Skip to main content

Advertisement

Log in

A Comprehensive Review on Ceramic Coating on Steel and Centrifugal Thermite Process: Applications and Future Trends

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Steel substrates used in high-pressure applications or when subjected to extreme environments have the drawback of corroding and eroding. Extensile studies have been done related to ways to protect the surface with different types of coating, considering the downtime and extra costs associated with maintenance. Ceramic coating over steel surfaces has been extensively researched as it provides a practical solution for using steel in extreme working conditions with enhanced high-temperature oxidation resistance. Nowadays, numerous methods for applying ceramic coatings over steel substrates were explored and can be selected based on the characteristics of the substrate, the type of coating material, and the desirable characteristics of the coating. Recent research focuses on fine-tuning coating qualities for high-end applications, by adding additives, and optimizing process parameters to improve coating properties. In this review, the fabrication methods adopted for ceramic coatings over steel, as well as their microstructural characteristics, applications, and potential future trends, are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Matsumura M, Oka Y, Hiura H, Yano M (1991) The role of passivating film in preventing slurry erosion-corrosion of austenitic stainless steel. ISIJ Int 31:168–176. https://doi.org/10.2355/ISIJINTERNATIONAL.31.168

    Article  CAS  Google Scholar 

  2. Nisar N, Bhat JA (2021) Effect of coupled deterioration mechanisms on corrosion of steel reinforcement: the role of chloride ion ingress, freeze-thaw cycles and green corrosion inhibitor. J Bio Tribocorros 7:1–9. https://doi.org/10.1007/S40735-021-00564-X/METRICS

    Article  Google Scholar 

  3. Modi OP, Dasgupta R, Prasad BK et al (2000) Erosion of a high-carbon steel in coal and bottom-ash slurries. J Mater Eng Perform 9:522–529. https://doi.org/10.1361/105994900770345647/METRICS

    Article  CAS  Google Scholar 

  4. Cui L, Kang W, You H et al (2020) Experimental study on corrosion of J55 casing steel and N80 tubing steel in high pressure and high temperature Solution containing CO2 and NaCl. J Bio Tribo Corros. https://doi.org/10.1007/S40735-020-00449-5

    Article  Google Scholar 

  5. Brownlie F, Hodgkiess T, Pearson A, Galloway AM (2021) A study on the erosion-corrosion behaviour of engineering materials used in the geothermal industry. Wear 477:203821. https://doi.org/10.1016/J.WEAR.2021.203821

    Article  CAS  Google Scholar 

  6. Csaki loana, Manea CA, Trusca R, et al (2017) Microstructural Study of the Corrosion Effect on AlCrFeNiMn Multicomponent Alloy Tested in Geothermal Environment. Corros OnePetro

  7. Taji I, Hoseinpoor M, Moayed MH, Pahlavan S (2020) Pitting corrosion of 17–4PH stainless steel: impingement of a fluid Jet vs. erosion-corrosion in the presence of the solid particles. J Bio Tribocorros 6:1–7. https://doi.org/10.1007/S40735-020-00428-W/METRICS

    Article  Google Scholar 

  8. Handbook of Tribology: Materials, coatings, and surface treatments (Book) | OSTI.GOV. https://www.osti.gov/biblio/441774. Accessed 25 Jan 2023

  9. Sam M, N R, Saleh B, (2022) Influence of boride, oxide, and carbide ceramics as secondary reinforcement in T6–A333 functionally graded hybrid composites. Ceram Int 48:28528–28547. https://doi.org/10.1016/J.CERAMINT.2022.06.167

    Article  CAS  Google Scholar 

  10. Sam M, Radhika N (2022) Influence of carbide ceramic reinforcements in improving tribological properties of A333 graded hybrid composites. Defence Technology 18:1107–1123. https://doi.org/10.1016/J.DT.2021.06.005

    Article  Google Scholar 

  11. Ibrahim KM, Havaldar SS, Hiriyannaiah A, Keshavamurthy R (2022) Investigation of corrosion characteristics of plasma-sprayed composite coating on bearing steel through electrochemical and salt spray test. J Bio Tribocorros 8:1–11. https://doi.org/10.1007/S40735-022-00706-9/METRICS

    Article  Google Scholar 

  12. Farjami A, Yousefnia H, Seyedraoufi ZS, Shajari Y (2020) Investigation of Inhibitive Effects of 2-Mercaptobenzimidazole (2-MBI) and Polyethyleneimine (PEI) on Pitting Corrosion of Austenitic Stainless Steel. J Bio Tribocorros 6:1–19. https://doi.org/10.1007/S40735-020-00397-0/METRICS

    Article  Google Scholar 

  13. DeMasi-Marcin JT, Gupta DK (1994) Protective coatings in the gas turbine engine. Surf Coat Technol 68–69:1–9. https://doi.org/10.1016/0257-8972(94)90129-5

    Article  Google Scholar 

  14. Sreenivasulu V, Subramani P, Jayakumar V et al (2022) Development of protective coating for X8CrNiMoVNb16-13 alloy in high-temperature molten salt environment through high-velocity oxy-fuel sprayed NiCrMoNb and Cr3C2-25NiCr powder coating. Proc Inst Mech Eng Part E: J Process Mech Eng. https://doi.org/10.1177/09544089221115481/ASSET/IMAGES/LARGE/10.1177_09544089221115481-FIG8.JPEG

    Article  Google Scholar 

  15. Kumar S, Bhaumik S, Patnaik L et al (2022) Application of integrated BWM Fuzzy-MARCOS approach for coating material selection in tooling industries. Materials 15:9002. https://doi.org/10.3390/MA15249002/S1

    Article  CAS  Google Scholar 

  16. Dehghanghadikolaei A, Mohammadian B, Namdari N, Fotovvati B JOJ Material Sci Abrasive Machining Techniques for Biomedical Device Applications Doi: https://doi.org/10.19080/JOJMS.2018.04.555653

  17. Fathi R, Wei H, Saleh B et al (2022) Past and present of functionally graded coatings: Advancements and future challenges. Appl Mater Today 26:101373. https://doi.org/10.1016/J.APMT.2022.101373

    Article  Google Scholar 

  18. Saleh B, Ma A, Fathi R et al (2022) Wear characteristics of functionally graded composites synthesized from magnesium chips waste. Tribol Int 174:107692. https://doi.org/10.1016/J.TRIBOINT.2022.107692

    Article  CAS  Google Scholar 

  19. Shen D, Li M, Gu W et al (2009) A novel method of preparation of metal ceramic coatings. J Mater Process Technol 209:2676–2680. https://doi.org/10.1016/J.JMATPROTEC.2008.06.017

    Article  CAS  Google Scholar 

  20. Jojith R, Radhika N, Vigneshwar Raj R (2020) Characterization and wear behaviour of WC-Co coated copper under dry sliding conditions. Tribol Ind 42:327–336. https://doi.org/10.24874/TI.771.09.19.03

    Article  Google Scholar 

  21. Jojith R, Radhika N (2021) Reciprocal dry sliding wear of SiCp/Al–7Si-0.3 Mg functionally graded composites: Influence of T6 treatment and process parameters. Ceram Int 47:30459–30470. https://doi.org/10.1016/J.CERAMINT.2021.07.225

    Article  CAS  Google Scholar 

  22. Nachimuthu R, Sam M, Thangamayandi AR et al (2022) Tribological and mechanical characterization of as-cast and thermal treated Al-9Si/SiC graded composite. Proc Inst Mech Eng C J Mech Eng Sci 236:8092–8107. https://doi.org/10.1177/09544062221084189/ASSET/IMAGES/LARGE/10.1177_09544062221084189-FIG2.JPEG

    Article  CAS  Google Scholar 

  23. Gowtham S, Arunnellaiappan T, Rameshbabu N (2016) An investigation on pulsed DC plasma electrolytic oxidation of cp-Ti and its corrosion behaviour in simulated body fluid. Surf Coat Technol 301:63–73. https://doi.org/10.1016/J.SURFCOAT.2016.02.043

    Article  CAS  Google Scholar 

  24. Fattah-alhosseini A, Gashti SO, Molaie M (2018) Effects of disodium phosphate concentration (Na2HPO4·2H2O) on microstructure and corrosion resistance of plasma electrolytic oxidation (PEO) coatings on 2024 Al alloy. J Mater Eng Perform 27:825–834. https://doi.org/10.1007/S11665-018-3124-1/FIGURES/13

    Article  CAS  Google Scholar 

  25. Molaei M, Babaei K, Fattah-alhosseini A (2021) Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: a review. J Magnes Alloy 9:1164–1186. https://doi.org/10.1016/J.JMA.2020.11.016

    Article  CAS  Google Scholar 

  26. Yan Y, Han Y, Li D et al (2010) Effect of NaAlO2 concentrations on microstructure and corrosion resistance of Al2O3/ZrO2 coatings formed on zirconium by micro-arc oxidation. Appl Surf Sci 256:6359–6366. https://doi.org/10.1016/J.APSUSC.2010.04.017

    Article  CAS  Google Scholar 

  27. Wang Y, Jiang Z, Yao Z, Tang H (2010) Microstructure and corrosion resistance of ceramic coating on carbon steel prepared by plasma electrolytic oxidation. Surf Coat Technol 204:1685–1688. https://doi.org/10.1016/J.SURFCOAT.2009.10.023

    Article  CAS  Google Scholar 

  28. Zhao Z, Chen M, You C et al (2020) Effect of α-Al2O3 additive on the microstructure and properties of MAO coatings prepared on low carbon steel. J Market Res 9:3875–3884. https://doi.org/10.1016/J.JMRT.2020.02.014

    Article  CAS  Google Scholar 

  29. Yang W, Li Q, Liu C et al (2017) A comparative study of characterisation of plasma electrolytic oxidation coatings on carbon steel prepared from aluminate and silicate electrolytes. Surf Eng 34:54–62. https://doi.org/10.1080/02670844.2017.1320862

    Article  CAS  Google Scholar 

  30. Zhang G, Wu L, Tang A et al (2018) Electron beam surface alloying of carbon steel by aluminium followed by micro-arc oxidation. J Phys Conf Ser 1115:042065. https://doi.org/10.1088/1742-6596/1115/4/042065

    Article  CAS  Google Scholar 

  31. Yu J, Zhang Y, Jin X et al (2019) Fabrication and optical emission spectroscopy of enhanced corrosion-resistant CPEO films on Q235 low carbon steel. Surf Coat Technol 363:411–418. https://doi.org/10.1016/J.SURFCOAT.2019.02.073

    Article  CAS  Google Scholar 

  32. Malinovschi V, Marin A, Mihalache M, Iosub I (2016) Preparation and characterization of coatings on carbon steel obtained by PEO in silicate/carbonate electrolyte. Surf Coat Technol 296:96–103. https://doi.org/10.1016/J.SURFCOAT.2016.04.007

    Article  CAS  Google Scholar 

  33. Yang W, Peng Z, Liu B et al (2018) Influence of silicate concentration in electrolyte on the growth and performance of plasma electrolytic oxidation coatings prepared on low carbon steel. J Mater Eng Perform 27:2345–2353. https://doi.org/10.1007/S11665-018-3343-5/FIGURES/11

    Article  CAS  Google Scholar 

  34. Li Y, Chen M, Li W et al (2019) Preparation, characteristics and corrosion properties of α-Al2O3 coatings on 10B21 carbon steel by micro-arc oxidation. Surf Coat Technol 358:637–645. https://doi.org/10.1016/J.SURFCOAT.2018.11.094

    Article  CAS  Google Scholar 

  35. Huang M, Wang Y, Chu C, hui, et al (2017) Wear resistance of alumina-coated oil casing steel N80 via MAO with rare earth additive. Ceram Int 43:6397–6402. https://doi.org/10.1016/J.CERAMINT.2017.02.050

    Article  CAS  Google Scholar 

  36. He X, Song RG, Kong DJ (2019) Microstructure and corrosion behaviours of composite coatings on S355 offshore steel prepared by laser cladding combined with micro-arc oxidation. Appl Surf Sci 497:143703. https://doi.org/10.1016/J.APSUSC.2019.143703

    Article  CAS  Google Scholar 

  37. Zeng X, Zhang X, Pelenovich V et al (2023) High-temperature thin film lithium niobium oxide transducers for bolts. Ceram Int 49:7710–7716. https://doi.org/10.1016/J.CERAMINT.2022.10.262

    Article  CAS  Google Scholar 

  38. Sirota V, Zaitsev S, Prokhorenkov D et al (2022) NiB-CrC coatings prepared by magnetron sputtering using composite ceramic NiCr-BC target produced by detonation spray coating. Nanomaterials 12:3584. https://doi.org/10.3390/NANO12203584

    Article  CAS  Google Scholar 

  39. Lungu M, Cristea D, Baiasu F et al (2022) Surface, structural, and mechanical properties enhancement of Cr2O3 and SiO2 co-deposited coatings with W or Be. Nanomaterials 12:2870. https://doi.org/10.3390/NANO12162870

    Article  CAS  Google Scholar 

  40. Lyu L, Yang J, Zhou M et al (2023) Microstructure, mechanical properties and lead-bismuth eutectic corrosion behavior of (AlCrFeTiMo)NO and (AlCrFeTiNb)NO high entropy metal sublattice ceramic coatings. Vacuum 209:111774. https://doi.org/10.1016/J.VACUUM.2022.111774

    Article  CAS  Google Scholar 

  41. Manninen NK, Calderón VS, Almeida Alves CF et al (2015) Influence of hydrogen incorporation and coating thickness on the corrosion resistance of carbon based coatings deposited by magnetron sputtering. Surf Coat Technol 275:127–132. https://doi.org/10.1016/J.SURFCOAT.2015.05.029

    Article  CAS  Google Scholar 

  42. Olugbade TO, Abioye TE, Farayibi PK et al (2020) Electrochemical properties of MgZnCa-based thin film metallic glasses fabricated by magnetron sputtering deposition coated on a stainless steel substrate. Anal Lett 54:1588–1602. https://doi.org/10.1080/00032719.2020.1815757

    Article  CAS  Google Scholar 

  43. Hu DC, Kuo DH, Kao JY et al (2023) Fabrication of nitride films by co-sputtering of high-entropy alloys and tungsten. J Aust Ceram Soc 59:105–115. https://doi.org/10.1007/S41779-022-00816-0/METRICS

    Article  CAS  Google Scholar 

  44. de Castilho BCNM, de Sousa MF, Rodrigues AM et al (2022) Tailoring the hybrid magnetron sputtering process (HiPIMS and dcMS) to manufacture ceramic multilayers: powering conditions, target materials, and base layers. Nanomaterials 12:2465. https://doi.org/10.3390/nano12142465

    Article  CAS  Google Scholar 

  45. Schmid B, Koutná N, Hahn R et al (2023) Development of TaC-based transition metal carbide superlattices via compound target magnetron sputtering. Int J Refract Metals Hard Mater 113:106165. https://doi.org/10.1016/J.IJRMHM.2023.106165

    Article  CAS  Google Scholar 

  46. He CY, Zhao P, Gao XH et al (2022) High-entropy alloy nitride nanofilms via a co-sputtering method enable superior optical performance and thermal robustness. Mater Lett 329:133198. https://doi.org/10.1016/J.MATLET.2022.133198

    Article  CAS  Google Scholar 

  47. Chen T, Wu W, Li W, Liu D (2019) Laser cladding of nanoparticle TiC ceramic powder: effects of process parameters on the quality characteristics of the coatings and its prediction model. Opt Laser Technol 116:345–355. https://doi.org/10.1016/J.OPTLASTEC.2019.03.048

    Article  CAS  Google Scholar 

  48. Chen H, Lu Y, Sun Y et al (2020) Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding. Surf Coat Technol 395:125867. https://doi.org/10.1016/J.SURFCOAT.2020.125867

    Article  CAS  Google Scholar 

  49. Yu J, Ho H (2022) Microstructure and mechanical properties of (Ti, Nb)C ceramic-reinforced 316L stainless steel coating by laser cladding. Appl Sci 12:6684. https://doi.org/10.3390/APP12136684

    Article  CAS  Google Scholar 

  50. Chen T, Li W, Liu D et al (2021) Effects of heat treatment on microstructure and mechanical properties of TiC/TiB composite bioinert ceramic coatings in-situ synthesized by laser cladding on Ti6Al4V. Ceram Int 47:755–768. https://doi.org/10.1016/J.CERAMINT.2020.08.186

    Article  CAS  Google Scholar 

  51. Chen L, Zhao Y, Guan C, Yu T (2021) Effects of CeO2 addition on microstructure and properties of ceramics reinforced Fe-based coatings by laser cladding. Int J Adv Manuf Technol 115:2581–2593. https://doi.org/10.1007/S00170-021-07297-8/FIGURES/13

    Article  Google Scholar 

  52. Li Z, Wei M, Xiao K et al (2019) Microhardness and wear resistance of Al2O3-TiB2-TiC ceramic coatings on carbon steel fabricated by laser cladding. Ceram Int 45:115–121. https://doi.org/10.1016/J.CERAMINT.2018.09.140

    Article  Google Scholar 

  53. Zhu H, Ouyang M, Hu J et al (2021) Design and development of TiC-reinforced 410 martensitic stainless steel coatings fabricated by laser cladding. Ceram Int 47:12505–12513. https://doi.org/10.1016/J.CERAMINT.2021.01.108

    Article  CAS  Google Scholar 

  54. Zhao Y, Yu T, Guan C et al (2019) Microstructure and friction coefficient of ceramic (TiC, TiN and B4C) reinforced Ni-based coating by laser cladding. Ceram Int 45:20824–20836. https://doi.org/10.1016/J.CERAMINT.2019.07.070

    Article  CAS  Google Scholar 

  55. Li M, Han B, Wang Y et al (2016) Investigation on laser cladding high-hardness nano-ceramic coating assisted by ultrasonic vibration processing. Optik (Stuttg) 127:4596–4600. https://doi.org/10.1016/J.IJLEO.2016.01.194

    Article  CAS  Google Scholar 

  56. Li M, Han B, Wang Y, Pu K (2017) Effects of La2O3 on the microstructure and property of laser cladding Ni-based ceramic coating. Optik (Stuttg) 130:1032–1037. https://doi.org/10.1016/J.IJLEO.2016.11.111

    Article  CAS  Google Scholar 

  57. Zhang PX, Yan H, Sun YH (2021) Microstructure, microhardness and corrosion resistance of laser cladding Al2O3@Ni composite coating on 304 stainless steel. J Mater Sci 56:8209–8224. https://doi.org/10.1007/S10853-020-05741-W/FIGURES/14

    Article  CAS  Google Scholar 

  58. Wu Q, Li W, Zhong N et al (2013) Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate. Mater Des 49:10–18. https://doi.org/10.1016/J.MATDES.2013.01.067

    Article  CAS  Google Scholar 

  59. Zavareh MA, Sarhan AADM, Razak BBA, Basirun WJ (2014) Plasma thermal spray of ceramic oxide coating on carbon steel with enhanced wear and corrosion resistance for oil and gas applications. Ceram Int 40:14267–14277. https://doi.org/10.1016/J.CERAMINT.2014.06.017

    Article  CAS  Google Scholar 

  60. Kang JJ, Xu BS, Wang HD, Wang CB (2014) Influence of contact stress on rolling contact fatigue of composite ceramic coatings plasma sprayed on a steel roller. Tribol Int 73:47–56. https://doi.org/10.1016/J.TRIBOINT.2013.12.019

    Article  CAS  Google Scholar 

  61. Szkodo M, Bień A, Antoszkiewicz M (2016) Effect of plasma sprayed and laser re-melted Al2O3 coatings on hardness and wear properties of stainless steel. Ceram Int 42:11275–11284. https://doi.org/10.1016/J.CERAMINT.2016.04.044

    Article  CAS  Google Scholar 

  62. Hospach A, Mauer G, Vaßen R, Stöver D (2012) Characteristics of ceramic coatings made by thin film low pressure plasma spraying (LPPS-TF). J Therm Spray Technol 21:435–440. https://doi.org/10.1007/S11666-012-9748-Z/FIGURES/7

    Article  CAS  Google Scholar 

  63. Ghadami F, Ghadami S, Abdollah-Pour H (2013) Structural and oxidation behavior of atmospheric heat treated plasma sprayed WC-Co coatings. Vacuum 94:64–68. https://doi.org/10.1016/J.VACUUM.2013.01.019

    Article  CAS  Google Scholar 

  64. Praveen AS, Sarangan J, Suresh S, Siva Subramanian J (2015) Erosion wear behaviour of plasma sprayed NiCrSiB/Al2O3 composite coating. Int J Refract Metals Hard Mater 52:209–218. https://doi.org/10.1016/J.IJRMHM.2015.06.005

    Article  CAS  Google Scholar 

  65. Shao F, Yang K, Zhao H et al (2015) Effects of inorganic sealant and brief heat treatments on corrosion behavior of plasma sprayed Cr2O3–Al2O3 composite ceramic coatings. Surf Coat Technol 276:8–15. https://doi.org/10.1016/J.SURFCOAT.2015.06.045

    Article  CAS  Google Scholar 

  66. Thakare JG, Mulik RS, Mahapatra MM (2018) Effect of carbon nanotubes and aluminum oxide on the properties of a plasma sprayed thermal barrier coating. Ceram Int 44:438–451. https://doi.org/10.1016/J.CERAMINT.2017.09.196

    Article  CAS  Google Scholar 

  67. Li Q, Song P, He X et al (2019) Plastic metallic-barrier layer for crack propagation within plasma-sprayed Cu/ceramic coatings. Surf Coat Technol 360:259–268. https://doi.org/10.1016/J.SURFCOAT.2018.12.124

    Article  CAS  Google Scholar 

  68. Das P, Paul S, Bandyopadhyay PP (2018) Plasma sprayed diamond reinforced molybdenum coatings. J Alloys Compd 767:448–455. https://doi.org/10.1016/J.JALLCOM.2018.07.088

    Article  CAS  Google Scholar 

  69. Qin Y, Jiao Q, Zheng G et al (2018) Effects of spray distance on the microstructure and mechanical properties of reactive plasma sprayed TiCN coatings. Ceram Int 44:17230–17239. https://doi.org/10.1016/J.CERAMINT.2018.06.181

    Article  CAS  Google Scholar 

  70. Kalangi C, Bolleddu V, Allasi HL (2021) Tribological characteristics of carbon nanotubes-reinforced plasma-Sprayed Al2O3-TIO2 Ceramic coatings. Adv Mater Sci Eng. https://doi.org/10.1155/2021/8094640

    Article  Google Scholar 

  71. Ghara T, Bandyopadhyay PP (2022) Mechanical properties and residual Stress depth profiles of plasma sprayed ceramic coatings deposited under comparable particle temperature and velocity. J Therm Spray Technol 31:1889–1905. https://doi.org/10.1007/S11666-022-01412-1/FIGURES/9

    Article  CAS  Google Scholar 

  72. Yao SW, Li CJ, Tian JJ et al (2016) Conditions and mechanisms for the bonding of a molten ceramic droplet to a substrate after high-speed impact. Acta Mater 119:9–25. https://doi.org/10.1016/J.ACTAMAT.2016.07.057

    Article  CAS  Google Scholar 

  73. Li CJ, Luo XT, Yao SW et al (2022) The bonding formation during thermal spraying of ceramic coatings: a review. J Therm Spray Technol 31(4):780–817. https://doi.org/10.1007/S11666-022-01379-Z

    Article  CAS  Google Scholar 

  74. Akhtari Zavareh M, Sarhan AADM, Karimzadeh R, Singh RSA, l K, (2018) Analysis of corrosion protection behavior of Al2O3-TiO2 oxide ceramic coating on carbon steel pipes for petroleum industry. Ceram Int 44:5967–5975. https://doi.org/10.1016/J.CERAMINT.2017.12.175

    Article  CAS  Google Scholar 

  75. Govande AR, Chandak A, Sunil BR, Dumpala R (2022) Carbide-based thermal spray coatings: a review on performance characteristics and post-treatment. Int J Refract Metals Hard Mater 103:105772. https://doi.org/10.1016/J.IJRMHM.2021.105772

    Article  CAS  Google Scholar 

  76. Pathak A, Sivakumar G, Prusty D et al (2015) Thermal spray coatings for blast furnace tuyere application. J Therm Spray Technol 24:1429–1440. https://doi.org/10.1007/S11666-015-0350-Z/FIGURES/11

    Article  CAS  Google Scholar 

  77. Mubarok F, Armada S, Fagoaga I, Espallargas N (2013) Thermally sprayed SiC coatings for offshore wind turbine bearing applications. J Therm Spray Technol 22:1303–1309. https://doi.org/10.1007/S11666-013-9991-Y/FIGURES/8

    Article  CAS  Google Scholar 

  78. Van Nguyen T, Nguyen TA, Le Thu Q, Pham Thi H (2019) Influence of plasma spraying parameters on microstructure and corrosion resistance of Cr3C2-25NiCr cermet carbide coating. Anti-Corros Methods Mater 66:336–342. https://doi.org/10.1108/ACMM-09-2018-2003/FULL/XML

    Article  Google Scholar 

  79. Devarajan DK, Rangasamy B, Kirubaharan K, Mosas A (2023) State-of-the-art developments in advanced hard ceramic coatings using PVD techniques for high-temperature tribological applications. Ceramics 6:301–329. https://doi.org/10.3390/CERAMICS6010019

    Article  CAS  Google Scholar 

  80. Lim KS, Kim YS, Hong SH et al (2020) Influence of N2 Gas flow ratio and working pressure on amorphous Mo–Si–N coating during magnetron sputtering. Coatings 10:34. https://doi.org/10.3390/COATINGS10010034

    Article  CAS  Google Scholar 

  81. Abedi M, Abdollah-zadeh A, Vicenzo A et al (2019) A comparative study of the mechanical and tribological properties of PECVD single layer and compositionally graded TiSiCN coatings. Ceram Int 45:21200–21207. https://doi.org/10.1016/J.CERAMINT.2019.07.100

    Article  CAS  Google Scholar 

  82. Wang WZ, Feng SS, Li ZM et al (2020) Microstructure and properties of micro-arc oxidation ceramic films on AerMet100 steel. J Market Res 9:6014–6027. https://doi.org/10.1016/J.JMRT.2020.04.005

    Article  CAS  Google Scholar 

  83. Andrei VA, Coaca E, Ionita I et al (2017) Microstructures and micro composition developed by plasma electrolysis processing of 316L austenitic steels to obtain Al-containing surface layer. Mater Today Proc 4:6990–6999. https://doi.org/10.1016/J.MATPR.2017.07.029

    Article  Google Scholar 

  84. Wang Y, Jiang Z, Yao Z (2009) Microstructure, bonding strength and thermal shock resistance of ceramic coatings on steels prepared by plasma electrolytic oxidation. Appl Surf Sci 256:650–656. https://doi.org/10.1016/J.APSUSC.2009.08.036

    Article  CAS  Google Scholar 

  85. Microscopic and electrochemical characterization of alumina ceramic films developed onto 316l stainless steel by microarc oxidation in plasma electrolysis | Request PDF. https://www.researchgate.net/publication/323719852_Microscopic_and_electrochemical_characterization_of_alumina_ceramic_films_developed_onto_316l_stainless_steel_by_microarc_oxidation_in_plasma_electrolysis. Accessed 2 Feb 2023

  86. Pezzato L, Settimi AG, Fanchin D et al (2022) Effect of Cu addition on the corrosion and antifouling properties of PEO coated Zinc-Aluminized steel. Materials 15:7895. https://doi.org/10.3390/MA15227895

    Article  CAS  Google Scholar 

  87. Marple BR, Voyer J, Thibodeau M et al (2006) Hot corrosion of lanthanum zirconate and partially stabilized zirconia thermal barrier coatings. J Eng Gas Turbine Power 128:144–152. https://doi.org/10.1115/1.1924534

    Article  CAS  Google Scholar 

  88. Liu Z, Yang H, Jia Y, Shu X (2017) Heat protective properties of NiCrAlY/Al2O3 gradient ceramic coating fabricated by plasma spraying and slurry spraying. Surf Coat Technol 327:1–8. https://doi.org/10.1016/J.SURFCOAT.2017.07.075

    Article  CAS  Google Scholar 

  89. Han Y, guang, Yang Y, Wang L, et al (2018) Microstructure and properties of in-situ TiB2 matrix composite coatings prepared by plasma spraying. Appl Surf Sci 431:48–54. https://doi.org/10.1016/J.APSUSC.2017.04.107

    Article  CAS  Google Scholar 

  90. An Y, Li S, Hou G et al (2017) Mechanical and tribological properties of nano/micro composite alumina coatings fabricated by atmospheric plasma spraying. Ceram Int 6:5319–5328. https://doi.org/10.1016/J.CERAMINT.2017.01.072

    Article  Google Scholar 

  91. Hashemi SM, Parvin N, Valefi Z, Alishahi M (2019) Comparative study on tribological and corrosion protection properties of plasma sprayed Cr2O3-YSZ-SiC ceramic coatings. Ceram Int 45:21108–21119. https://doi.org/10.1016/J.CERAMINT.2019.07.087

    Article  CAS  Google Scholar 

  92. Zhang M, Wang XH, Qu KL, Liu SS (2019) Effect of rare earth oxide on microstructure and high temperature oxidation properties of laser cladding coatings on 5CrNiMo die steel substrate. Opt Laser Technol 119:105597. https://doi.org/10.1016/J.OPTLASTEC.2019.105597

    Article  Google Scholar 

  93. Qunshuang M, Yajiang L, Juan W, Kun L (2016) Microstructure evolution and growth control of ceramic particles in wide-band laser clad Ni60/WC composite coatings. Mater Des 92:897–905. https://doi.org/10.1016/J.MATDES.2015.12.121

    Article  Google Scholar 

  94. Liu J, Li Y, Tan N et al (2023) Microstructure and properties of the solid solution ceramic coating by high speed laser cladding. Opt Laser Technol 158:108792. https://doi.org/10.1016/J.OPTLASTEC.2022.108792

    Article  CAS  Google Scholar 

  95. Zhang Z, Yu T, Kovacevic R (2017) Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC. Appl Surf Sci 410:225–240. https://doi.org/10.1016/J.APSUSC.2017.03.137

    Article  CAS  Google Scholar 

  96. Kumar DD, Kaliaraj GS, Kirubaharan AMK et al (2019) Biocorrosion and biological properties of sputtered ceramic carbide coatings for biomedical applications. Surf Coat Technol 374:569–578. https://doi.org/10.1016/J.SURFCOAT.2019.06.022

    Article  CAS  Google Scholar 

  97. Miyazaki E, Odawara O (2001) Centrifugal-thermit process for production of composite pipes of various sizes. Process Centrifugation. https://doi.org/10.1007/978-1-4615-0687-4_28

    Article  Google Scholar 

  98. Ikornikov DM, Andreev DE, Sanin VN, Yukhvid VI (2011) In-situ formation of cast granules in thermit-type shsreactions. Int J Self Propag High Temp Synth 20:15–19. https://doi.org/10.3103/S1061386211010079/METRICS

    Article  CAS  Google Scholar 

  99. Li Y, Jiang L, Lu Q et al (2016) A study of ceramic-lined composite steel pipes prepared by shs centrifugal-thermite process. Sci Sintering 48(1):81–86

    Article  CAS  Google Scholar 

  100. Odawara O (2007) Long ceramic-lined pipes with high resistance against corrosion, abrasion and thermal shock. Mater Manuf Process 8:203–218. https://doi.org/10.1080/10426919308934825

    Article  Google Scholar 

  101. Mahmoodian R, Rahbari RG, Hamdi M (2011) Safety Issues Improvement in Ceramic Lined Composite Pipe Produced Using SHS Method. Proceeding of the 2nd International Conference on Industrial Engineering and Operations Management. https://doi.org/10.13140/2.1.3799.7769

  102. Ye K, Li F, Zhang J et al (2021) Effect of SiO2 on microstructure and mechanical properties of composite ceramic coatings prepared by centrifugal-SHS process. Ceram Int 47:12833–12842. https://doi.org/10.1016/J.CERAMINT.2021.01.144

    Article  CAS  Google Scholar 

  103. Yu GB, Tao FH, Wang SH et al (2014) Solidification behavior of lined Al2O3-ZrO2 multiphase ceramics in SHS composite pipes. Adv Mat Res 905:109–112. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.905.109

    Article  CAS  Google Scholar 

  104. Meng QS, Chen SP, Zhao JF et al (2007) Microstructure and mechanical properties of multilayer-lined composite pipes prepared by SHS centrifugal-thermite process. Mater Sci Eng, A 456:332–336. https://doi.org/10.1016/J.MSEA.2006.12.016

    Article  Google Scholar 

  105. Wang SX, Liang KM, Gu SR, Zhang XH (2001) Hercynite-free ceramic liner for composite steel pipe made using a self-propagating high-temperature synthesis gravitational-thermite process. J Am Ceram Soc 84:3043–3044. https://doi.org/10.1111/J.1151-2916.2001.TB01135.X

    Article  CAS  Google Scholar 

  106. Miyazaki E, Odawara O (2003) Centrifugal effects on combustion synthesis of (Ti–B–C) compound system. Mater Res Bull 38:1375–1386. https://doi.org/10.1016/S0025-5408(03)00149-1

    Article  CAS  Google Scholar 

  107. Wenjun X, Sheng Y, Shiju G, Hoyi L (2000) Stainless steel lined composite steel pipe prepared by centrifugal-SHS process. J Mater Sci 35:45–48. https://doi.org/10.1023/A:1004776112579/METRICS

    Article  Google Scholar 

  108. Xue X-F, Wang Z-H, Zhou Z-H et al (2014) Bonding characteristics of the Al2O3-metal composite coating fabricated onto carbon steel by combustion synthesis. Int J Minerals Metall Mater. https://doi.org/10.1007/s12613-014-0985-7

    Article  Google Scholar 

  109. Mahmoodian R, Hassan MA, Hamdi M et al (2014) In situ TiC–Fe–Al2O3–TiAl/Ti3Al composite coating processing using centrifugal assisted combustion synthesis. Compos B Eng 59:279–284. https://doi.org/10.1016/J.COMPOSITESB.2013.12.016

    Article  CAS  Google Scholar 

  110. Xuan XH, Su ZG, Wen Z et al (2016) High-performance ceramic-Lined composite pipes with ZrO2 additive prepared by centrifugal-SHS process. Mater Trans 57:573–581. https://doi.org/10.2320/MATERTRANS.MC201503

    Article  CAS  Google Scholar 

  111. An J, Zhao J, Su ZG et al (2015) Microstructure and mechanical properties of ZTA ceramic-lined composite pipe prepared by centrifugal-SHS. Arab J Sci Eng 40:2701–2709. https://doi.org/10.1007/S13369-015-1747-1/METRICS

    Article  CAS  Google Scholar 

  112. Le MT, Kim DJ, Lee JR et al (2008) Properties of ceramic layer formed by centrifugal thermit reaction with silicon sludge replacement. Mater Trans 49:1868–1873. https://doi.org/10.2320/MATERTRANS.MRA2008109

    Article  CAS  Google Scholar 

  113. Mahmoodian R, Hassan MA, Rahbari RG et al (2013) A novel fabrication method for TiC-Al2O3-Fe functional material under centrifugal acceleration. Compos B Eng 50:187–192. https://doi.org/10.1016/j.compositesb.2013.02.016

    Article  CAS  Google Scholar 

  114. Huang X, Zhang L, Zhao Z et al (2011) TiB2-(Ti, W)C eutectic composite ceramics prepared by combustion synthesis under high gravity. Adv Mat Res 177:386–389. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.177.386

    Article  CAS  Google Scholar 

  115. Xu B, Zhang L, Wang C, Duan R (2010) Investigation on Al2O3/YSZ eutectic ceramics lining in the pipes prepared by combustion synthesis. Adv Mat Res 105–106:12–15. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.105-106.12

    Article  Google Scholar 

  116. Licheri R, Orrù R, Cao G et al (2003) Self-propagating combustion synthesis and plasma spraying deposition of TiC–Fe powders. Ceram Int 29:519–526. https://doi.org/10.1016/S0272-8842(02)00196-7

    Article  CAS  Google Scholar 

  117. Singsarothai S, Khanghamano M, Rachphet V, Niyomwas S (2016) Influence of CaO2 additives on the properties of Fe–WB-based composite lining deposited by centrifugal SHS on the inner surface of steel pipe. Int J Self Propag High Temp Synth 25:181–185. https://doi.org/10.3103/S1061386216030110/METRICS

    Article  CAS  Google Scholar 

  118. An J, Yan X, Lv X, Wen Z (2017) Microstructure, mechanical properties and corrosion of ceramic-lined composite steel pipe prepared by centrifugal-SHS process. Sci Sinter 49:359–372. https://doi.org/10.2298/SOS1704359A

    Article  CAS  Google Scholar 

  119. Andreev DE, Sanin VN, Sachkova N, v., Yukhvid VI, (2011) Cermet-lined tubes from industrial wastes by centrifugal SHS. Int J Self Propag High Temp Synth 20:27–32. https://doi.org/10.3103/S106138621101002X/METRICS

    Article  CAS  Google Scholar 

  120. Lee J, Le MT, Chung HS (2007) Physical properties of ceramic layer prepared by SHS in centrifugal field. Mater Trans 48:2960–2963. https://doi.org/10.2320/MATERTRANS.MRA2007617

    Article  CAS  Google Scholar 

  121. Huang X, Zhang L, Zhao Z, Yin C (2011) Preparation and properties of solidified TiC-TiB2 with hypoeutectic, eutectic and hypereutectic microstructures. Adv Mat Res 233–235:999–1004. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.233-235.999

    Article  Google Scholar 

  122. Ma T, Zhao Z, Zhang L et al (2011) High-hardness solidified TiB2-TiC composites prepared by combustion synthesis under high gravity. Adv Mat Res 233–235:1734–1739. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.233-235.1734

    Article  Google Scholar 

  123. Wang YF, Yang ZG (2007) Finite element analysis of residual thermal stress in ceramic-lined composite pipe prepared by centrifugal-SHS. Mater Sci Eng, A 460–461:130–134. https://doi.org/10.1016/J.MSEA.2007.01.017

    Article  Google Scholar 

  124. Singsarothai S, Rachphet V, Niyomwas S (2016) Steel pipe-lined Fe-W2B-based composite coating by centrifugal-Self-propagating high-temperature synthesis process. J Ceram Soc Jpn 124:1123–1126. https://doi.org/10.2109/JCERSJ2.16122

    Article  CAS  Google Scholar 

  125. Xue D, Mihaylova Y (2005) Current and future applications of surface engineering. Eng J 59:287–292

    Google Scholar 

  126. Fagoaga I, Viviente JL, Gavin P et al (1998) Multilayer coatings by continuous detonation system spray technique. Thin Solid Films 317:259–265. https://doi.org/10.1016/S0040-6090(97)00524-5

    Article  CAS  Google Scholar 

  127. Tailor S, Mohanty RM, Sharma VK, Soni PR (2014) Fabrication and wear behavior of nanostructured plasma-sprayed 6061Al-SiCp composite coating. J Therm Spray Technol 23:1081–1088. https://doi.org/10.1007/S11666-014-0065-6/FIGURES/9

    Article  CAS  Google Scholar 

  128. Bhatia R, Sidhu HS, Sidhu BS (2015) High temperature behavior of Cr3C2-NiCr coatings in the actual coal-fired boiler environment. Metall Mater Trans E 2:70–86. https://doi.org/10.1007/S40553-015-0045-X

    Article  CAS  Google Scholar 

  129. Swain B, Patel S, Mallick P, et al Solid particle erosion wear of plasma sprayed NiTi alloy used for aerospace applications

  130. Jasempoor F, Elmkhah H, Imantalab O, Fattah-alhosseini A (2022) Improving the mechanical, tribological, and electrochemical behavior of AISI 304 stainless steel by applying CrN single layer and Cr/CrN multilayer coatings. Wear. https://doi.org/10.1016/J.WEAR.2022.204425

    Article  Google Scholar 

  131. (PDF) Wear Behavior of plasma sprayed 8YSZ Thermal Barrier Coating on Stainless steel Substrate. https://www.researchgate.net/publication/306405752_Wear_Behavior_of_plasma_sprayed_8YSZ_Thermal_Barrier_Coating_on_Stainless_steel_Substrate. Accessed 2 Feb 2023

  132. Zavareh MA, Sarhan AADM, Zavareh PA et al (2016) Development and protection evaluation of two new, advanced ceramic composite thermal spray coatings, Al2O3-40TiO2 and Cr3C2-20NiCr on carbon steel petroleum oil piping. Ceram Int 42:5203–5210. https://doi.org/10.1016/J.CERAMINT.2015.12.044

    Article  CAS  Google Scholar 

  133. Kawahara Y (2016) An overview on corrosion-resistant coating technologies in biomass/waste-to-energy plants in recent decades. Coatings 6:34. https://doi.org/10.3390/COATINGS6030034

    Article  Google Scholar 

  134. Bolelli G, Berger LM, Bonetti M, Lusvarghi L (2014) Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W, Cr)2C–Ni and WC–CoCr hardmetal coatings. Wear 309:96–111. https://doi.org/10.1016/J.WEAR.2013.11.001

    Article  CAS  Google Scholar 

  135. Hoyt KO, Gannon PE, White P et al (2012) Oxidation behavior of (Co, Mn)3O4 coatings on preoxidized stainless steel for solid oxide fuel cell interconnects. Int J Hydrogen Energy 37:518–529. https://doi.org/10.1016/J.IJHYDENE.2011.09.028

    Article  CAS  Google Scholar 

  136. Salman S, Köse R, Urtekin L, Findik F (2006) An investigation of different ceramic coating thermal properties. Mater Des 27:585–590. https://doi.org/10.1016/J.MATDES.2004.12.010

    Article  CAS  Google Scholar 

  137. Olugbade T, Lu J (2019) Enhanced corrosion properties of nanostructured 316 stainless steel in 0.6 M NaCl solution. J Bio Tribocorros 5:1–11. https://doi.org/10.1007/S40735-019-0235-7/METRICS

    Article  Google Scholar 

  138. Song RG (2003) Hydrogen permeation resistance of plasma-sprayed Al2O3 and Al2O3-13wt.% TiO2 ceramic coatings on austenitic stainless steel. Surf Coat Technol 168:191–194. https://doi.org/10.1016/S0257-8972(03)00002-1

    Article  CAS  Google Scholar 

  139. Zhou J, Sun K, Huang S et al (2020) Fabrication and property evaluation of the Al2O3-TiO2 composite coatings prepared by plasma spray. Coatings 10:1–15. https://doi.org/10.3390/COATINGS10111122

    Article  Google Scholar 

  140. Andrei VA, Radulescu C, Malinovschi V et al (2020) Aluminum oxide ceramic coatings on 316l austenitic steel obtained by plasma electrolysis oxidation using a pulsed unipolar power supply. Coatings 10:318. https://doi.org/10.3390/COATINGS10040318

    Article  CAS  Google Scholar 

  141. Kumar D, Murtaza Q, Walia RS, Singh P (2022) Comparative investigation on thermally sprayed Al2O3, Al2O3–13%(TiO2) and Al2O3–40%(TiO2) composite coatings from room to 400 °C temperature. Surf Topogr 10:015043. https://doi.org/10.1088/2051-672X/AC5A75

    Article  Google Scholar 

  142. Tuo Y, Yang Z, Guo Z et al (2023) Pore structure optimization of MoS2/Al2O3 self-lubricating ceramic coating for improving corrosion resistance. Vacuum 207:111687. https://doi.org/10.1016/J.VACUUM.2022.111687

    Article  CAS  Google Scholar 

  143. Brunello G, Elsayed H, Biasetto L (2019) Bioactive glass and silicate-based ceramic coatings on metallic implants: open challenge or outdated topic? Materials. https://doi.org/10.3390/MA12182929

    Article  Google Scholar 

  144. Li Q, Xie J, Hu J et al (2022) Influence of Ca/Al ratio on physical and dielectric properties of Al2O3/CaO-B2O3-SiO2 glass-ceramics composite coatings prepared by high enthalpy atmospheric plasma spraying. J Eur Ceram Soc 42:1501–1509. https://doi.org/10.1016/J.JEURCERAMSOC.2021.11.021

    Article  CAS  Google Scholar 

  145. Shinde S, v., Sampath S, (2022) Factors governing segmentation crack characteristics in air plasma sprayed ceramics. J Eur Ceram Soc 42:1077–1087. https://doi.org/10.1016/J.JEURCERAMSOC.2021.10.064

    Article  CAS  Google Scholar 

  146. Singh J, Kumar S, Mohapatra SK (2019) Tribological performance of Yttrium (III) and Zirconium (IV) ceramics reinforced WC–10Co4Cr cermet powder HVOF thermally sprayed on X2CrNiMo-17-12-2 steel. Ceram Int 45:23126–23142. https://doi.org/10.1016/J.CERAMINT.2019.08.007

    Article  Google Scholar 

  147. Kosarev VF, Klinkov S, v., Melamed BM, et al (2018) Cold spraying for power electronics: Deposition of thick topologically patterned copper layers on ceramics. AIP Conf Proc 2027:030047. https://doi.org/10.1063/1.5065141

    Article  CAS  Google Scholar 

  148. Qin J, Huang Q, Wang X et al (2021) Interfacial metal/ceramic bonding mechanism for metallization of ceramics via cold spraying. J Mater Process Technol 288:116845. https://doi.org/10.1016/J.JMATPROTEC.2020.116845

    Article  CAS  Google Scholar 

  149. Li S, Yu C, Deng C et al (2022) Optimized mechanical and tribological properties of thermally sprayed ceramic coatings by constructing crystalline–amorphous heterojunctions. Appl Surf Sci 604:154552. https://doi.org/10.1016/J.APSUSC.2022.154552

    Article  CAS  Google Scholar 

  150. Olugbade TO, Omiyale BO, Ojo OT (2021) Corrosion, corrosion fatigue, and protection of magnesium alloys: mechanisms, measurements, and mitigation. J Mater Eng Perform 31(3):1707–1727. https://doi.org/10.1007/S11665-021-06355-2

    Article  Google Scholar 

  151. Olugbade T, Liu C, Lu J (2019) Enhanced Passivation Layer by Cr Diffusion of 301 Stainless Steel Facilitated by SMAT. Adv Eng Mater 21:1900125. https://doi.org/10.1002/ADEM.201900125

    Article  Google Scholar 

  152. Akahoshi E, Matsunaga M, Kimura K et al (2021) Deuterium permeation through multi-layer ceramic coatings under liquid lithium-lead exposure condition. Corros Sci 189:109583. https://doi.org/10.1016/J.CORSCI.2021.109583

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N. Radhika: Conceptualization, Methodology, Supervision, Reviewing, and Editing. U.V. Akhil: Data curation, Writing—Original draft preparation, Visualization, and Investigation. L. Rajeshkumar: Reviewing and Editing. Giribaskar Sivaswamy: Reviewing and Editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Radhika.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhil, U.V., Radhika, N., Rajeshkumar, L. et al. A Comprehensive Review on Ceramic Coating on Steel and Centrifugal Thermite Process: Applications and Future Trends. J Bio Tribo Corros 9, 41 (2023). https://doi.org/10.1007/s40735-023-00765-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-023-00765-6

Keywords

Navigation