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Abstract
Purpose of Review  The purpose of this review is to evaluate the effectiveness of biochar in immobilizing arsenic (As) in 
contaminated paddy soils and its impact on As availability and bioaccumulation in rice, as well as rice plant biomass.
Recent Findings  Recent studies have focused on managing As contamination in agricultural fields, with a particular focus on 
South and Southeast Asia, where rice, a primary food source and As accumulator, is of significant concern. Biochar, a product 
of biomass pyrolysis, has emerged as a viable solution for environmental remediation due to its effectiveness in immobilizing 
metal(loid)s in water and soil. The successful implementation of biochar as a soil amendment strategy has led to growing 
interest in its use as an effective means of reducing the bioaccumulation and availability of metal(loid)s, including As.
Summary  A meta-analysis of 25 studies revealed that biochar generated from maize and sewage sludge successfully reduced 
As availability and bioaccumulation in rice grains. In addition, the use of biochar led to higher biomass and yield of rice 
crops compared to control groups. Modified biochar was more effective in decreasing As availability, likely due to interac-
tions with iron and calcium phases or complexes occurring in or on the biochars. Nevertheless, at elevated biochar dosages, 
As mobilization was noted in field conditions which warrants further investigation.

Keywords  Arsenic · Contamination · Biochar · Meta-analysis · Rice · Soil

Introduction

Arsenic (As) contamination of terrestrial and aquatic sys-
tems is a persistent global problem, particularly in south and 
Southeast Asia, and Latin America [1]. Arsenic contamina-
tion in groundwater and its associated human health risks 
have been recorded in at least 20 countries around the world, 
including Argentina, Chile, Finland, Hungary, Mexico, 

Nepal, Republic of China, Bangladesh, and India [2•].  
While drinking water is considered a significant source of 
As exposure, food is an equally important exposure route, 
especially in the South and Southeast Asian countries [3–6]. 
Irrigation water has been shown to greatly contribute to  
the accumulation of As in soils, especially paddy soils in 
Asian countries [7••]. This is because paddy fields are fre-
quently irrigated with As-contaminated groundwater, espe-
cially during the dry season [6]. Data analytics have been  
employed to more than 50,000 aggregated data sets globally  
of observed groundwater As concentrations [8••]. The authors 
created a global map of groundwater As exceeding 10 µg 
L−1 and predicted areas with future As problems. It was esti-
mated that approximately 94 to 220 million people globally,  
the vast majority (94%) of which reside in Asia, could be 
exposed to high levels of As in groundwater through drink-
ing water and food sources. Rice is the primary food source 
for half of the world’s population, especially in Asian, Afri-
can, and Latin American countries and for a large popula-
tion in Asia, notably for the 560 million people who live 
in poverty [7••]. Asia produces and consumes 90% of the  
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world’s rice, a significant proportion of which is produced  
in As-contaminated areas [7••].

An overview of the total As concentrations in rice grains, 
soils, and irrigation waters in Asian countries [8••] shows 
that the mean total As content in rice grains ranged from 
18 to 1560 mg kg−1 with a mean of 420 mg kg−1, which 
is higher than the Codex Alimentarius Commission’s 
maximum level for inorganic As (i-As) in husked rice 
(350 mg kg−1) and in polished rice (200 mg kg−1) [8••]. The 
As concentration in irrigation water ranged from quantifica-
tion limits to 1014 mg L−1 and in soils, it ranged from 0.06 
to 112 mg kg−1 with a mean of 11.74 mg kg−1 [8••]. The 
authors also reported a significant (p < 0.05) positive corre-
lation was found between As concentrations in rice grains, 
soils (r = 0.65), and irrigation waters (r = 0.46).

Management solutions that are effective, efficient, and 
feasible (especially under local and regional conditions) are 
needed for the remediation of As-contaminated soil to reduce 
human health risks from the soil-crop-food transfer. Both phy-
toremediation and bioremediation have been used to remedi-
ate As-contaminated sites [9–12]. Site remediation options for 
As include inorganic amendments such as phosphorus [12], 
silicon [13], iron [14], and selenium [15], and organic amend-
ments such as sugarcane bagasse [16, 17] and vermicompost 
[18, 19]. One of the limitations of organic amendments, how-
ever, is that they need to be applied in large quantities. Biochars 
have proven to be effective organic amendments in contami-
nated soils for reducing the availability and bioaccumulation of 
metal(loid)s, such as As [20, 21, 21–23]. Biochar is produced 
by subjecting organic matter to pyrolysis at high temperatures 
ranging from 300 to 1000 °C in an oxygen-deprived environ-
ment [24]. The biochar’s surface functional groups, includ-
ing hydroxyls (OH), carbonyls (CO), and carboxyls (COOH), 
when ionized, act as binding sites for metal(loid)s [24]. The 
negatively charged OH groups bind to positively charged met-
als, C = O groups form bonds by contributing lone pairs of 
electrons from the C atom to metals, and COOH forms coor-
dinate covalent bonds through carboxylate anions (COO−). 
Moreover, the electron-rich aromatic surface of biochar can 
attract electron-deficient metal cations through donor–acceptor 
interactions [25]. The promising outcomes from various stud-
ies demonstrating the effectiveness of biochar in sequestering 
contaminants have generated significant interest in its poten-
tial as a soil amendment for environmental remediation [21]. 
Pristine biochar poorly adsorbs both inorganic and organic As, 
the two most common forms of As in paddy porewater [22]. 
Moreover, pristine biochar has limited effects on As immobi-
lization as reported for palm fibers [26•], rice straw [27•], and 
corn stem [28•]; hence, there is a need for modification of the 
biochar to ensure adsorption of As.

At present, most biochar research has focused on its use 
from a technical or economic perspective in relation to 
soil quality and the remediation of surface-, ground-, and 

waste-waters [29–31]. There has been little systematic, inte-
grated research undertaken on the main properties/mecha-
nisms of biochars that can be utilized to effectively prevent 
the availability and bioaccumulation of As from contami-
nated soils for the protection of human and animal health. 
Meta-analysis is increasingly being used in contaminant 
science to systematically synthesize the findings from sin-
gle independent studies with a similar question to derive 
conclusions about the larger body of research. A meta-anal-
ysis approach can also help in resolving conflicting results 
obtained from different studies by providing a quantitative 
estimate of the overall effect size. This is particularly useful 
when the results of individual studies are inconclusive or 
when the sample size of a single study is not large enough 
to detect a statistically significant effect. Meta-analysis has 
been used to address a range of contaminant-related issues, 
including the effects of pesticides and fertilizers on soil and 
aquatic fauna, the toxicity of pesticides in aquatic ecosys-
tems, the challenge of micropollutants in aquatic systems, 
the effects of insecticides on freshwater ecosystems, and 
heavy metal pollution in urban soils [32, 33].

The aim of the present study was to conduct a meta-analysis 
of independent biochar amendment studies and evaluate the 
potential efficacy of biochar application as an effective amend-
ment to prevent the availability of As in contaminated paddy 
soils and its bioaccumulation into rice grain. This meta-analy-
sis provides key information on the design and use of biochars 
to amend As-contaminated soils.

Materials and Methods

A systematic review was undertaken of published articles 
reporting the use of biochar to amend As-contaminated 
paddy soils. Boolean operators (e.g., “OR” and “AND”) were  
used to develop search terms from the keywords—“arsenic,” 
AND “soil,” AND “biochar,” AND (“rice” OR “paddy”). 
Searching ISI Web of Science and PubMed with these terms 
identified relevant research papers published in English from 
2006, when the term “biochar” was first formally used [34]. 
The Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) flowchart is presented in 
Fig. 1. Studies were only included in the meta-analysis if 
(1) the research was carried out using rice as the test crop; 
(2) information regarding the characteristics of the biochar 
was reported; (3) As concentrations in the soil and paired 
rice grain were reported; and (4) details of the analytical 
method(s) and quality assurance procedures were reported. 
Based on the criteria above, out of 52 studies initially  
identified, 25 studies (published between 2013 and 2023) 
were used for meta-analysis. The studies provided data  
on parameters such as sample size and mean values of As 
concentrations in rice and soil, agronomic parameters (tiller 
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number, plant height, leaf, grain, shoot and root biomass), 
biochar (type, pyrolysis conditions, modification), and soil 
condition (type, physiochemical properties). Where the data 
were presented only in the form of figure, the data were 
extracted manually from the figures using WebPlotDigitizer 
version 4.6 [35].

A “random-effects” (RE) model was used for the meta-
analysis presented here as it allows for variation in effect 
sizes between studies, beyond what would be expected by 
chance. This variation is due to differences in study design, 
sample size, population characteristics, or other factors that 
can affect the outcome being measured [36]. The RE model 
is a statistical method used in meta-analysis to combine 
data from multiple studies with a common research question 
[36]. It accounts for both within- and between-study vari-
ation in estimating the overall effect size. In a RE model, 
it is assumed that the true effect size varies across stud-
ies, and the observed effect sizes are drawn from a normal 

distribution with a mean equal to the true effect size and 
a variance that includes both within- and between-study 
variation [36]. This means that each study has its own true 
effect size, but these true effect sizes are not identical across 
studies, and the variation in true effect sizes is assumed to 
follow a normal distribution [37]. Observed study estimates 
vary not only due to random sampling error but also due to 
inherent differences in the way studies have been designed 
and conducted [38].

Briefly, a forest plot was developed using the data from 
individual studies in the meta-analysis to give a visual indi-
cation of the degree of heterogeneity. The absence of differ-
ence between the study group and the marginal level, also 
known as the “no effect” or “zero effect” line (the mean 
difference was zero at this point), is shown by a vertical line 
in the plot’s center. In the plots, the squares represent the 
mean difference values for each study, and the size of the 
squares indicates the effect of the estimate and the weight of 

ISI Web of Science and
PubMed search

“arsenic”, “soil”, “biochar”,
“rice”

arsenic”, “soil”, “biochar”,
“paddy”

Total citations found
(n = 80)

Records excluded after title and
abstract screening

(n = 28 )

Full-text articles assessed for
eligibility
(n = 52)

Full-text articles excluded with reasons (n=27)
a) Review paper (n =6)
b) Experiment with soil only (no rice crop) (n =13)
c) No arsenic (As) levels in rice grain reported (n =7)
d) Detailed characteristics of the

biochar not mentioned (n=1)

Studies included in the systemic
review and meta-analysis (n=25)
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Fig. 1   PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart showing the selection of studies eligible for a 
meta-analysis
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the studies. Each horizontal segment’s succeeding endpoints 
showed 95% confidence intervals (CI) that were symmetri-
cal about the mean. When the 95% CI did not include zero, 
the mean effect size was considered statistically significant. 
If the CIs were 95% overlapping, then there is no statis-
tically significant difference between the two groups [38, 
39]. When all the independent studies were combined and 
averaged, the diamond represents the point estimate and CIs. 
The blue diamond symbol on plots represents the summary 
effect estimate, which is a combined estimate of the effect 
sizes of all the studies included in the meta-analysis. The 
summary effect estimated in the study was calculated using 
a weighted average of the individual effect sizes, where the 
weight of each study is determined by its sample size or 
precision [38]. The point estimate of the summary effect 
was represented by the center of the blue diamond, while the 
width of the diamond represents the precision of the estimate 
(CI). If the blue diamond does not cross the vertical line of 
no effect (zero), this suggests the summary effect estimate is 
statistically significant, indicating that there is evidence of a 
difference between the treatment and control groups. On the 
other hand, if the blue diamond crosses the line of no effect, 
it suggests that the summary effect estimate is not statisti-
cally significant, indicating that there is no evidence of a 
difference between the treatment and control groups. The 
data analysis was performed in R-Studio (version 1.3.1093 
2.3.1) using the “metafor” package (version 3.8–1) [40•].

Results

Collated Study Data

The details of biochar (pristine and modified) used for the 
amendment of the As-contaminated paddy soils are summa-
rized in Table 1. Of the 25 studies selected, twenty studies 
were undertaken in China, two in Australia, and one in Thai-
land. Twenty-three studies were pot experiments, whereas two 
[26, 27−1, with a mean value of 54.17 ± 40.33 g kg−1. The 
cation exchange capacity (CEC) ranged from 11.5 to 73.0 
cmol kg−1 with a mean value of 31.04 ± 15.97 cmol kg−1. 
The mean specific surface area ranged from 2.76 to 276.24 
m2 g−1 with a mean of 97.41 ± 87.64 m2 g−1. The mean pore 
volume and diameter were 0.1506 ± 0.00784 mL g−1 (0.0144 
to 0.2026 mL g−1) and 5.68 ± 2.76 mm (4.02 to 10.6 mm), 
respectively. From the histogram of the dose of biochar  
(Figure S1, A), it was observed that in most of the cases  
the biochar dose used was < 2% with a mean of 1.93%. The his-
togram of total As content (Figure S1, B) of the experimental  
soil of the studies revealed the presence of very high As with a 
mean value of 84.22 mg kg−1. The water management strategies  
followed during experimentation as reported in the different 
studies have been depicted in Table S1. It was observed that 

to simulate rice growing conditions that are closer to actual 
rice soil environments, the biochar-amended soil in the pots 
were flooded for a week before transplanting of rice seedlings.  
Generally, throughout rice growth, a 1–2 cm water layer was 
maintained, increasing to 3 cm and then 6 cm in specific 
intervals. For continuously flooded condition, the pots were 
irrigated daily until the soil moisture reached near saturation, 
and then were continuously flooded until 10 days before the 
harvest. In case of alternately wet and dry and intermittently 
flooded condition, the pots were allowed to dry until small, 
surface cracks were present, at which point the soils were 
reflooded (with a 2–3 cm water level on the soil surface).

Effect of Biochar Amendment on as Concentrations 
in Rice

The RE model revealed a significant (p < 0.001) weighted 
mean CI value of − 567.78 mg  kg−1 (95% CI, − 800.92 
to − 334.64) (Fig.  2). An overall negative effect size 
implies a shift to the left on a scale going from increasing 
to decreasing As concentrations in rice grains due to the 
biochar amendment in contaminated paddy soils in com-
parison to controls [37]. The biochars prepared from sewage 
sludge (pristine and modified) and maize straw (irrespective 
of the dose) were found to reduce the As concentrations in 
rice grains (CIs did not overlap the zero-effect line) (Fig. 2). 
Pristine biochar prepared from bean stalks and rice straw in 
field experiments was not effective in reducing the As con-
centration in rice grains. The inconsistency index of 99.98% 
indicated significant heterogeneity (p < 0.001).

Effect of Biochar Amendment on Rice  
Agronomic Parameters

The application of biochar in contaminated paddy soils 
was found to increase rice plant height by a weighted mean 
value of 7.51 cm (95% CI, 3.39 to 11.63) (Figure S2a).  
Significant heterogeneity (98.91%; p < 0.001) was observed 
in the data. The sewage sludge, wheat straw (pristine and 
modified), and rice hull (modified) biochar significantly 
increased plant height (Figure S2a). A significant effect 
of biochar amendment was found on rice tiller number 
(p < 0.001) (Figure  S2b), with sewage sludge biochar 
significantly increasing tiller numbers irrespective of the 
doses. The amendment of contaminated paddy soils with 
biochar was also found to increase the biomass of rice root 
(weighted mean value, 0.78 g; 95% CI, 0.59 to 0.98) and 
shoot (weighted mean value, 2.15 g; 95% CI, 1.30 to 2.99) 
(Figure S3, a and b). Significant heterogeneity (p < 0.001) 
was observed at 94.69% and 97.56% CI, respectively. Wheat 
straw (pristine and modified), maize straw (modified), and 
oil palm fiber (modified) biochars significantly increased the  
biomass of both the root and shoot of rice plants.
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The effect of biochar amendment in contaminated paddy 
soils on the biomass of leaf and grain is presented in Fig-
ure S4. Biochar application increased the biomass of leaf 
(weighted mean value, 1.54 g; 95% CI, 0.95 to 2.12) and 

grain yield (weighted mean value, 3.44 g; 95% CI, 2.52 to 
4.36) (Figure S4 a and b). The maize straw (pristine and 
modified) biochar significantly increased the rice plant leaf 
biomass, whereas the sewage sludge (pristine), maize straw 

Fig. 2   Forest plot showing 
the effect of biochar on the 
weighted mean difference of 
arsenic concentration in rice 
grain (mg kg.−1) between the 
different studies with their 
respective confidence inter-
vals and weight in the meta-
analysis together with the 
heterogeneity statistics. Si-BC, 
silicon-enriched biochar; BC, 
biochar; MBC, manganese 
oxide biochar composites; 
BC:Fe:Mn:La at different 
weight ratios: (FMLBC1) 
25:4:1:1, (FMLBC2) 25:4:1:3, 
and (FMLBC3) 25:4:1:5. The 
number of studies considered 
was 15
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(pristine and modified), and oil palm fiber (modified) bio-
char significantly increased the grain biomass. Again, sig-
nificant heterogeneity of 97.04% and 99.31% (p < 0.001) was 
observed in the leaf and grain biomass data, respectively.

Effect of Biochar Amendment on Exchangeable 
as Concentrations in Paddy Soils

The effect of biochar amendment on the exchangeable 
As concentrations in the contaminated rice paddy soils is 
presented in Figure S5a. The application of biochar was 
found to reduce the exchangeable As concentrations in soils 
(weighted mean value = − 0.04 mg kg−1; 95% CI, − 0.06 
to − 0.02). Significant heterogeneity of 99.96% was observed 
in the data. Maize (pristine and modified) and rice straw 
(pristine and modified) biochar amendment was found to 
significantly reduce (p < 0.001) the exchangeable As con-
centration in paddy soils (Figure S5a). The extraction of 
exchangeable As was done by shaking soil for 4 h at 20 °C 
using a neutral salt like 0.05 M (NH4)2SO4 as an extracting 
agent [28• and 41•] whereas 1 M NH4Cl has also been used 
as the extracting agent [42•].

The effect of biochar amendment on the Fe- and Ca-
bound As fractions in the rice paddy soil is presented in 
Figure  S6 (a and b). Both Fe-bound (weighted mean 
value, 1.40 mg kg−1; 95% CI, 0.74 to 2.05) and Ca-bound 
(weighted mean value, 1.69 mg kg−1; 95% CI, 1.13 to 2.26) 
As increased significantly (p < 0.001) with the addition of 
biochars. Significant heterogeneity of 95.24% and 99.21%, 
respectively, was observed in the data. The Fe-bound As 
was extracted by shaking the soil for 4 h at 20 °C in the dark 
using 0.2 M NH4-oxalate buffer at pH 3.25 (amorphous Fe) 
and 0.2 M NH4-oxalate buffer + 0.1 M ascorbic acid at pH 
3.25 (crystalline Fe). The Ca-bound As was extracted by 
microwave-assisted digestion of soil with acids like H2SO4 
and HNO3. The rice straw (pristine and modified) and 
maize straw (pristine and modified) biochars increased the 
Ca-bound fraction of As in soils. Maize straw (pristine and 
modified) biochar was the only biochar that significantly 
increased the Fe-bound As fraction in amended soils.

Discussion

Biochar as an Amendment for As‑Contaminated 
Paddy Soils

Twenty-three experiments were conducted as pot trials, with 
only two under field conditions. The soils used for the pot 
experiments were mine-impacted soils rather than the soils 
that were geogenically contaminated with As, like the soils 
of south and Southeast Asia (contamination due to the use of 

contaminated irrigation water). The meta-analysis revealed 
that the application of biochar (pristine and modified) in 
As-contaminated rice paddy soils was not only effective in 
reducing As concentrations in rice grains but also in improv-
ing grain and plant agronomic parameters (plant height and 
biomass of root, shoot, leaf, and grain). Consequently, the 
utilization of biochar led to an increase in rice yield. This 
indicated that biochar has the potential to serve as a dual-
purpose amendment, enhancing soil fertility and mitigating 
As contamination simultaneously. The increase in rice bio-
mass is likely due to the reduced effect of contamination in 
soils and access to readily accessible nutrients (e.g., macro-
nutrients such as nitrogen (N), phosphorus, and potassium 
(K) from mineralization of organic matter [43–46]).

It is important to note that the efficiency of biochar in 
immobilizing As varies depending on factors, such as the 
properties of the biochar itself (e.g., feedstock, production 
conditions), the characteristics of the soil or water system, 
and the specific form of As present. In all the studies con-
sidered in the meta-analysis, the biochar used were prepared 
at high temperature, resulting in high pH of the biochar in 
most of the cases. The pH of the medium (i.e., soil solution) 
can affect the charge characteristics of the biochar surface 
as well as As speciation, but not the pH of biochar. The pH 
of the medium does not affect the pH of biochar. The pH 
of biochar is determined by the pH of the solution in which 
it is formed. Once biochar is formed, its pH is relatively 
stable and does not change with the pH of the medium [25]. 
For example, depending on the solution pH, various func-
tional groups, such as amine, alcohols, and carboxylic, on 
the surface of biochar tend to be protonated, hence altering 
the surface charge of biochar [25]. From the meta-analysis, 
it was observed that pristine biochar prepared from sewage 
sludge [47•] and modified biochar with Fe, Mn, and La from 
maize straw [28•] were effective in reducing the As content 
in rice grain. The meta-analysis further revealed that rice 
husk biochar, specifically modified with Fe and Si, dem-
onstrated effective reduction in grain arsenic (As) content 
[48•]. However, biochar derived from eggshell and corn cob 
did not effectively reduce grain As content [49•, 50•]. On 
the other hand, biochar derived from oriental plane and 
modified with Fe exhibited a reduction in grain As content 
[51•]. However, maize straw biochar modified with MnO 
was not effective in reducing the As content. The detailed 
mechanism of As adsorption and immobilization has been 
discussed in subsequent sections.

Maize straw biochar application reduced the concentra-
tion of As in soil solution by adsorbing As onto biochar 
solid phase surfaces, effectively immobilizing As in the soils 
and reducing its uptake by rice plants [52]. The study also 
suggested that the effectiveness of biochar in immobilizing 
As depended on the type and dosage of biochar applied. In 
a greenhouse study, corn straw biochar increased soil pH 
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and reduced the availability of As in soil by changing its 
chemical speciation and solid phase binding in soils [53]. A 
field study reported that Fe-modified palm fiber biochar was 
effective in reducing the availability of As in a contaminated 
soil [27•]. Conversely, the availability of As increased in 
contaminated soils due to rice straw and bean stalk biochar 
amendment, likely due to solid phase surface competition 
between phosphate released from biochars and arsenate on 
the surface of solid phases [43].

From the meta-analysis, it was observed that biochar 
application alters soil pH [28, 45, 54], and it may also have 
an indirect impact on how plants receive nutrients [55]. Dif-
ferent soil and biochar mixtures may have various pH buffer-
ing capabilities [56]. Numerous studies have demonstrated 
that adding biochar to soil can greatly increase its nutritional 
content [57] and [58]. This is due in part to the direct supply 
of nutrients, like N, P, and K, as well as a decrease in runoff 
and leaching [59]. Previous findings demonstrated that uti-
lizing soil amendments increased nutrient concentrations in 
brown rice and improved the soil CEC and organic matter 
content due to retained and reduced leaching of nutrients 
[60]. The improvements in soil physical properties resulting 
from the addition of pristine or modified biochar can pri-
marily be attributed to the observed increase in root weight, 
grain weight, and overall biomass, as indicated by the meta-
analysis. Functionalized biochars have, to a certain extent, 
resulted in adjustments to soil pH, improvements in soil fer-
tility status, mitigation of potentially toxic element availabil-
ity, and stimulation of enzymatic activities in the soil. These 
effects contribute to creating enhanced soil conditions and 
a more environmentally friendly setting for rice cultivation. 
This phenomenon occurs because the incorporation of bio-
char into the soil effectively reduces the bulk density of the 
topsoil, thereby facilitating the growth of roots deeper into 
the soil profile. Consequently, this enhanced root growth 
promotes a greater bioavailability of nutrients for rice plants, 
leading to increased grain weight and overall biomass. How-
ever, it is noteworthy that the growth of roots, rice grains, 
and biomass did not exhibit a proportional increase with 
higher biochar doses. This suggests that an excessive amount 
of biochar might not necessarily lead to a corresponding 
increase in biomass. It is important to maintain an optimal 
level of biochar [61•].

Mechanism of as Immobilization in Paddy Soils 
by Amendment with Biochars (Pristine and Modified)

The type of biochar used, preparation approach, and modifi-
cations affect the mechanisms of As immobilization in soils. 
Surface functional groups are important determinants of bio-
char adsorption capacity for metals and metalloids, and the 
amount and type of functional groups vary depending on the 
feedstock and pyrolytic temperature [62]. The presence of 

numerous functional groups, like alcoholic, phenolic, and 
carboxylic groups associated with the biochar, can play the 
role of electron donors regulating the reduction of As(V) to 
As(III) [53]. Carboxylic and phenolic functional groups on 
the surface of biochar particles have been suggested to be 
strong adsorption/complexation sites for As in soils [63•].

A high (> 450 °C) pyrolysis temperature has been used 
to prepare pristine biochar in all the studies considered in 
the meta-analysis. The yield and surface characteristics of 
biochar are based on thermochemical methods, operating 
conditions, and feedstock. It is widely known that low-
temperature-generated biochars from slow pyrolysis have 
low hydrophobicity and aromaticity but significant surface 
acidity and polarity. Volatile chemicals in the biomass tend 
to be eliminated from the medium as the pyrolytic tem-
perature rises. This increases surface area and ash content 
while reducing surface functional groups and exchange 
sites [20•]. As the pyrolytic temperature rises, aliphatic C 
species are transformed into aromatic rings, generating a 
graphene-like arrangement that enhances the pore volume, 
pore distribution, and surface area of the pristine biochar 
[20•]. Biochars with a high concentration of C in condensed 
aromatic rings have few functional groups. High-tempera-
ture pyrolysis carbonization is appropriate for forestry and 
agricultural wastes with higher levels of lignin, cellulose, 
and hemicellulose [64••].

All the studies included in the meta-analysis have consistently 
utilized a high pyrolytic temperature (> 450 °C) for the produc-
tion of biochar. According to Lehmann et al. [44], the impact 
of low-temperature pyrolysis (≤ 450 °C) on pristine biochars 
did not influence the mobility of As in soil. However, it was 
noted that pristine biochars produced through high-temperature 
pyrolysis (> 450 °C) significantly increased the mobility of soil-
bound As. Biochars created through higher pyrolysis tempera-
tures exhibit greater efficacy in immobilizing As compared to 
those generated at lower temperatures. This enhanced immobili-
zation potential can be attributed to their heightened aromaticity, 
porous structure, and the presence of mineral phases (such as 
CaHPO4, Ca3(PO4)2, CaCO3) [65••]. The escalation in pyrolysis 
temperature is believed to enhance the breakdown of lignin and 
cellulose in the source materials while eliminating functional 
groups containing hydrogen and oxygen. As a result, the sur-
face area of the biochar increases [30]. Notably, in the stud-
ies analyzed for this meta-analysis, pristine biochars produced 
from rice biomass [66•, 67•,68•, 69•] at elevated temperatures 
demonstrated a greater surface area, which has the potential to 
330 enhance the adsorption of As. Moreover, biochars derived 
from rice husk [66•] and rice hulls [67•, 68•] exhibited pore 
diameters within the 1-10 nm range, proving to be particularly 
effective in immobilizing As in soil.

Modification of biochar may be a solution to enhance 
the adsorption of As by biochar, reducing its mobility/avail-
ability as observed from the results of meta-analysis. Rice 
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straw biochar modified with hydroxyapatite and zeolite 
increased the amount of Ca in soil which sequesters As from 
the exchangeable fraction, likely into insoluble Ca-bound As 
[42•]. The presence of a larger surface area and pore density 
in biochars modified with zeolite likely further increased 
their ability to remove As from the exchangeable fraction in 
soils. Additionally, modified biochar having higher amounts 
of oxygen-containing functional groups [70] may covalently 
link to As [71] and remove it from the soil available frac-
tion for crop uptake. Modification of wheat straw biochar 
with goethite likely removed As from the exchangeable frac-
tion in soils due to adsorption reactions on Fe solid phases. 
The addition of Fe and Mn oxide phases to soils has been 
shown to reduce As mobility and bioavailability [61, 72]. 
The addition of Fe-amended biochars in soils may also 
decrease As uptake by rice through an Fe plaque forma-
tion and As adsorption on roots [51, 61, 66, 71, 73], poten-
tially by limiting the dissolution of Fe minerals [68•]. The 
silicate groups present in biochar can oxidize Fe(II) ions 
on the biochar surface to Fe(III) at near-neutral pH levels. 
Iron(III) rapidly forms a Si-based ferrihydrite complex on 
the surface of the biochar by complexing with hydroxyl ions 
found in the soil-porewater [68•]. Silicon exhibits greater 
mobility than As, which means that it can compete with As 
for uptake by the plant. This competition for uptake may 
also be influenced by the expression of silicon transport-
ers [71]. Depending on the soil pH, As(III) likely present 
under reducing paddy soil conditions can bind to ferrihy-
drite through, for example, As(III) inner-sphere complexes 
through bidentate interactions [74]. The combination of ZVI 
with oil palm fiber biochar resulted in a significant decrease 
in As bioavailability in rice paddy soils [75•]. Oxic-sub-
oxic conditions in paddy soils can result in the oxidation of 
the highly reactive ZVI, converting the released soluble Fe 
into amorphous iron oxyhydroxides phases (e.g., amorphous 
iron oxyhydroxides, such as ferrihydrite). Soluble Fe2+ can 
be oxidized by biotic (iron-oxidizing bacteria, FeOBs) or 
abiotic processes [75•]. The meta-analysis revealed that the 
application of maize straw biochar, modified with manga-
nese oxide, resulted in a reduction of available As in paddy 
soils. As a result, the bioaccumulation of As in rice was also 
decreased. The availability of As in paddy soils is signifi-
cantly influenced by redox conditions, which in turn affect 
the way As is chemically structured in soil solutions and 
its interaction with surfaces through modifications in the 
surface charge of iron (Fe), manganese (Mn), and aluminum 
(Al) oxides and hydroxides [61•].

Some studies have reported that adding biochar to the 
soil throughout rice cultivation increased the amount of dis-
solved As in soil pore water, mainly due to the release of 
As from amorphous and crystalline Fe-oxide fractions as 

observed in pot experiments [49, 76, 77]. The authors, in 
microcosm-based anaerobic incubation studies, found As 
concentrations in soil solutions treated with biochar sig-
nificantly increased by 2.8–6.6 times, with the increase in 
biochar doses (0.5–5%, w/w), especially at higher concen-
trations (3–5%, w/w). Iron and As were shown to be sig-
nificantly positively correlated during rice culture (r2 = 0.73, 
p < 0.001), suggesting that the microbially mediated reduc-
tive dissolution of Fe (oxyhydr-) oxides may be the primary 
cause of the release of As during rice cultivation [78, 79]. 
Increased activity of Geobacter and Desulfosporosinus 
(As(V)-/Fe(III)-reducing bacteria) triggered by an exces-
sive biochar dose was likely responsible for the increase of 
As in pore waters under anaerobic settings [80, 81]. These 
studies suggest that elevated application rates for some bio-
chars could increase the As concentrations in soil solutions 
and hence the fraction available to rice plants, increasing 
the accumulation of As in rice [61, 79]. Higher doses of 
biochar (1–5%) have also been shown to increase the As in 
soil pore water under anoxic conditions [70]. Therefore, the 
dose of biochar can significantly modify As mobility in soil 
and needs to be optimized.

It is widely acknowledged that soil enzyme activities 
serve as important indicators for assessing the impact of 
contaminations on soil quality, soil management, and agri-
cultural practices [48•]. In this study, the results of redun-
dancy analysis revealed a significant contribution (3.3%, 
p = 0.006) of available As to the variability observed in 
enzyme activities from application of Si- and Fe-modified 
biochar. Moreover, all enzymes, with the exception of acid 
phosphatase, exhibited a positive correlation (p < 0.01) 
with available As in the soil. It is attributed to the enhanced 
coordination between the active sites of enzymes and 
substrates in the soil [48•]. Regarding As, its behavior 
is intricately linked to microbiological activities and Fe 
chemistry under different redox conditions [82•]. Under 
intermittent flooding conditions along with the application 
of Fe-enriched biochar, where oxygen levels experience 
temporary interruptions, As interactions involve the par-
ticipation of Fe-oxidizing bacteria like Acidovorax. These 
conditions lead to the incorporation and/or co-precipitation 
of As by Fe oxides, with Acidovorax showing relatively 
high abundance due to the intermittent oxygen availability 
[82•]. In order to enhance the safety of rice production, it 
is crucial to not only implement water management strate-
gies for paddy fields but also to dedicate further endeav-
ors towards the utilization of modified biochar for the sus-
tainable remediation of soils contaminated with As. This 
entails tasks such as refining application rates, adjusting 
the proportion of additive materials, optimizing modifi-
cation methods, and developing novel modified biochars.
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Conclusion and Future Directions

Overall, the meta-analysis suggests that biochar has the 
potential to immobilize As in paddy soils, reduce its mobil-
ity and bioavailability, and improve soil properties, which 
can indirectly affect As contamination in rice crops. The 
effectiveness of biochar as an amendment for As-contam-
inated paddy soils is influenced by various physical and 
chemical properties and further research is needed to better 
understand the mechanisms and optimize the use of biochar 
in this context.

The surface area, pore volume, functional groups, and 
organic/inorganic makeup of biochar surfaces, as well as their 
adsorption capacity, differed substantially (e.g., contents of 
C, O, inorganic elements, ash, mobile matter). These crucial 
characteristics are influenced by several factors, including the 
feedstock used in the production of biochar, the machinery 
used (drum pyrolizers, rotary kilns, fixed bed reactors), the 
pyrolysis temperature, and duration, heating rate and post- 
and pre-treatments (drying, crushing, sieving, activation, 
impregnation). The maize straw and sewage sludge pristine 
biochars were most effective in reducing the As content in 
rice grain in terms of the type of feedstock used to produce 
biochar. The modified biochars were most effective in the 
immobilization of As in soil and hence reducing As bioavail-
ability. The rice straw biochar modified with hydroxyapatite, 
zeolite, and Fe, and maize straw biochar modified with Fe 
and Mn effectively increased the Fe- and Ca-bound As frac-
tions in the soil, which resulted in the reduced bioavailability 
of As. Following the addition of modified biochars to paddy 
soils, As may accumulate less in rice tissues due to a variety 
of processes and mechanisms, such as the chemi- and physi-
sorption of As species onto biochars, sequestration of As on 
Fe plaque and decreased As uptake by rice roots due to the 
competitive uptake with silicate ions. Further, the addition of 
biochar leads to a decrease in the number of Fe(III)-reducing 
bacteria, which, in turn, reduces the mobility and bioavail-
ability of inorganic As species in the rice rhizosphere. A low 
dose of biochar 0.5–2% (w/w) was effective in reducing the 
As content in rice grain even in highly polluted soils. How-
ever, reports of As mobilization due to the application of bio-
char at higher doses was also observed. One of the benefits of 
using biochar as an amendment is that it is required in much 
smaller quantities compared to organic amendments, such as 
vermicompost or farmyard manure, which need to be applied 
in large quantities.

While meta-analysis is a powerful tool for critically 
analyzing research findings, it also has certain limitations. 
Firstly, the included studies exhibited considerable hetero-
geneity in terms of study design, participant characteristics, 
and outcome measures, which might influence the pooled 
effect estimates, which are considered by the RE model. 

Furthermore, variations in study quality and the availabil-
ity of data, as well as the inherent limitations of relying on 
aggregated data rather than individual-level data, may have 
impacted the precision and generalizability of the results. 
Finally, it should be noted that the meta-analysis provides 
summary estimates based on group-level data and may not 
fully capture individual-level nuances or subgroups within 
the data. Despite these limitations, this meta-analysis pro-
vides valuable insights into the overall trends and patterns 
in the available literature on the potential use of biochar as 
an amendment for As-contaminated paddy soil.

Future studies should consider using biochar-based sor-
bents for the remediation of As in rice soils and address the 
following research gaps:

•	 Competitive sorption of As on the surface of biochar in 
the presence of different anions and cations should be 
studied, as these may be present concurrently with As in 
the real environment. The competing ions may include 
phosphates, sulphates, silicates, metal(loid)s, pesticides, 
and per- and poly-fluoroalkyl substances.

•	 In paddy fields, the pH and redox condition of soil fluc-
tuate drastically during the crop cultivation period due 
to flood irrigation after a dry spell. Further research is 
required to assess the efficacy of biochars in reducing 
As availability under varying pH and redox conditions.

•	 Further research is needed to understand the longevity 
of biochar’s efficiency to keep the grain As content low 
and the frequency of biochar application to keep As in 
rice grains below the recommended safe levels.

•	 The influence of biochar addition to soils (physicochemi-
cal properties) on the soluble As speciation in pore waters 
and solid phase partitioning needs to be understood.

•	 Most pot experiments on As and biochar undertaken 
to date have used soil contaminated with As by min-
ing activities. Further research is needed in soils that 
are geogenically contaminated with As or receive As-
contaminated wastewater, mirroring the soils of South 
and Southeast Asia.

•	 The efficacy of biochars in reducing As in rice grain 
needs to be assessed under field conditions (where 
water sources for irrigation are contaminated with As). 
The amount of irrigation water used, As concentration 
in irrigation water, the use of fertilizers, and the crop-
ping sequence are likely to affect the efficacy of bio-
char in As immobilization/mobilization.

•	 Research on novel thiol-functionalized biochars, bio-
char/nano-ZVI composites, and nano-particle-impreg-
nated (e.g., mackinawite) biochars is needed. Although 
little research has concentrated on these features, modi-
fication with amide functional groups on biochar’s sur-
face may significantly aid in sequestering As.
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•	 A cost–benefit analysis of modified biochar produc-
tion and its application in field conditions is needed to 
assess its viability for local and regional use. Pristine 
biochars are easier to manufacture and are also effec-
tive in immobilizing As in the soil.

•	 From a pragmatic standpoint for use in regions such as 
South Asia, methods for low-tech production of biochar 
that can be used by farmers are required to facilitate 
the adoption and implementation of biochar use for the 
remediation of As-contaminated paddy soils.
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