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Abstract
Purpose of Review Global warming and pollution are among the five major causes of global biodiversity loss, particularly 
in aquatic invertebrates which are highly diverse but understudied. In this review, we highlight advancements in current 
environmental studies investigating the interactive effects between warming and contaminants in freshwater and marine 
invertebrates. We not only focused on temperate regions but also synthesized information on the less studied Arctic/Antarctic 
and tropical regions.
Recent Findings In general, the same combination of warming and contaminants may result in either additive or non-
additive interactive effects depending on taxa, the response variable, life stage, genotype, exposure level, duration and order 
of exposure, and the number of exposed generations. For traditional contaminants such as metals and pesticides, combined 
effects with warming at the individual level were generally synergistic. Growing evidence suggests that multigenerational 
exposure can shift the interaction between warming and contaminants toward antagonism, while contemporary evolution 
may change the interaction type.
Summary Our synthesis highlights the importance of temporal aspects in shaping interaction type, including order of expo-
sure, ontogenetic effects, transgenerational effects, and evolution. The combination of laboratory experiments (to advance 
mechanistic understanding) and outdoor mesocosm studies or field observations (to increase realism) is needed to obtain 
comprehensive assessments of interactive effects of warming and pollutants from genes to ecosystems.

Keywords Aquatic insects · Climate change · Contemporary evolution · Copepods · Pesticides · Synergistic effects

Introduction

Aquatic invertebrates are among the most biologically 
diverse animal groups and play a crucial role in transfer-
ring energy and resources from algae and plants to higher 
trophic levels such as fish, birds, and mammals [1, 2]. They 
can also influence biogeochemical cycles, including carbon 
sequestration [3]. Globally, over 1.3 million invertebrate spe-
cies have been identified, but many more have gone extinct 
before even being recorded [4]. Aquatic invertebrates are 
highly vulnerable to both warming and contaminants, and 
generally have a limited dispersal capacity to escape expo-
sures to both stressors [5]. For example, the abundance of 
many crayfish, dragonflies, and damselflies in New South 
Wales, Australia, is projected to decline from 20% to over 
50% by 2085 under warming due to their limited disper-
sal capacity [6]. Investigations of the combined effects 
of warming and contaminants have emerged as a major 
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multidisciplinary research theme, bridging ecotoxicology 
and climatology, limnology, oceanography, ecology, and 
evolution [7, 8••].

Global warming and anthropogenic contaminants are 
among the five dominant threats that place ~1 million species 
at risk of extinction [9]. During the last 15 years, there have 
been several influential review articles, particularly emphasiz-
ing the synergistic effects of warming and contaminants on 
different biological levels of organization, from physiology to 
communities [10–14, 15••]. In this review, we discuss emerg-
ing research themes at the interface of global warming and 
traditional contaminants (metals, pesticides, herbicides, bio-
cides), and emerging contaminants (pharmaceuticals, micro-
plastics, and nanoparticles) on aquatic invertebrates focus-
ing on the period 2017–2022 (see Supplementary material 
S1). The interaction between warming and contaminants is 
considered synergistic, additive, or antagonistic when their 
combined effect is greater, equal, or smaller than the sum of 
the individual effects on a biological response, respectively 
[16]. In the next sections, we will discuss how contaminant 
effects on marine and freshwater invertebrates may depend on 
(i) different aspects of warming, including elevated tempera-
tures, heat waves, and daily temperature fluctuations; (ii) the 
number of exposed generations (transgenerational effects); 
(iii) the evolution of increased tolerance; and (iv) argue the 
importance of studying the interaction between the two stress-
ors in mesocosm experiments. In each of the sections, we  
highlight understudied aspects to inspire future studies.

Interactive Effects Between Contaminants 
and Different Aspects of Warming

Interactive Effects of Contaminants and Elevated 
Mean Temperatures

Most experiments tested the interaction of contaminants 
with a relatively small step-increase in temperature within 
a range of 10–30 °C; some of these were specifically based 
on scenarios of the Intergovernmental Panel on Climate 
Change [17]. These studies are relevant for the reproductive 
and growing seasons of marine and freshwater invertebrates, 
particularly in temperate regions. At the individual level, the 
combined effect of warming and traditional contaminants 
(pesticides, metals, oil substances) is mainly synergistic 
within this temperature range (Table 1, Fig. 1, Wald χ2 = 
26.94, P < 0.01) and this pattern was not statistically dif-
ferent between marine and freshwater studies (Wald χ2 = 
5.06, P = 0.08). Most studies on interactive effects, and all 
those summarized in Table 1, are laboratory experiments that 
focused on life history, with behavioural responses under-
studied. Nevertheless, the latter can be important in link-
ing individual responses to community-level responses. For 
example, when tested at a higher temperature, the pesticide 

chlorpyrifos reduced food intake of the predatory larvae of 
the damselfly Ischnura elegans more, while negative effects 
of the pesticide on their antipredator behaviour were not tem-
perature-dependent [18]. This suggests the overall pesticide-
induced changes in interactions with lower and higher trophic  
levels can be differentially temperature-dependent [19].

Studies listed in Table 1 mainly focused on traditional con-
taminants. In contrast, information on the combined effects 
of warming and emerging contaminants of global concern, 
such as microplastics [20, 21] remains limited to a hand-
ful of studies on a few aquatic invertebrates (e.g., bivalves, 
cladocerans, and corals, Table 2 [22–24]). In general, these 
studies found that warming had a much greater effects on 
the life history and physiological traits than microplastics, 
whereby the total effect of the two stressors was mostly equal 
to the effect of warming alone [22, 23]. Nevertheless, syn-
ergistic effects have been observed in the coral Pocillopora 
verrucosa, with microplastics increasing the susceptibility to 
bleaching under warming, possibly due to the need to spend 
more energy on coping with the microplastics [23]. In addi-
tion, microplastics can also be a carrier of various contami-
nants, and therefore, studies on how microplastics interact  
with these and warming are urgently needed.

Very few experiments have tested the toxicity of contami-
nants on aquatic invertebrates of the thermally more extreme 
regions of our planet: Arctic [25] and Antarctic [26•], and 
tropics [27, 28]. Polar invertebrates are typically stenother-
mic with a very slow development and long generation time, 
and limited plasticity. Just a few degrees increase in water 
temperature can take temperatures beyond the optimal range 
of these species. For example, the Arctic marine copepods 
Calanus glacialis and C. hyperboreus have a peak distribu-
tion at a seawater temperature of 1–2 °C and the upper range 
of the thermal niche for both species is around 7 °C [29]. 
Similar thermal adaptations to low temperatures are found in 
Antarctic invertebrates, e.g. the upper critical thermal limit 
is ~2 °C for the Weddell Sea bivalve Limopsis marionensis 
and ~4 °C for the brachiopod Liothyrella uva [30]. Most 
Antarctic marine invertebrates cannot survive after a short 
exposure to temperatures of 5–10 °C (reviewed in [30]) that 
can be linked to the limited response to thermal stress. For 
example, the Arctic copepod C. glacialis shows no upregula-
tion of genes encoding heat shock proteins when exposed to 
temperatures from 0 to 15 °C [31].

Only few exposure studies have tested the interaction of 
warming and contaminants on polar marine invertebrates at 
relevant temperatures [25, 26•]. These studies found weak 
interactive effects which depended on the response vari-
able, species, warming level, and the exposure concentration 
(Table 1). For instance, the lethal effect of the polycyclic aro-
matic hydrocarbon pyrene on C. glacialis was only evident 
at 0 °C, but not at higher temperature (5 °C and 10 °C) [32]. 
This result suggests that high thermal stress overshadowed the 
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pyrene effects as indicated by a high mortality in the pyrene-
free treatment at 10 °C [32]. Pyrene-exposed C. finmarchicus 
showed stronger decreases in egg production at both lower (0.5 
°C) and higher (8 °C) temperatures than at an intermediate 
temperature (5 °C) [25]. The interactive effects of warming 
and trace metals on the survival of polar invertebrates are more 
consistent and generally synergistic (Table 1). For example, the 
lethal toxicity of copper on the sub-Antarctic marine copepod 
Harpacticus sp., the isopod Limnoria stephenseni, and the 
bivalve Gaimardia trapesina increased when the temperature 
increased from 6 to 8 °C or 10 °C [26•].

In tropical ecosystems, aquatic invertebrates are hyper-
diverse [33] and are highly sensitive to contaminants, par-
ticularly when the temperature is above 25 °C [34]. Fur-
thermore, tropical aquatic invertebrates occur close to their 
upper thermal limit and are therefore highly susceptible to 
warming [35–38]. A small increase in the water temperature 
may result in great ecological consequences [35] and this is 
expected to be more severe in contaminated environments. 
For example, the tropical copepod Pseudodiaptomus annan-
dalei lives in coastal areas with a seawater temperature of 
24–30 °C; an increase of 4 °C in temperature may severely 
impair its growth, development, and reproduction [39]. 
Exposure to copper (26.5 μg/L) reduced the survival of P. 
annandalei males and females with 32% and 62% at 30 °C, 
and considerably more so at 34 °C (74% and 95%, respec-
tively) [27]. At the sublethal level, Cu-exposed females pro-
duced eight times fewer nauplii at 34 °C than at 30 °C [27].

Another study on a tropical species highlighted how 
exposure duration may result in different single and additive 
effects of warming and the metal copper on the physiology 
of the reef-building coral Mussismilia harttii and its pho-
tosynthetic symbionts [40]. There was no change in either 
corals or symbionts in cellular damage (e.g., lipid peroxida-
tion) or total antioxidant capacity after 4 days of exposure to 
thermal stress. After 12 days of exposure, however, the sym-
biont had reduced lipid peroxidation under thermal stress, 
and increased total antioxidant capacity under both stressors 
[40]. The coral showed an increase in cellular damage under 
thermal stress or copper exposure, but there was no interac-
tion between the two stressors [40].

Interactive Effects of Contaminants and Heat 
Extremes

Heat waves (duration ≥ 5 days) and heat spikes (duration 
< 5 days) can be defined as discrete periods of abnormally 
high temperatures above the 90th percentile of temperatures 
recorded in a 30 year timespan at a given locality [41]. Inver-
tebrates typically respond negatively to heat waves [42], 
including mass coral bleaching (e.g., along ~2,300 km of 
the Great Barrier Reef in 2017 [43]) and mass mortality of 
freshwater and coastal marine invertebrates (e.g. Cnidaria, Ta
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Porifera, Bryozoa, Bivalvia, Annelida, Chlorophyta, Echi-
nodermata in the Mediterranean Sea [44]). Episodes of heat 
waves occur at a higher frequency and have a longer duration 
and greater intensity under global warming, particularly in 
Arctic and tropical ecosystems [45].

The few studies on combined effects of heat waves/
spikes and contaminants showed interactive effects 
with pesticides in temperate freshwater invertebrates 
[46, 47, 48••], and with metals and oil substances in 
tropical marine copepods [49, 50]. Life history traits of 

contaminant-exposed invertebrates are generally severely 
impacted under heat waves, which can be linked to meta-
bolic depression, and an associated reduced protein syn-
thesis, and to increased oxidative damage [46]. While a 
heat wave may be lethal in itself [46], contaminant expo-
sure may reduce heat tolerance [51], further increasing the 
mortality risk under heat stress [46]. Synergistic effects 
between heat waves/spikes and contaminants have indeed 
been reported [46], yet a study on water fleas revealed 
that within a set of six Daphnia magna clones of a single 

Fig. 1  Summary of the proportion of each type of interactive effects 
between warming and contaminants on marine (A) and freshwater 
(B) invertebrates, and (C) schematic overview how the combined 

effects of warming and contaminants depend on the aspects of warm-
ing and contaminant type, the intensity of stressors being manipu-
lated, and the level of biological organization studied
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population, the interaction type could vary between a syn-
ergism to an antagonism, whereby the more pesticide-tol-
erant clones showed a stronger synergism [47].

In marine ecosystems, heat waves occur in 25% of the 
world oceans [52], yet the investigations on the interactive 
effects of heat waves and contaminants on marine species 
are very limited. In the tropical marine copepod Centropages 
velificatus, effects of a short-term exposure (5 days) to pyrene 
and heat waves on survival, reproduction, and grazing were 
synergistic, antagonistic, or additive depending on the life 
history trait measured and the intensity of the stressors [50]. 
Indeed, at the control temperature (24.5 °C), pyrene expo-
sure only reduced the survival at a concentration of ~300 nM, 
but under a simulated heat wave, the lethal effect of pyrene 
already occurred at a concentration of 100 nM, indicating a 
synergistic effect [50]. There was also a synergistic effect for 
fecal pellet production, whereby exposure to the heat wave or 
to 100 nM pyrene alone did not reduce this variable, while it 
was reduced by 86% when the two stressors were combined 
[50]. In contrast, the highest pyrene exposure concentration 
(~300 nM) also caused a strong reduction in pellet production, 
which was not reduced further under a heat wave, suggesting 
an antagonistic effect and highlighting the role of pyrene as a 
dominant stressor in this system [53] and the importance of 
stressor magnitude in determining interactive effects.

No studies tested for the combined effect of heat waves 
or heat spikes and emerging contaminants on marine and 
freshwater invertebrates.

Interactive Effects of Contaminants and Daily 
Temperature Fluctuations

One limitation in current studies on the interactive effects 
of warming and contaminants is that experiments have been 
conducted under constantly elevated temperatures. In nature, 
however, ambient temperatures fluctuate on a daily basis, 
which may be more challenging for ectotherms compared 
to exposure to increased average temperatures [54]. Expo-
sure to daily temperature fluctuations (DTF) is energetically 
costly [55] and may therefore shape how organisms deal 
with contaminants [56]. In the majority of studies, daily tem-
perature fluctuations and contaminants reinforced each oth-
er’s effects, resulting in synergisms, which has been mostly 
observed in terms of reduced survival rates (Tables 1, 2). 
For example, larval survival of C. pipiens mosquitoes under 
chlorpyrifos exposure was ~15% lower in the presence of 
7 and 14 °C DTF than at the constant temperature of 20 
°C [57]. A similar pattern has been observed for I. elegans 
damselflies, where chlorpyrifos exposure decreased larval 
survival (−25%) and growth rate (−100%), yet only under 5 
and 10 °C DTF and not at a constant temperature of 20 °C 
[58]. Notably, the synergistic effect between warming and 
a contaminant was stronger under the more realistic global 

warming scenario in which both higher average temperatures 
and higher daily temperature fluctuations are combined [58], 
yet antagonistic interactions between pesticides and daily 
temperature fluctuations have also been observed. For exam-
ple, while chlorpyrifos exposure reduced larval survival of 
C. pipiens mosquitoes with ~40% at a constant temperature 
of 20 °C, chlorpyrifos did not affect larval survival under 
10 °C DTF, which was explained by a faster chlorpyrifos 
degradation rate under DTF [59]. Although physiological 
responses are important for mechanistic insights to explain 
observed patterns in life history traits, they are understudied 
and mostly show no interaction patterns [56] (Table 1), yet 
few studies have found that daily temperature fluctuations 
increased the impact of chlorpyrifos at the physiological 
level, in terms of increased levels of oxidative damage to 
lipids [60] and reduced energy budget levels [61].

Only two studies tested the effects of emerging contami-
nants in the presence of DTF. A study on reef building cor-
als found additive effects of microplastics and DTF [23], 
whereby the effects of realistic microplastics concentrations 
were weakly positive while those of DTF were strongly 
negative [23]. For the freshwater invertebrate D. magna, 
exposure to microplastics increased fecundity and intrinsic 
growth rate, but only under 5 °C DTF and not under a con-
stant optimal temperature, likely because of an associated 
increase in food ingestion [24].

In summary, there is a need for improving our under-
standing of how aquatic invertebrates, particularly those 
occurring in extreme thermal environments such as polar 
and tropical regions cope with contaminants under warming, 
and especially under realistic daily temperature fluctuations 
and heatwaves. Investigations considering different stress 
levels, exposure durations, and temporal aspects of stressors 
on different life stages are particularly needed.

Multigenerational Effects Shaping 
the Interaction Type Between Contaminants 
and Warming

Recent studies on aquatic invertebrates revealed that the 
interaction effects between warming and contaminants may 
depend on exposure of the parental generation, highlight-
ing the role of transgenerational effects in shaping the sus-
ceptibility of aquatic invertebrates to human-induced rapid 
environmental change [62]. Parental exposure to warming or 
contaminants can have two contrasting outcomes that may 
eventually shape their interaction type. Parental exposure 
can, through acclimation, alleviate in the offspring the nega-
tive effects of single stressors such as warming [63], and con-
taminants [64]. This was shown in the mosquito C. pipiens, 
the chlorpyrifos-induced lethal and sublethal effects in the 
offspring were smaller when parents had also been exposed 
to chlorpyrifos [64]. Similarly, when the parental generation 
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of the mosquito C. pipiens was exposed to warming, warm-
ing no longer reduced diving times in the offspring [63], 
yet generally, our review indicates that parental exposure to 
warming or a contaminant increased the vulnerability of off-
spring to warming [65], and to contaminants such as metals 
(e.g. copper [49], and lead [66•]) and pesticides (e.g. chlor-
pyrifos [65]) and this pattern was observed across marine 
and freshwater invertebrates. This can be explained by poor 
maternal provisioning and/or the transfer of contaminants or 
metabolites from mothers to offspring [67].

Such transgenerational shaping of the offspring’s toler-
ance to single stressors may eventually affect the interaction 
type in the offspring. In freshwater invertebrates, a series of 
studies on the mosquito C. pipiens demonstrated evidence for 
this but at the same time showed it to be case-specific. Two 
studies showed that the increased sensitivity to the pesticide 
chlorpyrifos under warming was less pronounced when also 
the parental generation had been exposed to warming [64, 
68]. This could be explained by the observation that only in 
the latter case warming caused no reduction in the net energy 
budget [64]. Furthermore, the synergism between warming 
and the pesticide chlorpyrifos shifted toward an additive 
effect in offspring whose parents were exposed to both warm-
ing and the pesticide because in this condition the pesticide 
was already more lethal at the lower temperature [65]. In the 
same species, the interaction type between warming and the 
pesticide chlorpyifos changed from an antagonism (caused by 
increased degradation of the pesticide) when parents were not 
exposed to warming toward an additive pattern when parents 
experienced warming [63], yet some studies found no effect 
of the parental exposure history on the interactions between 
warming and contaminants in the offspring. For example, a 
heat spike enhanced the toxicity of chlorpyrifos on the sur-
vival of C. pipiens in both parental and offspring generations, 
and the magnitude of the interactive effects remained the 
same in the offspring [64].

A few studies went a step further and tested for interactive 
effects between warming and a contaminants after many gen-
erations of exposure. These experiments have been limited to 
species with relatively short generation times, mainly marine 
copepods and water fleas, mosquitoes, and rotifers. These 
studies so far indicate that such multigenerational exposure 
may strengthen as well as weaken the interaction type. In the 
tropical marine copepods Pseudodiaptomus annandalei and 
P. incisus the interaction between copper and a heat wave 
was synergistic, additive, or antagonistic depending on the 
life history trait and the number of exposed generations [27, 
49]. Heat waves typically magnified the lethal and sublethal 
effects of copper in the parental generation [27, 49]. Inter-
estingly, the interaction between copper and a heat wave on 
the clutch size, the nauplii and fecal pellet production was 
synergistic in the parental generation, but became additive 
in the offspring generations [49]. In the freshwater water 

flea Moina dubia, the interaction effect between warming 
and the metal lead was antagonistic, and this antagonistic 
effect increased gradually across 10 exposed generations and 
levelled off in the 11th exposed generation [66•].

In summary, transgenerational effects of warming and 
contaminants tend to shift the interaction type from syn-
ergistic in the parental generations toward antagonistic in 
the offspring generation(s), likely due to the poor maternal 
provisioning of exposed parents.

Evolution Shaping the Interaction Type 
Between Contaminants and Warming

While transgenerational effects are reflecting plastic 
changes, also, evolutionary (genetic) changes may shape 
the interaction type between contaminants and warming in 
aquatic invertebrates. Recent studies have shown that aquatic 
invertebrates can rapidly evolve adaptations to warming 
(e.g., [69, 70, 71••]) and contaminants (e.g., metal copper 
[72]). Such evolution of tolerance to a single stressor may 
eventually shape the interaction type with a second stressor. 
In marine ecosystems, rapid evolution of the copepod Acar-
tia tonsa to warming and  CO2-induced ocean acidifica-
tion changed the interaction type between both stressors 
[71••]. Indeed, the synergistic negative effects of warming 
and ocean acidification on egg production rate and hatch-
ing success in the first generation disappeared in genera-
tions 3–25 as both traits recovered [71••] caused by rapid 
genetic adaptation [73]. Furthermore, the combined effects 
of these stressors on survival and development time shifted 
from additive (no interaction) toward antagonistic, particu-
larly after 15 generations caused by increased survival in 
the warming treatment, but not in the selection treatment 
where both stressors were combined [71••]. The genome-
wide analyses showed substantial allelic frequency changes 
in response to warming (57%), ocean acidification (20%), 
and their combination (63%) whereby warming was the 
dominant stressor in driving the interactive effects [74••].

In freshwater ecosystems, two studies in the water flea 
D. magna showed contrasting effects of how thermal evo-
lution can shape the interaction between warming and zinc 
oxide nanoparticles. A resurrection study of a natural popu-
lation showed that the old “ancestral” subpopulation, which 
were obtained from resting eggs in lake sediments, showed 
a synergism for intrinsic growth rate, metabolic activity, and 
energy reserves which disappeared in the recent “derived” 
subpopulation that evolved a lower sensitivity to the nano-
particles at 24 °C [75]. This indicates that thermal evolution 
could offset the elevated toxicity of nano-zinc particles under 
warming. Instead, experimental evolution trials in heated 
mesocosms showed that nano-zinc particles were more 
toxic at 20 °C than at 24 °C due to a higher accumulated 
zinc burden at 20 °C than at 24 °C, and this did not change 
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after thermal evolution [76]. This suggests that the ecological 
context may critically shape the evolutionary outcome of the 
stressor interaction type. In an experimental evolution trial 
with the rotifer Brachionus calyciflorus, animals evolved to 
both single and combined exposure to contaminants (salt and 
copper) and a lower temperature [77]. Here, rapid evolution 
to contaminants and a lower temperature shifted their interac-
tive effect toward a synergism [78••].

From the limited number of evolutionary experiments, no 
pattern seems to emerge as rapid evolution to warming and 
contaminants may both enhance antagonisms, and enhance 
or reduce synergisms.

Mesocosm Studies Testing Higher‑Level 
Effects of the Interaction Between Warming 
and Contaminants

All studies discussed above are indoor laboratory experi-
ments, and while these are highly relevant for providing 
detailed and mechanistic insights into the interactive effects 
of warming and contaminants (see e.g., [46, 79]), their lim-
ited environmental realism limits extrapolation of their find-
ings to real-world systems. Only few freshwater studies have 
empirically attempted to link the combined effects of warm-
ing and contaminants from the individual to the ecosystem 
levels in a single study (see [48••, 80, 81]). Such studies are 
important for demonstrating how individual trophic level 
studies are predictive of multitrophic community responses, 
where biotic interactions such as competition, predation, and 
parasitism can modify how effects manifest throughout the 
food web [15••]. The costly nature of manipulating water 
temperature in semi-natural conditions and challenge of con-
trolling treatments that follow the natural fluctuations of the 
ambient, environmental temperature are reasons for the rar-
ity of these studies. These manipulations of thermal regimes 
are more achievable in smaller, closed mesocosm systems 
mimicking pond systems [80–84]. By contrast, achieving 
these in open stream mesocosm systems (e.g. [48••, 85, 
86]) is considerably more challenging due to the constant, 
yet varying input of heated water required to maintain the 
desired temperature difference. Measuring and processing 
samples across multiple trophic levels (as achieved by Van 
de Perre et al. [80] in indoor laboratory microcosms, see 
below) are also costly and time-consuming.

Recent meta-analyses have shown that the combined 
effects of two stressors are more often antagonistic at the 
community and ecosystem levels [53, 87]. This might 
be caused by increased functional redundancy or species 
acclimating to similar stressors so exposure to additional 
stress has a less-than-additive effect [53]. There have been 
two published outdoor aquatic mesocosm studies to inves-
tigate the combined effects of raised water temperature 

and contaminants; one each in pond mesocosms [82] and 
in flow-through circular stream channels [48••]. The pond 
mesocosm study found no effects of three simulated heat 
waves on the effect of a single pulse of the insecticide esfen-
valerate on the zooplankton community. However, pesticide 
effects on the common and sensitive taxon, Daphnia spp., 
lasted twice as long under warming compared to constant 
ambient temperatures, likely increased interspecific compe-
tition under warming prolonged Daphnia spp. recovery. The 
second study simulated climate warming and reduced flow 
velocity and pulsed exposure of the neonicotinoid imidaclo-
prid in flow-through stream mesocosms [48••]. Owing in 
part to a natural heat wave that occurred during the experi-
ment, only antagonistic interactions between imidacloprid 
exposure and raised water temperature were observed, where 
the negative effects of imidacloprid on the macroinverte-
brate community were the strongest at ambient temperatures. 
These results resemble those observed in a laboratory micro-
cosm study, where negative effects of chronic imidacloprid 
exposure only manifested in mayfly nymphs that had had 
no prior exposure to simulated heat waves [79]. By contrast, 
short-term laboratory exposures with freshwater macroin-
vertebrates to imidacloprid at higher concentrations over a 
wider temperature gradient had previously shown synergism 
between these two stressors, demonstrating temperature-
enhanced toxicity of imidacloprid [19]. Taken together, 
these findings suggest that the observed interaction type 
can be heavily dependent on the level (and environmental 
realism) of each manipulated stressor.

Two further studies have investigated the combined 
effects of temperature and contaminants at the community 
level using indoor microcosm experiments [80, 81]. A first 
study [80] found that interactions between raised water tem-
perature and zinc on freshwater zooplankton, phytoplankton, 
and protozoan communities were far more prevalent at the 
community level than at the species population level. Most 
of these interactions were antagonistic where the effect of 
zinc (at the highest concentration applied) was smaller at 
the higher temperature. A second study [81] observed both 
synergistic and antagonistic interactions between raised 
water temperatures and the insecticide lufenuron for differ-
ent zooplankton taxa. Overall, increased temperature did not 
affect the sensitivity of the community to the insecticide 
but it did reduce the time to onset of toxic effects (likely 
due to increased chemical uptake as a result of raised meta-
bolic rates [11]) and subsequent recovery from low-level 
insecticide exposure (likely because of increased pesticide 
degradation [88]).

In future research, there is a need for more studies to 
address the important question of how contaminant and tem-
perature interactions affect whole ecosystems with multiple 
trophic levels and higher levels of biological organization in 
environmentally realistic scenarios [15••]. With continually 
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improving methods of manipulating temperature in semi-
natural mesocosm studies (e.g. [83]), such studies will 
likely become more common. Mesocosms are an ideal tool 
for assessing the impacts of contaminants at the ecosystem-
level, in combination with other climate-related stressors 
that are not easily manipulated in situ [48••, 89]. By rep-
licating the trophic diversity of natural ecosystems, main-
taining environmentally realistic physicochemical conditions 
and biotic interactions, and allowing the manipulation of 
toxic substances in controlled, yet realistic environments, 
mesocosm experiments represent a promising opportunity 
for providing the empirical data needed to improve our 
understanding in this field.

Summary Remarks

Global warming and heat extremes continue to be among 
the most pressing threats for global invertebrate biodiversity 
[90]. In addition, continued and increased use and release 
of chemical contaminants in the environment poses another 
threat. Our review highlights that the interaction type 
between an increase in mean temperature and contaminants 
is mainly synergistic but also indicates the type and strength 
of the interaction between both stressors depends on taxa, 
the response variable, life stage, genotype, exposure level, 
duration and order of exposure, and the number of exposed 
generations (Tables 1, 2). The combined effects of warming 
and contaminants also need to be assessed under more real-
istic thermal scenarios of temperature fluctuations, particu-
larly in mesocosms to increase the environmental realism. 
Linking laboratory experiments and mesocosm studies are 
essential for understanding field observations of the com-
bined effects of the two stressors. This information will be 
crucial for managing and mitigating the combined risk of 
global warming and pollutants in natural systems.
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