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Abstract
Microbiologically influenced corrosion, also known as microbial or biological corrosion, is produced by particular bacteria 
adhering to metal in water. It is widely acknowledged to be the direct cause of catastrophic corrosion failures, with associated 
damage costs accounting to many billions of US$ annually. Certain activities of microbial organisms such as their adherence 
capabilities are known to lead to the acceleration in corrosion rates of metals. Bacterial adherence is the beginning of the 
process of colonisation of a surface, known as biofilm development that involves physicochemical and molecular interactions. 
This process of bacterial adhesion is influenced by a myriad of parameters which are broadly categorised as environment, 
bacterial, and material characteristics. The following article reviews the mechanisms of bacterial adhesion to biomaterial 
surfaces, the factors affecting this adhesion, and the techniques used in estimating microbially influenced corrosion.
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1 Introduction

Microbiologically Influenced Corrosion has a lengthy his-
tory, with Gaines observing the influence of microorgan-
isms on corrosion initially in 1910 [1]. Microbiologically 
influenced corrosion (MIC) is known as microbial or bio-
logical corrosion. Microbes change the electrochemical 
reaction at the biofilm/metal interface and either inhibit or 
accelerate the process of metal corrosion [2]. This concern-
ing process usually involves the stimulation of microor-
ganisms to cathodic or anodic processes or the creation of 
differential oxygen concentration cells in a confined elec-
trolytic environment by microorganisms. The development 
of biofilms on metal surfaces and the activities of bacteria 
beneath the film that induce metal corrosion are both linked 
to MIC [3]. Microbial corrosion is caused by a mixture of 
bacteria, medium, and metal [4]. Metal corrosion is caused 

by a variety of microorganisms. Out of those, the bacteria 
which are responsible are classified as aerobic or anaerobic. 
Slime-forming bacteria, sulphate-reducing bacteria (SRB), 
iron-oxidising bacteria (IOB), and iron-reducing bacteria 
(IRB) are some of the subgroups that these bacteria may be 
split into [5].

This localised type of assault by microorganisms typically 
include the following: pitting, increased erosion corrosion, 
dealloying, stress corrosion cracking, enhanced galvanic 
corrosion, and hydrogen embrittlement [6]. Because the 
extracellular polymeric substances (EPS) formed by bacteria 
favour cell attachment to the materials, the electrochemical 
reactions at the metal–biofilm interface are expected to be 
influenced significantly by the existing macromolecules in 
the biofilm, such as carbohydrates and proteins [7]. Extra-
cellular polymer substances (EPS) generated by bacteria 
have been linked to the MIC process in various studies. The 
presence of organic groups in EPS, such as polysaccharides, 
proteins, and fatty acids, can influence wettability, surface 
charge, and free energy [8].

All materials that come into touch with the natural envi-
ronment, such as wet air, soil, and water, are exposed to MIC 
in varying degrees [9]. Medical implants, the oil and gas 
sector, maritime habitats, and water systems are all examples 
of places where MIC is a major concern [10]. Many sectors 
are affected by biofilm formation of some kind or another, 
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which can lead to high cleaning and maintenance expenses. 
Maritime, dairy, food, water systems, oil, paper, cooling sys-
tems, power transmissions, opticians, dentists, and hospitals 
are examples of such sectors [11]. Perhaps the environment 
where people are exposed to biofilms most frequently is the 
domestic environment [12].

Corrosion costs were predicted to reach more than 3.4 
percent of global GDP or a staggering amount of $2.9 
trillion in 2018. MIC is responsible for up to 20% of all 
corrosion in aquatic systems, according to a conservative 
estimate. [13, 14]. This estimate represents the significant 
ambiguity around the precise contribution of MIC, which is 
primarily due to the difficulties in diagnosing MIC. The pri-
mary drawbacks of current corrosion prevention methods are 
that they are constrained by environmental conditions, they 
are expensive, are inapplicable in the field, and are occasion-
ally ineffective [15]. MIC has traditionally been researched 
from a dual standpoint: (1) A biological one where the com-
plex nature of bacteria consortia and biofilm development is 
taken into account and (2) from a materials corrosion stand-
point where the evidence and mitigation of metal pitting 
under controlled circumstances are considered [16].

Previous reviews have classified MIC into four categories 
based on organisms.

 (i) Nutrient absorption by microbial growths adhering 
to the metal surface.

 (ii) Liberation of corrosive metabolites or end products 
of fermentative growth.

 (iii) Production of sulphuric acid.
 (iv) Obligate anaerobe interference in the cathodic pro-

cess under oxygen-free conditions [17].

2  Bacterial Adhesion

Bacterial adhesion, a  dynamic process, is one  that 
occurs between bacterial cells and material surfaces or 
any substance that has been adsorbed on a surface. For the 
very first attachment of bacteria, the accessibility of binding 
sites on the cell surface or perhaps the material surface that 
bacteria may touch is critical [18]. Traub et al. suggested 
the division of bacterial adhesion interactions, into three 
categories: (1) generic physical–chemical interactions, (2) 
specialised interactions, and (3) surface mechanosensing.

Adhesion is thought to occur in non-specific physi-
cal–chemical interactions when appendages and proteins 
connect with particular chemical fractions on a surface 
through non-covalent interactions. Specifically, they utilise 
the usually attractive van der Waals forces, the repulsive 
electrostatic charges, or acid–base interactions which show 
dual behaviour. The composition, pressure, pH, oxygen, 
nutrient availability, and surface conditions of the medium 

all impact their characteristics. Adhesion processes in spe-
cific interactions entail unique appendages that can bind 
to chemical species on specific surfaces. Coaggregation 
connections are very specialised, with adhesins in the part-
ner cell recognising receptors in a cell type. An example 
of this could be—when one particular bacterium’s cell 
surface adhesion identifies a polysaccharide comprising 
mannose, glucose, and galactose on the surface of another. 
The interaction in surface mechanosensing entails a bac-
terium’s active sensing when it comes into touch with a 
surface. Adhesion is mediated by sensory organs such as 
flagella and tension in pili retraction. One of the hallmarks 
of adhesions is the participation of signal transmission and 
response from the organism [19].

Van Loosdrecht et al. suggest that bacterial adhesion 
occur in four phases, based on certain physicochemical 
characteristics of microorganisms: (1) transport, i.e. the 
migration of microorganisms in an environment towards 
the surface of the substrate by either (a) diffusion in static 
settings, owing to the effects of Brownian motion; (b) 
convection displacement currents with reference to fluid 
movement, which essentially provide quicker transport; 
or (c) active movement, which is the quickest, based on 
a concentration gradient for specific substances between 
the two surfaces, (2) reversible initial bonding, with the 
ability to remove bacteria attached by their own mobil-
ity or mild agitation, (3) permanent irreversible bonding 
with the ability to remove bacteria attaching only under 
the action of high shaking forces, and (4) colonisation, in 
which cells get permanently attached to the substrate and 
begin to grow and proliferate rapidly amongst themselves 
[20].

Bacterial adhesion to a material surface is a two-phase 
process with an immediate, initial, and reversible physical 
phase (phase one) and an irreversible molecular and cel-
lular phase which is time dependent (phase two, initially 
suggested by Marshall and colleagues) [21]. The influence 
of physical forces such as gravitational forces, Brownian 
motion, Van der Waals attraction forces, hydrophobic inter-
actions, and the effect of surface electrostatic charge on the 
initial attraction of the cells to the surface are all part of 
phase one of bacterial adhesion [22].

In the beginning, bacterial cells reversibly adhere to the 
surface at their poles, a process known as reversible attach-
ment. The reversible attachment involves cell appendages, 
such as pili, flagella, and fimbriae. The bacteria can now 
either commit to the biofilm lifestyle or depart the surface 
and return to a planktonic existence. This reversible attach-
ment is then followed by irreversible attachment. Surface 
proteins and EPS aid attachment between the cell and the 
surface at this stage. This shift towards irreversible attach-
ment is also implicitly promoted by an internal second mes-
senger and a number of proteins [24].
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Physical and chemical interactions govern whether micro-
organisms adhere to a surface, which can be attractive or 
repellent based on the intricate interplay of the chemistries 
of the bacterial and substratum surfaces, as well as the aque-
ous phase. Figure 1 depicts the interactions between bacte-
rial cell and substratum. Several studies have attempted to 
investigate if bacterial attachment to surfaces is regulated 
by the same physicochemical interactions that govern the 
deposition of non-living colloidal particles in order to better 
understand the factors that influence adhesion [25].

The Derjaguin–Landau–Verwey–Overbeek (DLVO) con-
cept and the thermodynamic method are two physicochemi-
cal approaches to bacterial adhesion [26].

2.1  DLVO Model Approach (Derjaguin−Landau−
Verwey−Overbeek)

Bacteria are the most common species in biofilms and range 
in size from 0.5 to 2 m, which is close to the size of colloidal 
particles. As a result, bacteria may be regarded as colloidal 
particles, and their adherence can be examined using colloid 
chemistry principles as physicochemical phenomena. Cell 
surfaces, like most natural surfaces, are typically negatively 
charged and have varied degrees of hydrophobicity. Bacteria 
are certainly not inert colloidal particles. Their cell surfaces 
and properties can vary due to environmental shifts, in ways 
that are not normally considered in colloid chemistry tech-
niques [26].

What we have to understand is that DLVO makes quite a 
series of assumptions.

1. The surfaces are smooth and solid at the molecular level.
2. They are inert, unless an electrolyte with bulk liquid 

characteristics acts as an intervening solvent (water).
3. The van der Waals and electrical double-layer forces 

are studied separately, and they both offer a source of 
counterions that leave charged surfaces behind.

4. The double layer’s boundary conditions are either con-
stant charge or constant potential [27].

The DLVO hypothesis defines bacterial adherence to 
any surface as a direct consequence of the Lifshitz-Van der 
Waals interactions, electrostatic double-layer interactions, 
and acid–base binding (in its extended version). DLVO anal-
yses imply that the interfacial Gibbs free energy of adhesion 
(∆Gadh) is a function of the separation distance between a 
bacterium and the substratum surface [28].

The interaction energy between two interacting surfaces 
can be separated as follows:

 in which, GEL, GLW, and GTOT denote the electrostatic 
interaction energy, Lifshitz van der Waals energy, and total 
energy, respectively. The degradation of these interaction 
energies with distance, i.e. decay with distance (d) is deter-
mined by the geometry of the interacting bodies [28].

2.2  Thermodynamic Approach

The thermodynamic technique is the easiest way to antici-
pate whether a cell will cling to a surface or not. The sur-
face tension describes the thermodynamics of bacterial cells 
with liquid or solid surfaces as illustrated in Fig. 2. When 
a cell attaches to a surface, the system energy transition is 
from AγBL + AγSL to AγBL because the two interfaces 
liquid–solid and bacteria–liquid are replaced by one bacte-
ria–solid [29]. The thermodynamic method is based on the 
interacting surfaces’ surface free energy and does not explic-
itly account for electrostatic interactions. The surface free 
energies of the interacting surfaces ∆Gadh can be obtained 
from a balance of interracial Gibbs energies:

 where sm, sl, and ml are the solid–microorganism, solid–liq-
uid, and microorganism–liquid interfacial free energies, 
respectively [30].

3  Factors Affecting Bacterial Adhesion

As illustrated in Fig. 3, bacterial characteristics, material 
surface qualities, and climatic variables all influence the 
adhesion process [30].

(1)GTOT(d) = GLW(d) + GEL(d),

(2)ΔG
adh

= �sm−�sl−�ml,

Fig. 1  Various interactions between bacterial cell and substratum 
depending on distance [23]
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3.1  Environmental Factors

Exposure time, bacterial concentration, chemical treatment, 
and the presence of antibiotics are all factors in the overall 
environment. By altering physical interactions or changing 
the surface features of bacteria or materials, all of these vari-
ables have the ability to alter bacterial adherence [31].

3.1.1  pH and Temperature

The electrostatic attraction between materials and eco-
organisms is hypothesised to be influenced by pH and tem-
perature variations. The effectiveness of chlorination is 
influenced by pH and temperature. Bacteria are resistant to 
internal and external pH fluctuations, and they maintain a 
balance of protein activity and synthesis in biological sys-
tems [32]. When we gradually raise the acidity of the cells 
rather than adding HCL quickly to induce an abrupt drop in 
pH, the cells have the best chance of surviving. This essen-
tially demonstrates that bacteria have very specialised pro-
cesses that allow them to adapt to minor pH variations in 

the environment [33]. The optimum PH range (6.5–7.2) for 
bacterial development varies greatly depending on the kind 
of bacteria. At high temperatures (> 35 °C), a bacteria seems 
to have only one flagellum, but when the temperature drops, 
the number of flagella rises, increasing the surface area of 
the bacteria and the chance of bacterial adherence in the 
first attachment stage [34]. Temperature variations are used 
to test differences in bacterial strains’ adhesion behaviour. 
Lower temperatures cause polysaccharide characteristics to 
be more consistent, which promotes biofilm development. 
(b) Lower temperatures reduce the amount of cell surface 
hydrophobicity, resulting in less biofilm development [35].

3.1.2  Hydrodynamics

Bacteria are exposed to flow conditions in natural and man-
made habitats. Thus, the relevance of hydrodynamics in their 
initial adhesion. Whilst the impact of the surrounding liquid 
is restricted in a static fluid situation to hydrostatic pressure, 
bacteria in a flowing fluid face hydrodynamic forces that 
alter their motion (translational and rotational velocity) or 
deformation (extensional strain and shear strain). As a result, 
every bacterial attachment investigation done under flow cir-
cumstances must take into account the hydrodynamic envi-
ronment [36]. The surface adherence of bacteria is directly 
affected by water velocity, compressive strength, and laminar 
flow. Hydrodynamics has a significant impact on chemical 
kinetics processes and produces pressures that directly influ-
ence biofilm composition, stiffness, and separation [37].

3.2  Bacterial Characteristics

Bacteria promote adhesion through a myriad of character-
istics, such as production of extracellular polysaccharides 
(EPS), metabolic activity, charge, cell viability, cell wall 
stiffness, and hydrophobicity, adhesin-mediated recep-
tor–ligand binding (adhesins are protein complexes that rec-
ognise and bind to protein receptors on the host cell surface) 
and appendages like pili and curli. The attaching of cells to 
a substrate is referred to as adhesion, whereas the interac-
tion between cells is referred to as cohesion. Surface charge, 
hydrophobicity, surface free energy, roughness, topography, 
specific surface geometry (macro, micro, and nano), and 
chemistry are all physical–chemical aspects that influence 
biofilm adherence and early development in addition to the 
properties of bacteria [38].

3.2.1  Surface Charge

Surface charge and hydrophobicity determine bacterial char-
acteristics. The cellular surface charge is the total net charge 
carried by a bacterial cell. Because of a plethora of carboxyl 
and phosphate groups in their cell walls, most bacterial cells 

Fig. 2  Thermodynamic approach of bacterial cell adhesion

Fig. 3  Factors affecting bacterial adhesion



Journal of Bio- and Tribo-Corrosion (2022) 8:76 

1 3

Page 5 of 13 76

are negatively charged [39]. Microorganisms, much like the 
bulk of substrates they can possibly colonise, have a nega-
tive charge and varying degrees of hydrophobicity on their 
surfaces [40]. Since bacteria has a negative charge, it makes 
them appealing to positively charged surfaces. Negatively 
charged bacteria repel negatively charged surfaces by elec-
trostatic contact.

3.2.2  Hydrophobicity

Bacterial hydrophobicity varies by species and is regulated 
by factors, such as growth media, bacterium age, and bac-
terial surface architecture. Bacterial hydrophobicity refers 
to a bacterial cell’s preference for interacting with cells of 
comparable hydrophobicity rather than water, and in the case 
of bacterial cells, this relates to the hydrophobic qualities of 
the cell’s surface. The hydrophobicity of a bacterial cell is 
largely governed by the residues and structures on its sur-
face, which can be either hydrophilic or hydrophobic [41]. 
This indicates that bacterial hydrophobicity changes between 
species and strains and even within a single strain, depend-
ing on the mode and stage of development, as well as the 
growth medium composition [42].

3.3  Material Surface Characteristics

Material surface energy, roughness, wettability, and zeta 
potential are all important factors for bacterial adhesion [43]. 
Material surface chemistry features determine the pattern 
and shape of proteins adsorbed onto the material surface, as 
well as the ligands exposed to the body and microbes [44].

3.3.1  Surface Free Energy

Van der Waals forces, electrostatic interactions, and acid-
based interactions make up physicochemical interactions 
(non-specific), which determine a substratum’s surface free 
energy [45].

3.3.2  Surface Roughness

Some studies found no link between surface roughness and 
bacterial or spore adherence, whereas others found a signifi-
cant link between bacterial adhesion and surface roughness. 
Roughness has an effect on biofilm growth which however 
appears to be a minor role when it comes to initial adhesion. 
A rough surface is a folded, flat surface with an enlarged 
surface area that produces equivalent contact forces as a 
smooth surface from a physicochemical and mechanistic 
standpoint [46].

The rough surface of the substratum encourages the for-
mation of biofilms [47]. The velocity of biofilm growth, the 
number of entrapped microorganisms, and the texture of 

the biofilm are all influenced by roughness. Roughness may 
cause a homogenous biofilm to grow over the whole surface 
area, resulting in a thin and active biofilm. Roughness can 
also shield immobilised cells from shock loads and create 
an optimal environment for biofilm adhesion. As a result, 
roughness is important because it regulates biofilm attach-
ment, growth, and separation. The impact of roughness on 
long-term use, on the other hand, has yet to be determined. 
Roughness has also been shown to impact biofilm detach-
ment rates [48]. Despite the well-known fact that hydropho-
bicity is influenced by surface roughness, several studies 
have demonstrated that tiny differences in surface roughness 
have no meaningful impact on hydrophobicity values [49].

3.3.3  Surface Hydrophobicity or Wettability

Surface wettability is a critical property that controls the 
interactions between solid and liquid phases in biological 
systems. In a nutshell, the liquid phase “wets” a solid sur-
face by increasing the amount of time it is in contact with 
it. As a result, the contact between the liquid and the solid 
surface improves [50]. Wettability (hydrophobicity or hydro-
philicity) refers to the quantity of wastewater or biomass that 
comes into contact with the surface of a biofilm carrier. It 
has a significant impact on bacterial adhesion and interaction 
with a carrier surface. Wettability influences both the rate 
of initial biofilm attachment and the toughness of adher-
ent biofilms. Microbial adhesions and interactions between 
biofilm carriers and bacteria are thoroughly affected by 
hydrophilicity or hydrophobicity [51]. The hydrophobicity 
of a metal oxide surface might promote bacterial adherence. 
Bacterial adherence is highest to the most hydrophobic sur-
faces. Microorganisms adhere more quickly to hydropho-
bic, non-polar surfaces (Teflon and other polymers) than to 
hydrophilic surfaces, according to previous research (stain-
less steel). This demonstrates the presence of hydrophobic 
contact, which allows the repulsive forces between cells to 
be reduced. Thus, the initial adhesion of bacteria is deter-
mined by the charge and hydrophobicity of surfaces [52].

4  Techniques Used in Determining Bacteria–
Material Adhesion

 (i) CFU plate counting, radiolabeling, 5-cyano-2,3-di-
tolyl tetrazolium chloride (CTC) staining, resazurin 
test, and fluorescein diacetate (FDA) assay are all 
viable bacterial counting techniques.

 (ii) Microscopical techniques for counting and mor-
phological observation of adherent bacteria include 
Light microscopy, Electron microscopy, Image-
analysed epifluorescence microscopy, Atomic force 
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microscopy (AFM), and Confocal laser scanning 
microscopy (CLSM).

 (iii) Spectrophotometry, Biochemical markers (ATP) and 
Coulter count, are amongst the other direct and indi-
rect approaches [53].

5  Biofilm

Microbial infestation of metal surfaces and the development 
of biofilms cause MIC, which affects the metal–environment 
system’s electrochemical nature [54]. Corrosion is infinitely 
more destructive when a multispecies biofilm is present. 
Interactions between different species in such biofilms may 
trigger a chain reaction of metabolic processes in the oxic 
and anoxic regions of the biofilm, exacerbating corrosion 
[55]. Multiple corrosion-causing organisms in a biofilm 
can work together to cause more serious corrosion than if 
only one species is present [56]. In natural, industrial, and 
medicinal contexts, microbial biofilms are common and may 
be found on biotic and abiotic surfaces which are exposed to 
bulk liquid environments. Biofilms have a role in a variety of 
illnesses and disorders, as well as biofouling and corrosion, 
which may be harmful to both human health and business. 
Biofilms, on the other hand, may be used in a variety of 
biotechnological processes, such as bioremediation, biologi-
cal fuel cells, and biofertilizer synthesis. As a result, it is 
critical to control microbial biofilms both to optimise their 
production and to prevent infections, biofouling, and pollu-
tion [57]. Water (80%), bacteria, and extracellular polymeric 
compounds (EPSs) make up biofilms. EPSs comprise a mix-
ture of polysaccharides, extracellular DNA (eDNA), lipids, 
and proteins that remain long after biofilm-forming bacteria 
have been removed from a mature biofilm [58]. Biofilms are 
known to cause MIC as a result of their metabolic activity 
or released metabolite of entrenched microbes. Biofilms are 
behind MIC because electroactive sessile cells in biofilms, 
not planktonic cells, can harvest electrons from energetic 
metals, and biofilms can harbour high concentrations of cor-
rosive agents such as organic acids underneath. Although 
the sessile cell number may be just a tiny fraction of the 
total planktonic cell number, sessile cells are usually packed 
in a thin, often 50–200 µm, biofilm. This alone means that 
a biofilm provides a different biochemical environment for 
corrosion [59]. Some microbes can produce metabolites that 
are acidic (for instance, sulphuric acid by sulphur oxidising 
bacteria) or facilitate the local depassivation or dissolution 
of the protective films or corrosion products on the metal 
surface (for instance, biogenic sulphides destabilising the 
copper oxide film on Cu–Ni alloys, a marine Vibrio reduc-
ing insoluble corrosion product to soluble Fe2+). Micro-
organisms can consume substances in biofilm and lead to 
formation of concentration gradients of chemical species 

that are important for their metabolic activities, which are 
also electrochemical reactants (oxygen and protons) relevant 
to the underlying substratum [60].

Anaerobic metabolism is categorised into two. One, 
anaerobic respiration, in which an exogenous (non-oxygen) 
oxidant such as sulphate, thiosulfate, sulphite, sulphur, 
nitrate,  CO2, and nitrite acts as a terminal electron accep-
tor to absorb the electrons produced by organic carbon oxi-
dation. Two, anaerobic fermentation—the second form of 
anaerobic metabolism. Fermentative microorganisms capa-
ble of fermentative growth, such as APB and some SRB 
strains, oxidise an organic carbon and generate ATPs by 
substrate-level phosphorylation in the absence of an external 
electron acceptor [61].

Pitting, crevice corrosion, under deposit corrosion, stress 
corrosion cracking, and selective dealloying are all com-
mon outcomes of biofilm growth. Certain microorganisms’ 
metabolic products may be corrosive to metal substrates, and 
released enzymes may act as corrosion catalysts [62]. The 
creation of a conditioning layer, bacterial adhesion, slime 
production, and three-dimensional growth, followed by mat-
uration and separation, are all phases in biofilm formation 
[63]. Biofilm bacteria do not behave like individuals with 
separate unicellular lifestyles. Many bacteria instead control 
cooperative behaviour by releasing, detecting, and reacting 
to diffusible signal molecules [64].

One-way biofilms impact metal corrosion is by devour-
ing oxygen (the cathodic reactant). Another method is to 
increase the mass transfer of corrosion reactants and prod-
ucts, hence modifying the corrosion kinetics. Other possible 
ways are by producing corrosion-causing compounds and 
substances that serve as auxiliary cathodic reactants [65].

Different techniques, such as confocal laser scanning 
microscopy (CLSM), scanning electron microscopy, atomic 
force microscopy, and field emission scanning electron 
microscopy, can be used to determine the thickness (or 
depth) of a biofilm developed on a metal surface. The thick-
ness of a biofilm can be used to determine how the biofilm 
affects the material surface, as well as the direct correla-
tion between thickness and corrosion [66]. Biofilm depth 
profiles are also investigated in connection to the variables 
that may influence them (such as temperature and media 
replenishment).

For example, the thickness of the biofilm was evaluated 
using CLSM in a study conducted by Jayaram et al. involv-
ing the corrosion inhibition behaviour of Pseudomonas fragi 
and Escherichia coli on stainless steel. They found that the 
thickness of the biofilms did not alter significantly across 
growth temperatures, media, or medium replenishment [67].

Biofilm-influenced corrosion on cast iron pipes in 
reclaimed water was researched by Zhang et al. They discov-
ered that as the biofilm thickness increased over the course 
of 30 days, the corrosion rate fell dramatically, resulting in 
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an inverse relationship between biofilm thickness and gen-
eral corrosion rate. They concluded that the biofilm thick-
ness grew dramatically because of bacterial proliferation and 
the accumulation of corrosion and metabolic products on the 
cast iron surface [68].

In artificial Beijing soil, Liu et al. investigated the effects 
of biofilm-influenced corrosion on X80 pipeline steel by a 
nitrate-reducing bacterium, Bacillus cereus. CLSM was used 
to determine the biofilm thickness of the samples. The nitrate 
reduction of bacteria beneath the biofilm was observed to 
drive X80 pipeline steel pitting corrosion, which was attrib-
uted to B. cereus biofilm. The findings also revealed that 
dense biofilms had a minor tendency to prevent general cor-
rosion compared to its production and exfoliation, which was 
confirmed using a scanning Kelvin probe [69].

5.1  Development of a Biofilm

Biofilm generation is accomplished by following the pro-
cesses shown in Fig. 4.

 i. Attachment,
 ii. Microcolony formation,
 iii. Matrix formation,
 iv. Macrocolony formation (maturation of biofilm), and
 v. Dispersal [70].

Simply put, Biofilm development has four stages:
(1) Biofilm Adhesion, (2) Biofilm Formation, (3) Biofilm 

Maturation, and (4) Biofilm Dispersal.
Stage 1 Biofilm adhesion is the first stage. After an 

instant interaction with an abiotic surface, free-floating bac-
teria cling to it. Bacterial adherence to the implant surface 
is influenced by physiochemical variables, such as polar and 
ionic interactions, van der Waals forces, and hydrophobicity. 
The creation of a conditioning film following insertion as a 
result of host protein adsorption improves bacterial adher-
ence via interactions between bacterial and host proteins. At 
the conclusion of this step, the bacteria monolayer attaches 
firmly to the binding sites [71].

Stage 2 (Biofilm formation): At this point, bacteria 
in the monolayer begin to multiply locally, generating 

microcolonies. A self-secreted extracellular polymeric mate-
rial matrix organises many multilayers of bacteria into an 
ordered structure. Microbial surface components that rec-
ognise sticky matrix molecules and polysaccharide intercel-
lular adhesion facilitate this process [71].

Stage 3 Biofilm maturation is the third stage. Microcolo-
nies become macrocolonies as a result of cell adaptation 
and development. Regulation of exopolysaccharides, pili, 
flagellae, fimbriae, and glycocalyx leads to biofilm develop-
ment. Surfactant peptides and shear force created by flow-
ing bodily fluids on biofilm determine biofilm maturation 
and form. The strength of surface adhesion is determined 
by these parameters. After a biofilm has matured, removing 
it is incredibly challenging.

Stage 4 Dispersal of biofilms is the fourth stage. After 
detaching from the biofilm, bacteria revert to planktonic 
state and float freely in the surrounding liquids, spreading 
infection. Dispersion of biofilms leads to the selection of 
new places or greater local invasion, thereby initiating a new 
cycle.

There are “active dispersal,” which depends on cell motil-
ity or degradation of EPS and “passive dispersal,” which 
depends on physical factors such as shearing force under liq-
uid flow conditions. Active dispersal is triggered by changes 
in environmental conditions, such as temperature change, 
starvation, oxygen deficiency, and metabolite accumulation 
[72].

Detachment of microorganisms from biofilm can be 
caused by bacteria themselves, such as enzymatic degrada-
tion of the biofilm matrix, such as dissolution of adhesins 
by proteases, nucleases, and a group of small amphiphi-
lic α-helical peptides, known as phenol-soluble modulins 
(PSMs) functioning as surfactants, and quorum sensing or 
by external forces, such as fluid shear forces, corrosion, and 
human intervention [73]. After cell proliferation, the next 
stage is maturation and later dispersion occurs.

5.2  Biofilm for Corrosion Acceleration

Biofilms can play a variety of roles in increasing corrosion 
at a biologically conditioned metal–solution interface, and 
it can happen in a number of ways, including (a) Modifica-
tions in the transport of chemical species towards the metal 
surface. (b) Making it easier to remove protective films when 
the biofilm separates. (c) Inducing unequal aeration effects 
as a result of the biofilm’s uneven distribution. (d) At the 
metal–solution interface, changing oxidation–reduction 
conditions. (e) Changing the structure of inorganic passive 
layers and speeding up their decomposition and removal 
from metal surfaces. The metabolic activities of bacteria 
within the biofilm may have a significant impact on the MIC 
[74–76]. Temperature, pH level, salinity, external inputs of 
new species, availability of nutrients and, most importantly, Fig. 4  The stages of biofilm formation
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the composition of the metal under attack will all influence 
the makeup of the species that will comprise the mature 
biofilm. In a biofilm developed on metal infrastructures, dif-
ferent microbial metabolic groups have varied impacts on 
the metal [77].

5.3  Biofilm for Corrosion Inhibition

The following are the most often stated methods for biofilm 
corrosion inhibition:

 (i) The biofilm acts as a diffusion barrier for corrosion 
agents, preventing metal disintegration.

 (ii) Respiring aerobic microorganisms within the biofilm 
consume oxygen, lowering the concentration of that 
reactant at the metal surface.

 (iii) Microorganisms create metabolic products that sup-
press corrosion (e.g. siderophores) [78].

Gao et al. investigated the Microbiologically Influenced 
Corrosion Inhibition of aluminium alloy 5083 by three 
representative Vibrio species—V. parahaemolyticus, V. 
alginolyticus, and V. EF187016 in 2021. They noticed that 
matured biofilms improved corrosion resistance. When 
irreversible attachment was accomplished in the case of V. 
parahaemolyticus, the biofilm began to prevent corrosion. 
The thicker biofilm may operate as a better diffusion barrier 
against aggressive ion penetration, lowering corrosion rates 
and reducing the danger of localised attack. Vibrio species 
are known to be able to breathe oxygen in an aerobic envi-
ronment, which is a potent electron acceptor and corrosive 
agent. Keeping that in mind, they established the fact that 
the Vibrio species depleted the oxygen beneath the biofilm, 
resulting in a local anaerobic environment. They also noted 
that the biofilm could prevent the diffusion of chloride ions 
to the coupon surface [79].

The corrosion behaviour of Bacillus cereus on stainless 
steel (SS) was researched by Li et al. They revealed that a 
biofilm of B. cereus might prevent SS pitting corrosion. This 
could be related to the role of biofilms and oxidative mate-
rial accumulation on the surface of SS. The electron trans-
mission between SS and the cathodic depolarizer (oxygen) 
was hampered by a B. cereus biofilm. Because of the bar-
rier effect of biofilm on electron transfer (which suppresses 
the process of metal breakdown), biofilm formation may 
delay SS corrosion. They also learned that the additional 
polymeric substances (EPS) generated during bacterial cell 
attachment (and development) combine with the metal ion 
to form an organometallic complex that prevents steel cor-
rosion [80].

Jayaraman et al. genetically constructed Bacillus subtilis 
biofilms that secreted antimicrobials indolicidin, bactene-
cin, and probactenecin. It lead to the discovery that these 

biofilms could inhibit the growth of corrosion-causing SRB 
(Desulfovibrio vulgaris and D. gigas) and reduce corrosion 
rates significantly in continuous culture conditions. This is 
the first time that beneficial, genetically engineered antimi-
crobial-expressing biofilms have been used in situ to prevent 
corrosion. This method has the benefit of creating antibac-
terials from inside the biofilm, avoiding any transportation 
barriers that biocide therapy may meet. Another advantage, 
according to the authors, is the exopolymeric material that 
forms the biofilm matrix, which can help keep local antibac-
terial concentrations relatively high by preventing them from 
migrating into bulk fluids [75].

Because of biological activity, the major mechanisms of 
bacterial corrosion inhibition are invariably linked to a con-
siderable change in the environment at the metal/solution 
interface. Then why do the metals beneath the biofilm still 
corrode if these biofilms successfully suppress corrosion? 
In 1997, Jayaram et al. presented a solution to this problem. 
They stated that even in the presence of a dense biofilm, 
oxygen can permeate to the metal surface via the biofilm’s 
water channels. This might explain why, in the presence of 
metabolically active biofilms, there are still a limited amount 
of corrosion [81].

Microbes are shown to have a lot of potential in terms 
of preserving metals against corrosion. (1) The removal of 
corrosive substances via microbial activity, such as microbes 
consuming reactive oxygen via aerobic respiration, (2) 
growth inhibition of corrosion-causing microbes, such as 
antimicrobial production by non-corrosive microorganisms, 
and (3) the formation of a protective layer are all potential 
mechanisms for inhibiting biofilm-induced metal corrosion 
[56].

A new surface with new qualities is produced as the bio-
film covers the surface of a substance. The wetting qualities 
of a freshly formed surface are critical for both maximising 
the benefits of biofilms and avoiding the negative reper-
cussions of their negative impacts. Surface characteristics 
and wettability of biofilms are garnering more attention, 
especially given that novel surface coatings show promise 
for avoiding biofilm development and its negative conse-
quences, which is one of the developing solutions for bat-
tling biofilms [82].

6  Microbes Involved in Mic

Many microorganisms, including eukaryotes, like fungus, 
algae, and diatoms, as well as microbes from the domains 
archaea and bacteria, are involved in MIC. Archaea 
may seem like bacteria, yet they have a lot of genes in 
common with eukaryotes. Bacteria have been the focus of 
the great bulk of MIC research thus far. Sulphate-reduc-
ing bacteria (SRB), Sulphur-oxidising bacteria (SOB), 
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iron-oxidising/reducing bacteria (IB), manganese-oxidising 
bacteria, and bacteria that release organic acids or extracel-
lular polymeric compounds are expected to have the greatest 
influence on corrosion [83]. The capacity of iron-oxidising 
bacteria to oxidise iron from the ferrous to the ferric state 
and precipitate it as a coating distinguishes them. Sulphur-
oxidising bacteria can be divided into two categories, albeit 
they come in a variety of forms: (1) aerobic (colourless 
sulphide oxidisers) and (2) anaerobic (colourful sulphide 
oxidisers) [84].

7  Mechanisms of Mic

When a metal is submerged in water, moist soil, or another 
aquatic environment, the metal disintegrates into metallic 
cations, leaving an excess of electrons behind. The bal-
ancing process, which in near neutral solution is generally 
the reduction of oxygen to hydroxyl ions, consumes these 
electrons at near cathodic sites. In the absence of oxygen, 
the most common cathodic reaction for corrosion is hydro-
gen ion reduction. The generation of oxidising agents by 
microbes through their metabolism is required for them to 
participate in the reaction. Microorganisms play a role in 
starting or worsening the electrochemical processes on met-
als by directly participating in one or both of the reactions 
[85].

There have been several suggested mechanisms for MIC, 
and it is conceivable that none of them are dominant. Kuhr 
et al. proposed the cathodic depolarization hypothesis, com-
monly known as the classical theory, in 1934 in an attempt 
to explain the exceptionally high incidence of corrosion 
failures observed on subterranean cast iron pipelines in the 
Dutch countryside [16].

The circumstances that cause MIC may be divided into 
two categories: aerobic and anaerobic, with the latter being 
believed to be the more economically damaging. As mecha-
nisms for MIC, galvanic cells, bacterial secretion of H2S, 
NH3, or PH3, differential aeration or chemical concentra-
tion cells, enzymatic oxygen reduction reactions, organic 
acid acidity derived from bacterial metabolites, and direct 
extraction and consumption of electrons from iron have all 
been proposed [86]. Based on the two metabolic processes 
of anaerobic bacteria: (i) respiration and (ii) fermentation, 
microbial corrosion produced by anaerobic microorganisms 
is categorised into two types: type I and type II. Microbial 
corrosion of type I occurs as a result of electron transfer 
processes in microbial respiration. Corrosive metabolites 
generated by anaerobic microbial activity cause Type II 
microbial corrosion [87]. It contains microorganisms such as 
acid-producing bacteria secreting oxidants, such as protons. 
Without biocatalysis, the biofilms in this condition provide 
locally high concentrations of corrosive oxidants [88].

EET-MIC is the name for Type I MIC (extracellular elec-
tron transfer). When the EET direction is reversed to transfer 
electrons from organic carbon oxidation in the cytoplasm 
to an external anode, microbes capable of EET are active 
in MFC because they are electrogenic. If there are a local 
scarcity of organic carbon, these electrogenic microorgan-
isms can produce MIC (electron donor). EET-MIC includes 
the SRB-MIC and NRB-MIC processes mentioned above. 
Extracellular electrons generated by iron oxidation must be 
delivered to the cytoplasm for oxidant reduction in Type I 
biocorrosion. Electrons, unlike ions, cannot “swim” in water. 
Because planktonic cells cannot transfer electrons from a 
metal surface through an aqueous liquid media, they cannot 
directly contribute to Type I biocorrosion. This is exactly 
why sessile cells in a biofilm generate Type I biocorrosion 
rather than planktonic cells [89].

Metabolite MIC is a kind of Type II MIC (M-MIC). 
Because “chemical corrosion” refers to the direct contact 
of a metal with an oxidant, generally at high temperatures, 
without separate oxidation and reduction processes, unlike 
an electrochemical corrosion process, M-MIC uses the 
term “metabolite” instead of “chemical” [90]. The biocor-
rosion processes of Types I and II are both electrochemical. 
Microbes attacking an extracellular organic material such 
as polyurethane and its organic plasticizer with the goal of 
extracting organic carbon and energy may be classified as 
Type III biocorrosion [91].

There are certain mechanisms that are universally 
acknowledged where MIC is concerned; they can be sum-
marised as follows:

• Cathodic depolarization, in which microbiological activ-
ity accelerates the cathodic rate limiting step.

• Microorganisms create patchy surface colonies due to 
the formation of occluded surface cells. Sticky polymers 
attract and aggregate biological and non-biological 
organisms, resulting in fissures and concentration cells, 
which serve as the foundation for accelerated assault.

• Anodic reaction site fixation, in which microbiological 
surface colonies cause corrosion pits to develop, which is 
triggered by microbial activity and linked to the position 
of these colonies.

• Under deposit acid attack, in which acidic products of the 
MIC community metabolism, primarily short-chain fatty 
acids, intensify corrosive attack [92].

8  Mic Measurement Techniques

General pitting, stress corrosion cracking, crevice attack, 
intergranular stress cracking and hydrogen embrittlement, 
acceleration of corrosion fatigue, and cracking are just a 
few of the types of corrosion that may be encouraged by 
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microorganisms interacting with metals. A majority of MIC 
cases are linked to a localised attack. Because of the intri-
cacy of MIC reactions, a variety of approaches must be used 
to link corrosion processes to microbial activity at surfaces 
[93].

New approaches for laboratory and field assessment of 
MIC in industrial systems have been developed thanks to 
significant advancements in microbiological, analytical, 
microscopy and electrochemical, techniques and apparatus. 
Chemical analysis within the biofilm using microsensors is 
one of the most intriguing advances in instrumentation [94]. 
Several authors have critically reviewed a wide range of 
electrochemical techniques for use in biocorrosion, including 
corrosion and redox potential measurements, linear polarisa-
tion, Tafel and Potentiodynamic polarisation, and electrical 
resistance probes, as well as several modern electrochemical 
techniques, such as alternating current methods or electro-
chemical noise [95]. However, electrochemical methods do 
not allow for a precise assessment of the corrosion accelera-
tion (total corrosion rate augmentation) produced by corro-
sion-promoting bacteria strains, which might result in severe 
industrial equipment damage. The difference between micro-
bially induced corrosion (MIC) and general corrosion (GC) 
rates is critical for selecting an appropriate MIC inhibitor/
suppressor. Demonstrating how microbial reactions interfere 
with corrosion processes and, as a result, finding products 
of these reactions on the surfaces of corroding metals using 
appropriate analytical techniques are critical components 
of characterising the mechanisms of microbially influenced 
corrosion. The presence of these compounds, which is linked 
to an increase in corrosion rate, is used as proof that the 
microbially influenced corrosion process is operational. MIC 
does not have a universal mechanism [96].

The development of the many approaches used to inves-
tigate microbial populations in MIC is seen in Fig. 5. Whilst 
characterising the microbial community composition at 
MIC-affected areas has been found to be informative and 
useful in predicting the putative function of specific species 
in the community, it does not provide information on the 
microbial community’s actual functional activity. Because 
of the development of analytical tools for large-scale stud-
ies of metabolites and small compounds, it is now possible 
to analyse both the composition and functional output of 
microbial communities in MIC [97]. Bacterial adhesion 

research techniques have been established around three key 
steps: bacterial contact with the surface, bacterial removal, 
and bacterial counting [98].

9  Conclusion

MIC has been studied from both a biological perspec-
tive (due to the complex nature of bacteria consortia and 
biofilm formation) and a materials corrosion standpoint 
(considering the evidence and mitigation of metal pitting 
under controlled conditions). The current scenario demands 
a combined approach to tackle the problem of MIC. MIC 
accounts for up to 20% of all corrosion in aqueous systems, 
with significant ambiguity around its contribution. To fully 
understand MIC, one must have in depth knowledge on bac-
terial adhesion, biofilms, and the factors that influence this 
process. Several researchers have critically examined a wide 
range of electrochemical methods in regard to their usage 
in biocorrosion assessment. Understanding the difference 
between microbially induced corrosion, which can much 
surpass general corrosion as determined by electrochemical 
methods, and general corrosion is critical for selecting an 
appropriate MIC inhibitor/suppressor. Despite the fact that 
passivity phenomena have been studied extensively in cor-
rosion literature, the exact nature or origin of these effects is 
still unknown, hence further study in this field is essential.
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