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Abstract Researchers often use ordinary least square and generalized linear models
even for censored data. Cox (1972) presented a new method that is useful for cases
which include censored data. Researchers began to use this model without considering
baseline hazard models. These methods are described and compared with a new pro-
portional hazard model. Conclusions on the performance are presented here. In this
paper , we propose the Extended Exponential Geometric (EEG) proportional hazard
model. We compared this model with: (1) the semi-parametric proportional hazard
model (2) the Linear regression model with and without log translation, (3) Gener-
alized linear models (GLM), for example, the use for the case with strictly positive
values. Survival analysis examines and models the time required for events to occur.
Survival analysis focuses on the distribution of survival times. There are well known
methods for estimating unconditional survival distributions. Most interesting survival
modeling examines the relationship between survival and one or more predictors,
usually termed covariances in survival analysis literature.
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1 Introduction

Survival analysis examines and models the time required for events to occur. Survival
analysis focuses on the distribution of survival times. There are well known methods
for estimating unconditional survival distributions. Most interesting survival modeling
examines the relationship between survival and one or more predictors, usually termed
covariances in survival analysis literature.

The Cox proportional hazards model [5] is now the most widely used for the analysis
of survival data in the presence of covariances or prognostic factors. This is also the
most popular model for survival analysis because of its simplicity, and because it is not
based on any assumptions about the survival distribution. Part of the interest in survival
methods for event times, costs, expenditures, and related outcomes is the presence of
censoring of some sort in the data collection. As Kleinbaum etal. describe this in their
survival books [13]. Up to now, many researchers have compared the performance of
the Cox model with other regression models. Using data on 155 CABG cases, Dudley
et al. [8] compared the Cox regression model with OLS models (with and without log
transformation), and logit alternative. They found that the Cox model provides more
accurate predictions of mean, median, and high cost cases.

In a study of Medicare data of stroke patients, Lispscomb et al. [15] compared the
performance of several alternative estimators: OLS with and without log transforma-
tion, two-part models with and without log transformations of the positive expenses,
and Cox proportional hazards models. Using several criteria for comparisons of alter-
native estimation approaches under cross validation, they found that the Cox and
two-part model with log transformation outperformed the other alternatives. Some
researchers have been concerned how it is possible apply survival methods if there is
non-random censoring or other issues [9,10]. Others have used survival methods in
cases without censoring, because they wanted to employ less parametric methods than
have been typically used before (Anirban Basu et al. 2004).

The purpose of this paper is to propose a new form for baseline hazard function
h0(y) that is related to Extension exponential geometric distribution(EEG distribution)
[1] for proportional hazard models and accelerated failure time models.

EEG distribution can be used in modeling situations where the population’s survival
capacity decreases over time. Its ability to closely fit real data renders it a promising
alternative to the popular weibull and gamma distributions. This distribution is use-
ful for series systems with identical components and parallel systems with identical
components. Some baseline hazards have been proposed in literature, for instance:

h0(y) = λ ρyρ−1

For parametric proportional hazards model this choice leads us to Weibull distribu-
tion, [7] and for parametric accelerated failure time models this choice is a partic-
ular assumption for h0(y) . This choice also leads us to Weibull distributions [7].
The Weibull model is a popular parametric model which allows for the inclusion of
covariates of survival times. Exponential distribution is also a special case of Weibull
distribution; statisticians chose Exponential distribution to model life data because
the statistical methods for it were fairly simple [14]. As earlier, we propose a new

123



Ann. Data. Sci. (2014) 1(2):173–189 175

parametric proportional hazard model and an accelerated failure time model based
on EEG distribution. Finally we will use simulation techniques to see which of these
models perform best. The models that we considered are: (1) EEG proportional hazard
model (2) semi-parametric proportional hazard model (3) linear regression on ln(y)

(4) Generalized linear models (GLM), specifically, the use of Gamma distribution with
a log link E(y | x) = exp(xβ) It is clear that all of these methods are used for cases
with strictly positive values.

We use the Akaike information criterion (AIC) and the Bayesian information cri-
terion (BIC) to evaluate the performance of these models and to determine which of
these models is appropriate under different situations.

The plan for the paper is as follows. Sect. 2 describes the general modeling
approaches that we consider. Then we present our new models in Sects. 3 and 4.
Our simulation framework is then presented. The results of the simulations that focus
on the survival time and two covariates that related to the survival time are discovered.
Finally the conclusion follows.

2 Modeling Framework

We adopt the perspective that the purpose of the analysis is to show how the expected
outcome, E(y | x) , responds to shifts in a set of covariates.

While many aspects of the following discussion apply for the more general case of
nonnegative y , the discussion here is confined to the case with strictly positive values
of y to streamline the analysis.

Note, right censoring is very common in survival time data, but left censoring is
fairly rare. The term “censoring” will be used in this paper to mean in all instances
“ right censoring”.

Our modeling framework includes: a gamma regression model with a log link (one
of the generalized linear model, GLM); OLS on ln(y); and the Cox proportional hazard
model with unspecified baseline hazard.

The gamma model estimates the E[ln(y)] directly, but the Cox model estimates the
hazard rate that a case which has survived to time y will fail in the next time period.

2.1 Gamma Models

In generalized linear models (GLM) [17], we assume that E[ln(y)] exhibits an expo-
nential conditional mean or log link relationship:

ln(E(y | x)) = x ′β

or
E(y | x) = exp(x ′β) = μ(x;β)

Because of the work by Blough et al. [2], and by Manning and Mullahy [16], we
will focus on the gamma regression model. The gamma distribution has a raw scale
variance function that is proportional to the square of raw scale mean function.
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Trough out this paper, we are assuming a log link for the expectation of y given x .

2.2 Linear Models

One of the oldest models that researchers use, is OLS on y . Where y is the dependent
variable. The regression model is given by:

y = x ′β + ε

where x is a matrix of observations on covariates, β is a column vector of coefficients
to be estimated, and ε is the column vector of error terms. We assume that E(ε) = 0
and V ar(ε) = σ 2 and εi are independent. Then we can estimate β by:

β̂ = (x ′x)−1x ′y

2.3 Log Linear Models

One of the popular models that researcher use is ordinary least suers or least suers
variant with ln(y) as the dependent variable. The reason for log transform is that the
resulting error term is approximately normal. The regression model is given by:

ln(y) = x ′β + ε

where x is a matrix of observations on covariates, β is a column vector of coefficients
to be estimated, and ε is the column vector of error terms.

We assume that E(ε) = 0 and E(x ′ε) = 0 . If the error term is normally distributed,
then

E(y|x) = exp
(
x ′β + 0.5σ 2

ε

)

If ε is not normally distributed, but is i.i.d., or if exp(x ′β) has constant mean and
variance, then

E(y|x) = s exp(x ′β),

where s = exp(ε). If exp(ε) is some function f (x) then

E(y|x) = f (x) exp(x ′β),

or equivalently,
E(y|x) = x ′β + ln( f (x)),

and in the log normal case,

E(y|x) = x ′β + 0.5σ 2
ε ,
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2.4 Semi-parametric Proportional Hazards Models

One very popular model in survival data is the Cox proportional hazards model, which
is proposed by Cox. The Cox proportional hazard model is given by:

hi (y) = h0(y) exp(x ′
iβ),

where h0(y) is the unspecified baseline hazard function when exp(x ′
iβ) = 0 Note that

the expected value of can be written as:

E(y) =
∫ ∞

0
S(y)dy

=
∫ ∞

0
exp

{
−

∫ ∞

0
h(u)du

}
dy

The estimates of the β parameters are obtained by maximizing the partial log likeli-
hood, because the baseline hazard is separable from the part containing β. The partial
likelihood was originally given by Cox (1972). The partial likelihood can be derived
as a profile likelihood, i.e., first β is fixed and the survival likelihood is maximized as
a function of h0(y) only to find estimators for the baseline hazard in terms of β. We
write the partial likelihood as follows:

L(β) =
r∏

i=1

exp(x ′
(i)β)

∑
j∈R(y(i)) exp(x ′

j β)

(1)

where y(1) < y(2) < · · · < y(r) denote the ordered event times with corresponding
covariates x(1), . . . , x(r) and R(y(i)) is the risk set at time y(i) that containing all the
subject that are still at risk to experience the event at that time.The partial likelihood can
be interpreted in terms of conditional probabilities (Klein and Moeschberger 1997).
The properties of the partial likelihood estimator for β are well established (Gill 1984;
Fleming and Harrington 1991).

Since we are interested in the expectation of y, not the hazard or survival function,
per se, we need to estimate the baseline hazard and survival functions to predict survival
time at various levels of the covariates X . For this purpose we have to use Breslow’s
estimators [4]. Although the Cox models uses an exponential form for the hazard
function, the interpretation of the estimated coefficient is different that is in OLS on
y or gamma models.

Note that the log normal and gamma distribution models do not satisfy the propor-
tional hazard assumption.

3 Proportional Hazards Models

In first subsection we are going to obtain a proportional hazard model with a new base-
line hazard function, and in second subsection, we wish to estimate parameters. These
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parameters break down into two parts: The parameters that are related to distribution
and the parameters that are related to efficiency of explanatory variables.

3.1 Parametric Proportional Hazard Model

The parametric proportional hazards model is the parametric version of the Cox pro-
portional hazards model. In general in the presence of covariates the proportional
hazard model can be written as:

hi (y) = h0(y) exp

( p∑

i=1

βi Xi

)

(2)

= h0(y) exp
(
X ′

iβ
)

(3)

In this model if h0(y) is assumed to follow a specific distribution, we will use the
parametric proportional hazard model. We wish to estimate the parameters in this
model by maximizing likelihood.

Now we are going to discuss about the parametric proportional hazard model with
a new baseline hazard. suppose that:

h0(y) = λ

1 − (1 − γ )e−λ y
(4)

where λ > 0 and γ > 0.
The function h0(y) is monotonically increasing for γ > 1, decreasing for 0 <

γ < 1 and constant for γ = 1. As we said in introduction this choice refers to EEG
distribution which proposed by Adamidis(2005). Then proportional hazard is given
by:

hi (y) = λ

1 − (1 − γ )e−λ y
exp(X ′

iβ) (5)

It follows that:

Si (y) = exp

(
−

∫ y

0

λ

1 − (1 − γ )e−λ s
exp(X ′

iβ)ds

)

= exp

(
exp(X ′

iβ)

∫ y

0

−λ

1 − (1 − γ )e−λ s
ds

)

=
(

γ e−λ y

1 − (1 − γ )e−λ y

)exp(X ′
i β)

(6)

For last equality see appendix A.
We know that fi (y) = hi (y) · Si (y), by (5),(6) we can write:

fi (y) = λ

1 − (1 − γ )e−λ y
exp

(
X τ

i · β
) ·

(
γ e−λ y

1 − (1 − γ )e−λ y

)exp(Xτ
i ·β)

(7)
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3.2 Estimation by Maximum Likelihood

Now we are going to estimate the parameters by maximum likelihood. The form of
likelihood expression is determined by the type of data that is available. We introduce
g and G as notation for the density function and the cumulative distribution function of
the censoring time, and also f and F for the density function and cumulative function
of the event time respectively.

Under random censoring, survival data consist of a combination of event times and
censored observations. The likelihood for a sample of size is therefore given by:

L =
n∏

i=1

[(
1 − G(yi )) f (yi

)]δi
[(

1 − F(yi ))g(yi
)](1−δi )

(8)

If we further assume that the distribution of the censoring times does not depend on the
parameters of interest related to the survival function, or we have uninformative cen-
soring, (Liang et al. 1995; Fleming and Harrington 1991), the factors (1−G(yi ))

δi and
(g(yi ))

1−δi are not informative for inference on the survival function and, therefore,
they can be deleted from the likelihood resulting in:

L =
n∏

i=1

( f (yi ))
δi (S(yi ))

1−δi

=
n∏

i=1

[(
λ exp

(
x ′

iβ
)

1 − (1 − γ )e−λ yi

)(
γ e−λ yi

1 − (1 − γ )e−λ yi

)exp(x ′
i β)

]δi

[(
γ e−λ yi

1 − (1 − γ )e−λ yi

)exp(x ′
i β)

]1−δi

(9)

Then:

l =
n∑

i=1

δi ln
[
λ exp

(
x ′

iβ
)] −

n∑

i=1

(
δi + exp(x ′

iβ)
)(

ln
[
1 − (1 − γ )e−λ yi

] )

+
n∑

i=1

(
exp(x ′

iβ)
)

ln
[
γ e−λ yi

]

The first derivatives of the log likelihood function with respect to the parameters are:

∂l

∂ λ
= 1

λ

n∑

i=1

δi −
n∑

i=1

(
δi + exp

(
x ′

iβ
)) (1 − γ )yi e−λ yi

1 − (1 − γ )e−λ yi

−
n∑

i=1

(
exp

(
x ′

iβ
))

yi , (10)
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∂l

∂γ
= −

n∑

i=1

(
δi + exp(x ′

iβ)
) e−λ yi

1 − (1 − γ )e−λ yi
+ 1

γ

n∑

i=1

(
exp(x ′

iβ)
)
, (11)

∂l

∂β j
=

n∑

i=1

δi xi j −
n∑

i=1

xi j exp(x ′
iβ) ln

(
1 − (1 − γ )e−λ yi

)

+
n∑

i=1

xi j exp(x ′
iβ) ln γ e−λ yi (12)

for j = 1, . . . , p
The maximum likelihood estimates can be obtained as the simultaneous solutions

of the equations ∂l
∂ λ

= 0, ∂l
∂γ

= 0 and ∂l
∂β j

= 0. The solution of these three nonlinear
equations must be obtained using a numerical method. The Newton-Raphson algorithm
is one of the standard methods used to solve equations. The Newton Raphson iteration
is a useful technique for finding zeros of function. It was first introduced by Newton
around 1669, and later generalized by Raphson.

4 Accelerated Failure Time models

The accelerated failure time model is an alternative if the proportional hazards assump-
tion does not hold. Different diagnostic tests have been developed to evaluate the pro-
portional hazards assumption [12]. In contrast to the proportional hazard model, the
accelerated failure time model is best characterized in terms of survival function. In
the first subsection we will introduce accelerated failure time models, and obtain a
new accelerated failure time model based on a new baseline hazard function. As in
the previous subsection we will estimate parameters in the second subsection.

4.1 Parametric Accelerated Failure Time Model

Although parametric proportional hazard models are very applicable to analysis sur-
vival data, in some cases we cannot use this models. The accelerated failure time
model is an alternative to the proportional hazard model in these cases.

Under accelerated failure time models we measure the direct effect of explanatory
variables of survival time instead of hazard, as we do in proportional hazard models.
Similar to the proportional hazard model, the accelerated failure time model describes
the relationship between survival probabilities and a set of covariates. Accelerated
failure time models are discussed in details in textbook [4],

Accelerated failure time models are fitted using the maximum likelihood method.
The unknown parameters are found by maximizing likelihood function with the
Newton-Raphson method in some software package, e.g., R and SAS.

4.2 Estimation by Maximum Likelihood

Now we are going to estimate parameters in this model, as in Sect. 2.2. In the previ-
ous subsection we showed that event time has EEG distribution, now we can estimate
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parameters with maximizing likelihood. If we have uninformative censoring then like-
lihood is the form:

hi (y) = exp(X ′
iβ)h0(exp(X ′

iβ)y) (13)

Then we have:
hi (y) = exp(X ′

iβ)
λ

1 − (1 − γ )e−λ exp(X ′
i β)y

(14)

It follows that:

Si (y) = exp

(

−
∫ t

0

λ exp(x ′
iβ)

1 − (1 − γ )e−λ exp(x ′
i β)s

ds

)

= γ e−λ exp(x ′
i β)y

1 − (1 − γ )e−λ exp(x ′
i β)y

For last equality see appendix B. We can obtain fi (y) by hi (y) and Si (y):

fi (y) = λ exp(x ′
iβ)

1 − (1 − γ )e−λ exp(x ′
i β)y

γ e−λ exp(x ′
i β)y

1 − (1 − γ )e−λ exp(xi ′β)y

= λ exp(x ′
iβ)γ e−λ exp(x ′

i β)y{1 − (1 − γ )e−λ exp(x ′
i β)y}−2

It means that Y has EEG distribution with λ exp(X ′
iβ) and γ . i.e.

Y ∼ E EG (λ exp xi ′β, γ ) (15)

4.3 Estimation by Maximum Likelihood

Now we are going to estimate parameters in this model like Sect. 2.2. In previous
subsection we obtained that event time has EEG distribution, now we can estimate
parameters with maximizing likelihood.

If we have uninformative censoring then likelihood is the form:

L =
n∏

i=1

⎡

⎢
⎣

λ γ exp(x ′
iβ)e−λ yi exp(xi ′β)

(
1 − (1 − γ )e−λ yi exp(x ′

i β)
)2

⎤

⎥
⎦

δi [
γ e−λ yi exp(x ′

i β)

1 − (1 − γ )e−λ yi exp(x ′
i β)

]1−δi

(16)

Then:

l =
n∑

i=1

δi ln
(
λ exp(x ′

iβ)
) +

n∑

i=1

ln
(
γ e−λ yi exp(x ′

i β)
)

−
n∑

i=1

(1 + δi ) ln
(

1 − (1 − γ )e−λ yi exp(x ′
i β)

)
(17)
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The first derivatives of the log_likelihood function with respect to the parameters are:

∂l

∂ λ
=

n∑

i=1

δi

λ
−

n∑

i=1

yi exp
(
x ′

iβ
)

−
n∑

i=1

(1 + δi )
(1 − γ )yi exp(x ′

iβ)

e−λ yi exp(xτ
i ·β)[1 − (1 − γ )e−λ yi exp(x ′

i β)] , (18)

∂l

∂γ
= n

γ
−

n∑

i=1

(1 + δi )
e−λ yi exp(x ′

i β)

1 − (1 − γ )e−λ yi exp(x ′
i β)

(19)

∂l

∂β j
=

n∑

i=1

δi xi j −
n∑

i=1

λ yi xi j exp(x ′
iβ)

−
n∑

i=1

(1 + δi )
(1 − γ )λ yi xi j exp(x ′

iβ)e−λ yi exp(x ′
i β)

1 − (1 − γ )e−λ yi exp(x ′
i β)

, (20)

for j = 1, . . . , p.
The maximum likelihood estimates can be obtained as the simultaneous solutions

of the equations ∂l
∂ λ

= 0, ∂l
∂γ

= 0 and ∂l
∂β j

= 0. The solution of these three nonlinear
equations must be attained using a numerical method. Newton-Raphson algorithm is
one of the standard methods used to solve equations.

5 Simulation

We know that in linear regression models, the response variable is directly connected
with the considered covariates, the regression coefficients and the simulated random
errors. Thus, the response variable can be generated from the regression function,
once the regression coefficients and the error distribution are specified. However, in
the Cox model, which is formulated via the hazard function, the effect of the covariates
have to be translated from the hazards to the survival times, because the usual software
packages for estimation of Cox models require individual survival time data. A general
formula describing the relation between the hazard and the corresponding survival time
of the Cox model is derived. In EEG proportional hazard models, semi-parametric
proportional hazard model, and generalized linear model (GLM), specifically, the use
of gamma distribution with log link function and OLS on were employed in a series of
simulation experiments to assess the performance of the proposed method. For each
of experiments, 500 simulated data sets were generated; each experiment is different
from the others. We repeated experiments for different sample sizes. At first we began
by 25 observations, and then we did it for 50, 100, 150, 200 observations. Compared
these models by means of AIC and BIC for each time. We also obtained MSE of two
covariates in our models, presented in Table.2

All data were generated and all models were estimated using R version 2.15.3 soft-
ware. The packages that we used are: maxLik package and survival package. Maxlik
package was used to estimate the parameters in new models and in computing the value
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of log likelihood. Survival package was used to estimate parameters and compute log
likelihood for the semi-parametric proportional hazard models. By using these values
of log likelihood, we can obtain AIC and BIC and then choose the appropriate model
between other models.

Sample R code to implement the procedure used in this paper is provided in the
appendix C.

The intention is to demonstrate the proposed procedure using two covariates, one of
the covariate is discrete and the other one is continuous. The discrete covariate could
capture, for instance, ages of a patients at the time of the first heart transplant, and
the continuous covariate could capture, mismatch scores which measure the degree
of tissue incompatibility between the initial donor and recipient hearts with respect to
antigens.

The Stanford Heart Transplantation program was begun in October 1967, that 184
patients had received heart transplants, in that study researchers surveyed the relation
between survival time, age , and mismatch scores between the initial donor, recipient,
and age of each patient. As we said, simulation in the Cox model is different from
linear regression models. We know that the survival function of the Cox proportional
hazards model is given by:

Si (y) = exp
[ − H0(y) exp(x ′

iβ)
]

(21)

where

H0(y) =
∫ y

0
h0(u)du (22)

is the cumulative baseline hazard function. Thus, the distribution function of the Cox
model is

Fi (y) = 1 − exp
[ − H0(y) exp x ′

iβ
]

(23)

Let Z be a random variable with distribution function F , then U = F(Z) follows a
uniform distribution on the interval 0 to 1 [18]. Let Y be the survival time of the Cox
model, then

U = 1 − exp
[ − H0(Y )

]
exp(x ′

iβ) ∼ uni f orm[0, 1] (24)

then
Yi = H−1

0

[ − log(1 − U ) exp(−x ′
iβ)

]
(25)

where U is a random variable with U ∼ uni f orm[0, 1]. In previous sections we
obtained Si (y), for EEG proportional hazard model, then we can write:

Yi = − 1

λ
ln

exp ln(1−U )

exp exp(x ′
i β)

γ + ln(1−U )

exp(x ′
i β)

(26)

Then variables in data set generated by different distributions, X1 generated by a
Poisson distribution that we assumed with an arbitrary and fix parameter, and X2
generated by a weibull distribution with fix parameters and censored time generated
by an exponential distribution with constant rate.
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Table 1 Simulation results for EEG PH, OLS on ln(Y ), semi-parametric, GLM with log link, GLM with
log link linear and their AIC and BIC criteria

# Sims n AIC BIC

EEG PH
model

OLS ln(y) Semipara
PH

GLM
log link

Linear
model

EEG
PH
model

OLS
ln(y)

Sempara
PH

GLM-
log
link

Linear
model

500 25 87.56 86.61 97.43 92.21 114.43 92.44 90.27 99.87 95.87 118.089

500 50 168.50 173.13 248.56 180.47 228.86 176.15 178.86 252.38 186.21 234.59

500 100 332.32 342.67 606.93 358.22 458.73 342.74 350.48 612.14 366.04 466.55

500 150 493.99 509.84 1012.59 532.39 685.82 506.04 518.88 1018.62 541.43 694.85

500 200 658.72 677.95 1443.63 710.64 912.89 671.91 687.84 1450.23 720.53 922.79

Table 2 Simulation results for EEG accelarated failure, Weibul, Exponential PH, Log normal, Log logistic
Models and their AIC and BIC criteria

# Sims n AIC BIC

EEG
AFT

Wei
PH

EXP
PH

LNOR
PPH

LLOG
PPH

EEG
AFT

Wei
PH

EXP
PH

LNORL
PH

LLOG
PH

500 25 88.13 83.16 85.66 87.42 86.24 93.01 89.18 87.92 91.54 92.13

500 50 169.18 165.30 166.57 171.30 168.94 176.83 174.70 170.83 177.74 177.72

500 100 332.99 327.16 329.20 338.51 332.70 343.41 337.64 334.32 350.51 347.67

500 150 494.76 487.24 492.25 505.90 499.59 514.60 502.63 498.41 519.30 512.79

500 200 659.50 649.77 652.98 674.17 665.08 672.70 662.57 660.81 685.88 679.47

We know that AIC and BIC are measures of the relative quality of a statistical model
for a given set of data. They provide a means for model selection. AIC and BIC offer
a relative estimate of the information lost when a given model is used to represent the
process that actually generates the data.

We wish to select, from amount R candidate model, the model that minimizes the
information loss; that is, we select models that have minimum AIC and BIC.

The results of the simulation are presented in Table.1. For small observations, OLS
on is better than others, but this model has small differences with EEG proportional
hazard models in AIC and BIC. For more than 50 observations, AIC and BIC for EEG
proportional hazard model are less than others. It means that for data sets with large
numbers of observations, the EEG proportional hazard model is better than OLS, with
and without log transformation and also better than the semi-parametric proportional
hazard model. Another important thing that we should note is that , if increases the
different between AIC and BIC for EEG proportional hazard model and other models
increase. We can use the EEG proportional hazard model in large data sets, and we
can ensure that we will lose less information. Then we will have better prediction of
survival time.
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6 Conclusions

The high capacity of performing calculations by uses of computer allows the evaluation
of statistical methods via simulation studies. One of the most important statistical
models in medical research is the Cox proportional hazard model, which we can
compare these models to other statistical models by simulation studies.

In previous section we have developed the general relation between the hazard and
the survival time of the EEG proportional hazard model, and then we have generated
appropriate survival times for this distribution and then we fitted the Cox proportional
hazard model to these data with respect to the covariates.

In most of time the researchers do not pay attention to baseline hazard function,
and they use partial likelihood to estimate the effect of covariates. However, there
are a lot of practical situations, Where the use of more flexible distributions than the
exponential distribution is required. Another point that we should note that is, when
we use additional parameters we can calculate hazard rate whit more accuracy.

Base on simulations that we presented in previous section we found that EEG
proportional hazard model is better than alternative models on large number of survival
times with covariates and lost less information than other models. Therefore EEG
proportional hazard model provided more accurate predictions of mean, median, and
high cost cases and this model can replace to exponential hazard models and OLS
with and without log translation and semi-parametric proportional hazard.

7 Appendix A

Let hi (y) = λ
1−(1−γ )e− λ y ·exp(X τ

i ·β) and we know that Si (y) = exp
(− ∫ y

0 hi (s)ds
)
,

we can write:

Si (y) = exp

(
−

∫ y

0

λ

1 − (1 − γ )e−λ s exp(X ′
iβ)

ds

)

= exp

(
exp(X ′

iβ)

∫ y

0

−λ

1 − (1 − γ )e−λ s
ds

)

let:

I =
∫ y

0

−λ

1 − (1 − γ )e−λ s
ds

=
∫ −λ y

0

1

1 − (1 − γ )eu
du

=
∫ (1−γ )e− λ y

(1−γ )

dz

z(1 − z)

=
∫ (1−γ )e− λ y

(1−γ )

dz

z
+

∫ (1−γ )e− λ y

(1−γ )

dz

1 − z

= ln(1 − γ )e−λ y − ln(1 − γ ) − ln(1 − (1 − γ )e−λ y) + ln(γ )
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= ln
(1 − γ )e−λy

1 − (1 − γ )e−λ y
+ ln

γ

1 − γ

= ln
γ e−λ y

1 − (1 − γ )e−λ y

then:

Si (y) =
(

γ e−λ y

1 − (1 − γ )e−λ y

)exp(Xτ
i ·β)

(27)

8 Appendix B

Let hi (y) = λ exp(xτ
i β)

1−(1−γ )e− λ exp(xτ
i β)y

and we know that Si (y) = exp
(− ∫ y

0 hi (s)ds
)
, we

can write:

Si (y) = exp

(
−

∫ y

0

λ exp (xτ
i β)

1 − (1 − γ )e−λ exp (xτ
i β)s

ds

)
(28)

= exp

(
exp (xτ

i β)

∫ y

0

−λ

1 − (1 − γ )e−λ exp (xτ
i β)s

ds

)
(29)

let c = exp (xτ
i β) and let:

I =
∫ y

0

−λ c

1 − (1 − γ )e−λ cs
ds

=
∫ −λ cy

0

1

1 − (1 − γ )eu
du

=
∫ (1−γ )e− λ cy

(1−γ )

1

z(1 − z)
dz

= ln
γ e−λ cy

1 − (1 − γ )e−λ cy

Then:

Si (y) = γ e−λ exp (xτ
i β)y

1 − (1 − γ )e−λ exp (xτ
i β)y

(30)

9 Appendix C

R commands presented in this section:

#load packages
library(maxLik)
library(survival)
# loglikelihood for EEG proportional hazard model
loglik<-function(eta,Y,v,x1,x2){
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if((eta[3]>0)&(eta[4]>0)){
k=c()
for(i in 1:length(Y)){

k[i]=v[i]*log(eta[3]*exp(eta[1]*x1+eta[2]*x2))
-((v[i]+exp(eta[1]*x1+eta[2]*x2))*(log(1-(1-eta[4])
*exp(-eta[3]*Y[i]))))

+((exp(eta[1]*x1+eta[2]*x2))*(log(eta[4]
*exp(-eta[3]*Y[i]))))

}
l=sum(k)}
else{l=-Inf}
l}

simureg<-function(eta){
x1<-c(rpois(200,lambda=42))
x2<-c(rweibull(200,shape=2.075,scale=1.27))
u<-c(runif(200))
y=(1/-0.05)*log((exp((log(1-u))

/(exp(0.03*x1+0.167*x2))))/(0.5+0.5*exp((log(1-
u))/(exp(0.03*x1+0.167*x2)))))
ycen<- c(rexp(200,rate=0.0742))
T<-c(pmin(y,ycen))
v<-c(as.numeric(y<=ycen))

dataset<-data.frame(Y,v,x1,x2)
tem1<-maxLik(loglik,start=m,x2=x2,v=v,x1=x1,Y=Y)

a<-tem1$maximum
tem10<- 8 - 2*a

tem2<-glm( Y ˜x1 + x2 , data = dataset)
tem20<-tem2$aic

tem3<-glm( Y ˜x1 + x2 , data = dataset,
family = Gamma(link = ’’log’’))

tem30<-tem3$aic
tem4<-glm( log(Y) ˜x1 + x2 , data = dataset)

tem40<-tem4$aic
tem5 <- coxph(Surv(Y, v)˜ x1+ x2, data=dataset)

b<-tem5$loglik[2]
tem50<- 2-2*b
c(tem1=tem10,tem2=20,tem3=tem30,tem4=tem40,

tem5=tem50)
}
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x=matrix(nrow=500,ncol=5)
for(i in 1:500){
x[i,]=simureg(m)

print(i)
}
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