Skip to main content
Log in

High Temperature Erosion-Corrosion of Wear Protection Materials

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Solid particle erosion at high temperatures (HT) is a serious issue in various industrial applications, like ventilators, exhaust systems of HT reactors, incineration plants. Due to HT and process gases, erosion is accompanied with oxidation/corrosion. When erosive wear emerges as a lifetime-limiting process, wear protective materials are applied. The combined HT erosive and oxidative attack on these is of major interest and not sufficiently understood for typical wear protection materials. Thereto, we selected three standard wear protection materials and investigated their erosive-corrosive behaviour at 650 °C. Herein used solutions include an alumina, a hypereutectic metal matrix composite (MMC) and an oxidation resistant austenitic steel. Each material was tested in a HT centrifugal solid particle erosion test rig applying 45° and 90° impingement angle. Additional comparative tests were performed at room temperature. A high particle velocity of 65 m/s, as is typical in exhaust pipes, was selected for this study. Extensive post-test analyses of the surface changes and oxidation behaviour were performed to identify the main wear mechanisms. It was found that the alumina exhibited highest wear loss at all conditions investigated, due to its brittle behaviour. Oxidation played no role for this material. The MMC showed pronounced oxidation intensifying the wear loss at HT. Also, the austenite showed extensive tribo-oxidative behaviour, albeit due to erosive particle embedding and formation of an in situ wear protective tribo-layer, the most favourable results were obtained. At oblique impact it showed 3-times less volumetric wear loss than the alumina, and at normal impact 11-times less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bignold GJ, Garbett K, Garnsey R, Woolsey IS (1981) Erosion-corrosion in nuclear steam generators. Water chemistry of nuclear reactor systems, vol 2. Thomas Telford Publishing, London, pp 5–18

    Google Scholar 

  2. Heitmann HG, Kastner W (1982) Erosion corrosion in water-steam circuits. VGB Kraftwerkstech 62(3):211–219

    CAS  Google Scholar 

  3. Sanchez-Caldera LE, Griffith P, Rabinowicz E (1988) The mechanism of corrosion–erosion in steam extraction lines of power stations. J Eng Gas Turb Power 110(2):180–184. https://doi.org/10.1115/1.3240099

    Article  CAS  Google Scholar 

  4. Jonas O (1985) Control erosion/corrosion of steels in wet steam. Power 129(3):102–103

    CAS  Google Scholar 

  5. Levy AV (1993) The erosion-corrosion of tubing steels in combustion boiler environments. Corros Sci 35(5–8):1035–1043. https://doi.org/10.1016/0010-938X(93)90322-8

    Article  CAS  Google Scholar 

  6. Wang Y, Xing ZZ, Luo Q, Rahman A, Jiao J, Qu SJ, Zheng YG, Shen J (2015) Corrosion and erosion-corrosion behaviour of activated combustion high-velocity air fuel sprayed Fe-based amorphous coatings in chloride-containing solutions. Corros Sci 98:339–353. https://doi.org/10.1016/j.corsci.2015.05.044

    Article  CAS  Google Scholar 

  7. Hebsur MG (1983) A brief survey of attempts to develop corrosion/erosion resistant materials for coal gasification. Appl Energy 15(2):99–126. https://doi.org/10.1016/0306-2619(83)90038-7

    Article  CAS  Google Scholar 

  8. Wire GL, Vesely EJ, Agarwal S (1986) Erosion-corrosion of metals in coal gasification atmospheres. J Mater Eng 8(2):150–167

    CAS  Google Scholar 

  9. Stack MM, Chacon-Nava J, Stott FH (1995) Relationship between the effects of velocity and alloy corrosion resistance in erosion-corrosion environments at elevated temperatures. Wear 180(1–2):91–99. https://doi.org/10.1016/0043-1648(94)06536-5

    Article  CAS  Google Scholar 

  10. Levy AV (1995) Solid particle erosion and erosion-corrosion of materials. ASM International, Materials Park. https://doi.org/10.1002/maco.19960471211

    Book  Google Scholar 

  11. Rishel DM, Pettit FS, Birks N (1991) Some principal mechanisms in the simultaneous erosion and corrosion attack of metals at high temperatures. Mat Sci Eng A 143(1–2):197–211. https://doi.org/10.1016/0921-5093(91)90739-A

    Article  Google Scholar 

  12. Landolt D, Mischler S, Stemp M, Barril S (2004) Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256(5):517–524. https://doi.org/10.1016/S0043-1648(03)00561-1

    Article  CAS  Google Scholar 

  13. Roy M (2006) Elevated temperature erosive wear of metallic materials. J Phys D Appl Phys 39:101–124. https://doi.org/10.1088/0022-3727/39/6/R01

    Article  CAS  Google Scholar 

  14. Guo HX, Lu BT, Luo JL (2005) Interaction of mechanical and electrochemical factors in erosion-corrosion of carbon steel. Electrochim Acta 51(2):315–323. https://doi.org/10.1016/j.electacta.2005.04.032

    Article  CAS  Google Scholar 

  15. Neville A, Hodgkiess T, Dallas JT (1995) A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications. Wear 186:497–507. https://doi.org/10.1016/0043-1648(95)07145-8

    Article  Google Scholar 

  16. Burstein GT, Sasaki K (2000) Effect of impact angle on the slurry erosion-corrosion of 304L stainless steel. Wear 240(1–2):80–94. https://doi.org/10.1016/S0043-1648(00)00344-6

    Article  CAS  Google Scholar 

  17. Matsumura M, Oka Y, Hiura H, Yano M (1991) The role of passivating film in preventing slurry erosion-corrosion of austenitic stainless steel. ISIJ Int 31(2):168–176. https://doi.org/10.2355/isijinternational.31.168

    Article  CAS  Google Scholar 

  18. Neville A, Wang C (2009) Erosion-corrosion of engineering steels—can it be managed by use of chemicals? Wear 267(11):2018–2026. https://doi.org/10.1016/j.wear.2009.06.041

    Article  CAS  Google Scholar 

  19. Souza VAD, Neville A (2005) Corrosion and synergy in a WCCoCr HVOF thermal spray coating—understanding their role in erosion-corrosion degradation. Wear 259(1–6):171–180. https://doi.org/10.1016/j.wear.2004.12.003

    Article  CAS  Google Scholar 

  20. Fang Q, Sidky PS, Hocking MG (1997) The effect of corrosion and erosion on ceramic materials. Corros Sci 39(3):511–527. https://doi.org/10.1016/S0010-938X(97)86100-8

    Article  CAS  Google Scholar 

  21. Levy AV (1988) The erosion-corrosion behavior of protective coatings. Surf Coat Technol 36(1–2):387–406. https://doi.org/10.1016/0257-8972(88)90168-5

    Article  CAS  Google Scholar 

  22. Calderón JA, Jiménez JP, Zuleta AA (2016) Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni (OH) 2-ceramic nanoparticle composite coatings. Surf Coat Technol 304:167–178. https://doi.org/10.1016/j.surfcoat.2016.04.063

    Article  CAS  Google Scholar 

  23. Wood RJK, Walker JC, Harvey TJ, Wang S, Rajahram SS (2013) Influence of microstructure on the erosion and erosion-corrosion characteristics of 316 stainless steel. Wear 306(1–2):254–262. https://doi.org/10.1016/j.wear.2013.08.007

    Article  CAS  Google Scholar 

  24. Dong H, Qi PY, Li XY, Llewellyn RJ (2006) Improving the erosion-corrosion resistance of AISI 316 austenitic stainless steel by low-temperature plasma surface alloying with N and C. Mat Sci Eng A 431(1–2):137–145. https://doi.org/10.1016/j.msea.2006.05.122

    Article  CAS  Google Scholar 

  25. Andrews N, Giourntas L, Galloway AM, Pearson A (2014) Effect of impact angle on the slurry erosion-corrosion of Stellite 6 and SS316. Wear 320:143–151. https://doi.org/10.1016/j.wear.2014.08.006

    Article  CAS  Google Scholar 

  26. Liu J, BaKeDaShi W, Li Z, Xu Y, Ji W, Zhang C, Zhang R (2017) Effect of flow velocity on erosion-corrosion of 90-degree horizontal elbow. Wear 376:516–525. https://doi.org/10.1016/j.wear.2016.11.015

    Article  CAS  Google Scholar 

  27. Ghasemi HM, Karimi M, Pasha A, Abedini M (2011) Erosion-corrosion behavior of 316-SS in seawater simulated environment at various impingement angles. Proceedings of Regional Tribology Conference. RTC2011:188. Malaysian Tribology Society, Langkawi Island, Malaysia

    Google Scholar 

  28. Zhao Y, Zhou F, Yao J, Dong S, Li N (2015) Erosion-corrosion behavior and corrosion resistance of AISI 316 stainless steel in flow jet impingement. Wear 328:464–474. https://doi.org/10.1016/j.wear.2015.03.017

    Article  CAS  Google Scholar 

  29. Sridhar N, Brossia CS, Dunn DS, Anderko A (2004) Predicting localized corrosion in seawater. Corrosion 60(10):915–936. https://doi.org/10.5006/1.3287826

    Article  CAS  Google Scholar 

  30. Jun CHEN, Zhang Q, Li QA, Fu SL, Wang JZ (2014) Corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys in artificial seawater. T Nonferr Metal Soc 24(4):1022–1031. https://doi.org/10.1016/S1003-6326(14)63157-5

    Article  CAS  Google Scholar 

  31. Jones M, Llewellyn RJ (2009) Erosion-corrosion assessment of materials for use in the resources industry. Wear 267(11):2003–2009. https://doi.org/10.1016/j.wear.2009.06.025

    Article  CAS  Google Scholar 

  32. Imurai S, Thanachayanont C, Pearce JTH, Chairuangsri T (2015) Microstructure and erosion-corrosion behaviour of as-cast high chromium white irons containing molybdenum in aqueous sulfuric-acid slurry. Arch Metall Mater 60(2A):919–923. https://doi.org/10.1515/amm-2015-0230

    Article  CAS  Google Scholar 

  33. Chang CM, Hsieh CC, Lin CM, Chen JH, Fan CM, Wu W (2010) Effect of carbon content on microstructure and corrosion behavior of hypereutectic Fe–Cr–C claddings. Mater Chem Phys 123(1):241–246. https://doi.org/10.1016/j.matchemphys.2010.04.003

    Article  CAS  Google Scholar 

  34. Flores JF, Neville A, Kapur N, Gnanavelu A (2009) Erosion-corrosion degradation mechanisms of Fe–Cr–C and WC–Fe–Cr–C PTA overlays in concentrated slurries. Wear 267(11):1811–1820. https://doi.org/10.1016/j.wear.2009.02.005

    Article  CAS  Google Scholar 

  35. Sudha PN, Sangeetha K, Jisha Kumari AV, Vanisri N, Rani K (2018) Corrosion of ceramic materials. Fundamental biomaterials: ceramics. Woodhead Publishing, Soston, pp 223–250. https://doi.org/10.1016/B978-0-08-102203-0.00009-3

    Chapter  Google Scholar 

  36. Zikin A, Hussainova I, Katsich C, Badisch E, Tomastik C (2012) Advanced chromium carbide-based hardfacings. Surf Coat Tech 206(19–20):4270–4278. https://doi.org/10.1016/j.surfcoat.2012.04.039

    Article  CAS  Google Scholar 

  37. Badisch E, Katsich C, Winkelmann H, Franek F, Roy M (2010) Wear behaviour of hardfaced Fe-Cr-C alloy and austenitic steel under 2-body and 3-body conditions at elevated temperature. Tribol Int 43(7):1234–1244. https://doi.org/10.1016/j.triboint.2010.01.008

    Article  CAS  Google Scholar 

  38. Varga M, Azhaarudeen AMF, Adam K, Badisch E (2016) Influence of load and temperature on abrasion of carbidic cast steel and complex alloyed hardfacing. Key Eng Mater 674:313–318

    Article  Google Scholar 

  39. Varga M, Buranich M, Adam K, Wimberger R (2013) Cost efficient tribological systems in steel production based on life cycle optimisation. Proceedings of 5th World Tribology Congress. WTC, Turin, pp 1921–1924

    Google Scholar 

  40. Varga M (2016) High temperature abrasion in sinter plants and their cost efficient wear protection. Dissertation, Montan University Leoben

  41. Varga M (2017) High temperature abrasive war of metallic materials. Wear 376:443–451. https://doi.org/10.1016/j.wear.2016.12.042

    Article  CAS  Google Scholar 

  42. Rojacz H, Birkelbach F, Widder L, Varga M (2017) Scale adhesion, scratch and fracture behaviour of different oxides formed on iron based alloys at 700 C. Wear 380:126–136. https://doi.org/10.1016/j.wear.2017.01.004

    Article  CAS  Google Scholar 

  43. Stack MM, Stott FH, Wood GC (1993) Review of mechanisms of erosion-corrosion of alloys at elevated temperatures. Wear 162:706–712. https://doi.org/10.1016/0043-1648(93)90070-3

    Article  Google Scholar 

  44. Wright IG, Nagarajan V, Stringer J (1986) Observations on the role of oxide scales in high-temperature erosion-corrosion of alloys. Oxid Met 25(3–4):175–199. https://doi.org/10.1007/BF00655896

    Article  CAS  Google Scholar 

  45. Antonov M, Veinthal R, Huttunen-Saarivirta E, Hussainova I, Vallikivi A, Lelis M, Priss J (2013) Effect of oxidation on erosive wear behaviour of boiler steels. Tribol Int 68:35–44. https://doi.org/10.1016/j.triboint.2012.09.011

    Article  CAS  Google Scholar 

  46. Atamert S, Bhadeshia HKDH (1990) Microstructure and stability of Fe-Cr-C hardfacing alloys. Mater Sci Eng A 130:101–111. https://doi.org/10.1016/0921-5093(90)90085-H

    Article  Google Scholar 

  47. Torres H, Varga M, Rodríguez Ripoll M (2016) Hight temperature hardness of steels and iron-based alloys. Mater Sci Eng A 671:170–181. https://doi.org/10.1016/j.msea.2016.06.058

    Article  CAS  Google Scholar 

  48. GOST 23.201-78 (1978) Products wear resistance assurance. Gas abrasive wear testing of materials and coatings with centrifugal accelerator. GOST, Moscow

    Google Scholar 

  49. Varga M, Antonov M, Tumma M, Adam K, Alessio KO (2019) Solid particle erosion of refractories: a critical discussion of two test standards. Wear 426–427:552–561. https://doi.org/10.1016/j.wear.2018.12.062

    Article  CAS  Google Scholar 

  50. Antonov M, Pirso J, Vallikivi A, Goljandin D, Hussainova I (2016) The effect of fine erodent retained on the surface during erosion of metals, ceramics, plastic, rubber and hardmetal. Wear 354(355):53–68. https://doi.org/10.1016/j.wear.2016.02.018

    Article  CAS  Google Scholar 

  51. Chacon-Nava JG, Stott FH, De la Torre SD, Martinez-Villafane A (2002) Erosion of alumina and silicon carbide at low-impact velocities. Mater Lett 55:269–273. https://doi.org/10.1016/S0167-577X(01)00659-0

    Article  CAS  Google Scholar 

  52. Varga M, Rojacz H, Winkelmann H, Mayer H, Badisch E (2013) Wear reducing effects and temperature dependence of tribolayer formation in harsh environment. Tribol Int 65:190–199. https://doi.org/10.1016/j.triboint.2013.03.003

    Article  CAS  Google Scholar 

  53. Antonov M, Hussainova I (2010) Cermets surface transformation under erosive and abrasive wear. Tribol Int 43:1566–1575. https://doi.org/10.1016/j.triboint.2009.12.005

    Article  CAS  Google Scholar 

  54. Antonov M, Hussainova I, Pirso J, Volobueva O (2007) Assessment of mechanically mixed layer developed during high temperature erosion of cermets. Wear 263:878–886. https://doi.org/10.1016/j.wear.2006.12.035

    Article  CAS  Google Scholar 

  55. Rojacz H, Pahr H, Baumgartner S, Varga M (2017) High temperature abrasion resistance of differently welded structural steels. Tribol Int 113:487–499. https://doi.org/10.1016/j.triboint.2017.01.039

    Article  CAS  Google Scholar 

  56. Rojacz H, Premauer M, Varga M (2018) Alloying and strain hardening effects in abrasive contacts on iron based alloys. Wear 410–411:173–180. https://doi.org/10.1016/j.wear.2018.05.022

    Article  CAS  Google Scholar 

  57. Rojacz H, Mozdzen G, Weigel F, Varga M (2016) Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures. Mater Charact 118:370–381. https://doi.org/10.1016/j.matchar.2016.05.027

    Article  CAS  Google Scholar 

  58. Varga M, Adam K, Tumma M, Alessio KO (2017) Abrasive war of ceramic wear protection at ambient and high temperatures. J Phys Conf Ser 843(1):012081. https://doi.org/10.1088/1742-6596/843/1/012081

    Article  CAS  Google Scholar 

  59. Varga M, Widder L, Griesinger M, Adam K, Badisch E (2016) Wear progress and mechanisms in high temperature sieves. Eng Fail Anal 61:46–53. https://doi.org/10.1016/j.engfailanal.2015.07.032

    Article  CAS  Google Scholar 

  60. Varga M, Goniva C, Adam K, Badisch E (2013) Combined experimental and numerical approach for wear prediction in feed pipes. Tribol Int 65:200–206. https://doi.org/10.1016/j.triboint.2013.02.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the “Austrian COMET-Program” (Project K2 InTribology, No. 872176) via the Austrian Research Promotion Agency (FFG) and the Province of Niederösterreich and Vorarlberg and has been carried out within the “Excellence Centre of Tribology” (AC2T research GmbH). The contribution of M. Antonov was supported by the Estonian Research Council grants PRG643 and M-ERA.Net projects “HOTselflub” and “DuraCer”. The authors are grateful to voestalpine Stahl GmbH and Kalenborn Kalprotect GmbH & Co. KG for active research cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Varga.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, M., Rojacz, H., Widder, L. et al. High Temperature Erosion-Corrosion of Wear Protection Materials. J Bio Tribo Corros 7, 87 (2021). https://doi.org/10.1007/s40735-021-00504-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00504-9

Keywords

Navigation