g is b j )

Algorithm BackgroundBaseRuleExtraction[S∗; f1, . . ., fn, g] (Background base
rule extraction [S∗; f1, . . ., fn, g])
Input Sample S∗, factors f1, . . ., fn, g

1. R∗ := S∗; Do Algorithm Backgroundbase[S∗];
2. Transfer each point i= (i1, . . ., in, j) to a rule

Output: All rules

Application algorithm BackgroundBaseRuleExtraction[S∗; f1, . . ., fn, g] to DM
Given a testing point i′ = (i1, . . ., in; ?), what is the resulted value j?

Solution: Set S∗ := {i = (i1, . . ., in)|∃ i = (i1, . . ., in; j) ∈ S∗}. The unknown value j
is the weighted average of g-values of S∗-points according the distances between i′
and S∗-points.
The authors guess that training accuracy is 100 % when i′ is an inner point of S∗;
The solution fails when i′ is not an inner point of S∗. Again, do not worry on failing,
Getting solution from experts, and put the new point into R such that R becomes more
mature.

4.4 Characters of Factorial Databases and Cultivation of Samples

Does data science need statistics? Yes, databases mainly come from and are used by
statistical departments. But, intelligent data need new kind of statistics. The paper
shows factorial statistics has its own characters as follows:

1. Population of factorial databases is background relation R, the expected points of
R-distribution is not located at the center (expectation) but the border, where they
are not dense but rare.

2. Factorial databases is active, no matter how big the data is, the base of back-
ground relation keeps a stable size, automatically realizing the simple–complex
bi-direction transformations.

3. Factor space vane is an embedded neural network, factorial databases can do
information fusion, from small to great, build a self organized ecological system.
This is a great intelligent engineering.
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4. Most important character: ample is not only a tool but the object of sample-
cultivation.

A good sample approximates to background relation R. Once it is the background
relation R, it implicates related knowledge perfectly and becomes a knowledge data-
bases. All valuable information absorbs into the databases.

Facing the challenge of intelligence, Codd [35] put relation, a mathematical concept,
into databases, and brought up a bright generation for data science. He did not know
what kind of relation is the key relation, and left some doubtful points. Factorial
databases has found which is the key relation, a new generation of data science is
coming.

5 Discussions

Section by section, this paper mathematically describes object-distinguishing, concept-
forming and causal reasoning the three basic units of thinking process and knowledge
accumulation. All of the three topics accept and obey language of factor space both.
The brief conclusion is: Factor space is a mathematical theory of intelligence, and
factorial databases will play an important role in intelligence engineering.

Limit to time, the paper can not introduce all important tasks and topics researched
in the past, present and in the future, we only list advanced tasks as follows:

1. Classification becomes a simple task within a known framework of factor space,
while practical classification problems are so difficult! The problem is: How to
mine the hidden factors? This is the topic of feature extraction. Some alternative
branches such as support vector machine and so on are popular approaches now.
Factor space needs its own methods to resolve this problem. The background
base mentioned in Sect. 3.4 provides a tool to extract the vertex-character of
son-concepts, which will be effect in classification. Another way is using causal
reasoning rules to define the intension of son-concepts. Using reasoning back to
concept-forming, this is an important approach.

2. Factor neural network presented by Liu [11,21,22] provides a embedded frame-
work to building knowledge/information self-organized ecological system in the
future;.

3 Factor space vane developed by Wang and Li [9,10,15,16] provides mathematical
structure for factorial NN, and provides an equipment for non-structure information
processing;

4. Yuan [25], Li [9,10,15,16], Zou and Feng [12] presented factorial category theory
for information category and information fusion. The language transla-functor
(a translator built by functor theory) can be generated for unifying intelligence
languages, and also unifying the editions of factorial dictionary/lexicon.

5. Replacing clear states by fuzzy states in the factorial state space, all fuzzy con-
cepts will fold into factorial databases. Realizing the bi-direction transformations
between databases and experts, the constructed self-organized ecological system
will actively communicate with human being.
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6. Variable weights in factor space presented by Wang and Li [9,10,15,16] brings
deeper developing for factor space theory. It concerns with the agility of thinking
process.

7. Potential optimization on factor space is incubated by Wang. He presents potential
gradient in the paper [36], and brings deeper developing for factor space the-
ory. It concerns with the insight and aha experience in thinking process. With
regret, he has some typing errors in the paper such as: ‘polynomial:time’ should
be ‘polynomial–time’ in the title. In Example 4.1, F0 = (7, 4, 7, 6, 5) should be
F0 = (7, 4, 7, 9, 5).
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