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Abstract
Purpose of Review Untreated wastewater discharge can significantly and negatively impact the state of the environment. Rapid
industrialization and economic development have directly contributed to land and water pollution resulting from the application
of many chemicals such as organic dyes, pharmaceuticals, and industrial reagents. The removal of these chemicals before effluent
discharge is crucial for environmental protection. This review aims to explore the importance of functionalized materials in the
preparation of biocatalytic systems and consider their application in eliminating water pollutants.
Recent Findings Wastewater treatment methods can be classified into three groups: (i) chemical (e.g., chemical oxidation and
ozonation), (ii) physical (e.g., membrane separation and ion exchange), and (iii) biological processes. Biological treatment is the
most widely used method due to its cost-effectiveness and eco-friendliness. In particular, the use of immobilized enzymes has
recently become more attractive as a result of scientific progress in advanced material synthesis. The selection of an appropriate
support plays an important role in the preparation of such biologically active systems. Recent studies have demonstrated the use
of various materials for enzyme immobilization in the purification of water.
Summary This review identifies and discusses different biocatalytic systems used in the enzymatic degradation of various water
pollutants. Materials functionalized by specific groups can serve as good support matrices for enzyme immobilization, providing
chemical and thermal stability to support catalytic reactions. Enzymatic biocatalysis converts the pollutants into simpler products,
which are usually less toxic than their parents. Due to immobilization, the enzyme can be used over multiple cycles to reduce the
cost of wastewater treatment. Future studies in this field should focus on developing new platforms for enzyme immobilization in
order to improve degradation efficiency.
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Introduction

Functionalized materials in organic, inorganic, hybrid, and
composite forms can be modified to have desirable properties
for industrial application. Amongst these properties, particle
size and size distribution, shape and purity, and crystallo-
graphic and porous structure play important roles for surface
functionalization [1••, 2, 3]. Through functionalization, it is
possible to introduce organic and inorganic moieties into these
materials [4]. Functionalized materials have been widely used
in many industries such as the food processing (e.g., beer and
wine production, nutritive and nonnutritive food additives,
and food protection), pharmaceutical (e.g., drug delivery and
drug synthesis), cosmetics (fragrance, film formers, and cos-
metic ingredients), electronics (molecular electronics, organic
photovoltaics, and biosensors), and textile (in the production
of antimicrobial, self-cleaning, temperature regulating,
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moisture-wicking, flame-retardant, and self-healing textiles)
industries [5, 6]. Enzyme immobilization is an important re-
search topic in the application of functionalized materials to
improve performance and potentially reduce the cost of enzy-
matic treatment. Considering the multifunctionality of the
above-mentioned materials, this review describes their use in
the process of enzyme immobilization.

A natural enzyme is usually only stable within a
narrow pH and temperature range due to the water sol-
ubility of free enzymes. They can be hydrolyzed over
time. Furthermore, water soluble enzymes are difficult
to isolate from the reaction medium. Hence, the cost
of enzymatic treatment can be very high [7•]. Enzyme
immobilization is an effective strategy to overcome the
disadvantages of a free enzyme system. Enzyme immo-
bilization can be defined as the localization or closing
of an enzyme in a defined region of space [8] to obtain
a stable biocatalytic system. The immobilization of an
enzyme on the surface of a specified material can im-
prove its pH, thermal, and storage stability. As a signif-
icant advantage, after immobilization, the enzyme is in
a heterogeneous form and can be easily separated from
the reaction medium for reuse [9–11]. From this per-
spective, the review focuses on the immobilization of
enzymes on a selected group of materials (functional-
ized materials) and on their application in environmental
remediation.

A wide variety of materials can be used as support
matrices for enzyme immobilization. Their properties are
of significant importance in determining the interaction
between the enzyme and the support. The selection of
an appropriate matrix also depends on the properties of
the enzyme and the immobilization method [12–14]. A
high surface area, porosity, hydrophilicity, biocompati-
bility, stability in reaction conditions, and availability at
low cost are the most desirable properties of a support
material [15–18]. Many of these benefits can be
achieved using functionalized materials.

There have been several reviews on the role of immobilized
enzymes in environmental applications, describing various
types of biocatalytic systems based on oxidoreductases
(laccase and peroxidase) and their use as catalysts in waste-
water treatment. Some of them concern immobilized laccases
[19, 20•, 21] and peroxidases [22–24] and their potential ap-
plication to remediate pollutants. Others refer to methods of
immobilization, the support matrices used, and the types of
pollutants treated [8, 25–27]. In contrast to previous studies,
this review will mainly focus on studies of oxidoreductases
immobilized on functionalized materials (modified inorganic,
organic compounds, and hybrids or composites) and the sub-
sequent use of such systems in water purification processes
(especially in the treatment of organic dyes, pharmaceuticals,
phenol compounds, and polycyclic aromatic hydrocarbons).

Functionalized Materials as Supports
for Enzymes

A diverse range of materials (e.g., natural, synthetic, inorgan-
ic, organic, and composite or hybrid) can be used for enzyme
immobilization. Firstly, surface modification is conducted to
improve the properties of these materials for a specific appli-
cation. Different types of compounds are considered for this
purpose, depending on the field of use. One key aspect of
functionalization is the introduction of various types of func-
tional groups to the material surface. Metal oxides (oxide sys-
tems), polymers (including biopolymers), and hybrids or com-
posites can all serve as the base for functionalized materials,
and many compounds are used to modify their surface [2, 6].
Amino, carboxylic, hydroxyl, and sulfhydryl groups are com-
monly introduced. The modification process is of great impor-
tance when a material is intended for use as a support for
enzyme immobilization. In some cases, support materials are
inert and require activation. Functionalization allows the for-
mation of stable covalent bonds between the functional groups
found in the enzyme and the functional groups on the surface
of the support material [4, 8].

Enzymes on the surface of functionalized materials can be
immobilized by both physical (adsorption and entrapment)
and chemical (covalent and cross-linking) methods. This is
related to the physicochemical properties, the structure of the
material, and the types of functional groups introduced to their
surface. Physical immobilization is an attractive method be-
cause it does not change the conformation of the enzyme.
Additionally, many functionalized materials have a large sur-
face area allowing enzyme adsorption. The adsorptionmethod
is also simple and enables mobility of the enzyme.
Conversely, chemical immobilization contributes to a high
catalytic efficiency, stability, and a low mass transfer resis-
tance of the immobilized enzyme. In the chemical method, a
reaction occurs between the amino groups on the protein sur-
face and the functional groups (e.g., carboxylic, epoxy, thiol)
on the functionalized materials [28]. Figure 1 provides an
overview of the functionalized materials, active functional
groups for enzyme immobilization, immobilizing mecha-
nisms, and the water pollutants that can be removed by an
immobilized enzymatic system.

Inorganic materials, both natural and synthetic (oxides, ze-
olites, silicates, active carbons, etc.), are commonly used in
immobilization processes. These substances are characterized
by high resistance, stability, and availability. Moreover, their
synthesis can proceed via simple and fast methods, making
them relatively cheap. The high value of these materials as
carriers in protein immobilization results from their defined
porous structure and significant sorption capacity. It should
also be noted that on the surface of the most commonly used
inorganic materials (inorganic oxides), specific chemical
groups can be introduced to increase their affinity to enzymes.
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This is especially important in the case of immobilization with the
formation of covalent bonds. The high activity of the immobilized
enzyme prevents any diffusion resistance in the transport of the
components of the reaction mixture and enables the use of the
immobilized system over several reaction cycles [12].

Polymers are another large group of organic materials uti-
lized in enzyme immobilization. These materials can be ob-
tained from natural sources (biopolymers) or synthesized with
high precision in laboratory conditions. The properties and
enzymatic capacity of synthetic polymers can be adjusted to
the specific enzyme and the intended application. The poly-
meric matrix can be functionalized by buildingmonomers into
its structure. Themonomers contain functional groups capable
of forming chemical bonds with the enzyme moieties.
Besides, synthetic polymers are characterized by high thermal
and mechanical stability. These materials can act as supports
for enzymes from various catalytic groups with applicability
in many industrial processes. Biopolymers are omnipresent.

They have a high affinity to enzymes, offer biocompatibility,
and do not cause toxicity of the enzyme [29]. Many of them
are chemically resistant and stable under the conditions of
catalyzed reactions. The greatest advantage of biopolymers
is the presence of many groups in their structure which are
responsible for binding with the enzymes or enabling the ef-
fective modification of their surface [13].

Apart from inorganic and organic substrates, hybrids and
composites also constitute an interesting group of materials for
enzyme immobilization, including such systems as inorganic–
inorganic (different oxide systems, e.g., SiO2/MgO and ZrO2/
SiO2), organic–organic (e.g., chitosan/alginate and polyvinyl al-
cohol/chitosan), and inorganic–organic (SiO2/chitosan and
Fe3O4/polyethyleneimine). The properties of these materials
can be precisely designed for the specific enzyme and the target
application. Additionally, they combine the properties of both
precursors, increasing the resulting functionality and extending
the range of applicability [26].

Fig. 1 Overview of preparation of biocatalytic systems and their application in pollutant degradation
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Applications of Immobilized Enzymes
for Removing Water Pollutants

Many countries around the world have set targets for sus-
tainable socioeconomic development with a focus on min-
imizing pollution. Highly efficient neutralization technolo-
gies are used to detect and degrade pollutants. Adsorption
on active materials, chemical oxidation, ozonation, ultrafil-
tration, nanofiltration, and ion exchange are commonly
used to purify wastewater. These technologies require sig-
nificant energy consumption and are also characterized by
low efficiency and stability, high cost, and the formation of
harmful by-products [19, 30, 31]. Biological methods are
an alternative for treating industrial wastewaters due to
their availability, cost-effectiveness, and eco-friendliness.
These methods are based on three main processes:
biosorption, bioaccumulation, and biodegradation, or a
combination of these. Regarding biodegradation, an en-
zyme participates in the conversion of the pollutants to sim-
pler compounds usually with less toxicity than the initial
ones [21, 32, 33]. The use of native enzymes to degrade
pollutants is subject to certain limitations, such as low sta-
bility and difficulty of recovery, which impair their reus-
ability. For this reason, immobilized enzymes are often uti-
lized in the degradation of wastewaters. During immobili-
zation, the structure is stabilized, while the thermal and pH
stability and repeatability are improved; it may thus become
a good candidate for industrial application [25, 34].

This review highlights systems containing laccase and per-
oxidase immobilized on functionalized materials and their ap-
plication to remove organic dyes, pharmaceuticals, and phenol
compounds from wastewaters. A subsequent part of the re-
view provides examples of industrial applications of
immobilized enzymes.

Organic Dyes

Organic dyes are widely used in the textile industry. Water
pollution by organic dyes is a significant and challenging en-
vironmental problem. Some organic dyes are toxic and persis-
tent in the environment. They also discolor bodies of water
giving them an unpleasant visual appearance. Despite the low
content of dyes in wastewater, the color is a characteristic
indicator of their presence. The decolorization and degrada-
tion of organic dyes can be effectively achieved with
immobilized enzymes.

Previous studies have confirmed the effectiveness of oxido-
reductases in the degradation of dyes. Laccases are most com-
monly used enzyme for this wastewater treatment application
[35–37]. The immobilization of these enzymes mainly focuses
on silica and its composites [38, 39]. Lopez-Barbosa et al. [40]
performed experiments with laccase immobilized on functional-
ized silica for decolorizing Congo Red. The silica was modified

with APTES (γ-aminopropyltriethoxysilane), and the NH2

groups were subsequently activated by adding glutaraldehyde
(GA). Afterward, the laccase was conjugated by formatting the
imine bonds. The laccase/silanized silica was introduced into
textile filters to extend the activity of the enzyme molecules
when incorporated in a continuous remediation process.
Functionalized silica was also used by Salami et al. to prepare
a biocatalyst [41]. In this case, the silica was modified with 3-
glycidyloxypropyltrimethoxysilane (3-GPTMS). The laccase/
epoxy-functionalized silica was used for the decolorization of
five dyes (Acid Orange 156, Acid Red 52, Coomassie Brilliant
Blue, Methyl Violet, and Malachite Green). The pro-
posed biocatalyst demonstrated good stability in terms
of temperature, pH, and organic solvents. The results
showed a correlation between the dye structure and the
decolorization rate [41].

Functionalized Fe3O4-based materials are another large
group of compounds used as carriers for laccase [42–45].
For example, Liu et al. [46] synthesized a magnetic poly(p-
phenylenediamine) nanocomposite (PpPD/Fe3O4). Laccase
was then immobilized on the PpPD/Fe3O4 system and used
as a catalyst to remove Reactive Blue 19 dye. The proposed
biocatalytic system (Lac/PpPD/Fe3O4) exhibited high stabili-
ty, easy recovery, reuse capabilities, and high removal effi-
ciency for Reactive Blue 19 dye. Fe3O4 functionalized with
amino groups was employed by Gao et al. to support laccase
[47]. The results confirmed the effective decolorization of
Acid Fuchsin using the obtained biocatalysts (laccase/amino-
functionalized Fe3O4). In another interesting study by Ulu
et al. [48], laccase was immobilized on iron oxide modified
with thiolated chitosan (TCS). The results showed the long-
term activity of the system in the decolorization of two dyes
(Reactive Blue 171 and Acid Blue 74).

Titanium dioxide–based photocatalysis is useful because of
its low cost, non-toxicity, high photocatalytic activity, and
stability. However, degradation by photocatalysis is only ad-
equate for wastewater with low concentrations of dye. In this
case, the aqueous solution should be transparent to allow light
penetration [49]. Khakshoor et al. [50] described a two-step
decolorization by co-entrapped spore laccase and TiO2 nano-
particles. The first stage of this process involved the pretreat-
ment of the dye with laccase in dark conditions. This was
followed by treatment with TiO2 (photocatalysis under UV
radiation). Titania modified with glycidylacrylate (GA)
[51••] and titanium(IV) bis(ammonium lactato)dihydroxide
(Ti-BALDH) [52] were also employed as laccase supports
and applied in the degradation of different organic dyes
(Rhodamine B and Malachite Green). The results showed that
a biocatalytic system based on titania and laccase can be suc-
cessfully utilized to remediate organic pollutants.

Natural and synthetic polymers are attractive materials as
enzyme supports. The functionalization of their surface en-
ables their multifunctional application for enzyme

266 Curr Pollution Rep (2021) 7:263–276



immobilization and wastewater treatment [53]. Gioia et al.
[54] described the immobil izat ion of laccase on
thiolsulfinate–agarose and the ability of the system to degrade
azo dyes. Chitosan is another biopolymer commonly used for
enzyme immobilization. The practical operability and effi-
ciency of immobilization on chitosan are improved by incor-
porating certain inorganic materials such as clays. A catalyst
based on functionalized chitosan and laccase can be success-
fully used for dye treatment [55]. Synthetic polymers, espe-
cially their modified forms, are frequently employed as en-
zyme carriers. In the literature, poly(methyl methacrylate)/
polyaniline electrospun fibers [56] and a polydopamine-
coated poly(vinylidene fluoride) membrane (PDA@PVDF)
[57] have also been used to immobilize laccase and subse-
quently used in the removal of organic dyes fromwastewaters.

Peroxidases are another group of enzymes that can catalyze
oxidation reactions. Peroxidases immobilized on various
kinds of supports have been successfully utilized for the de-
colorization and detoxification of waste dyes [23, 58–60].
Many researchers have also used horseradish peroxide
(HRP) in the degradation of organic dyes. For example, Sun
et al. [61] researched the immobilization of horseradish per-
oxidase on silica coated with zinc oxide. The results indicated
that the proposed catalyst HRP/ZnO/SiO2 exhibited a high
decolorization efficiency and good reusability for anthraqui-
none dyes. The same enzyme (HRP) was immobilized on a
functionalized hybrid system (graphene oxide–silica). The
surface of this material was modified with APTS (3-
aminopropyltriethoxysilane) [62•]. The authors reported that
the prepared biocatalytic system achieved 100% efficiency in
the decolorization of dyes. In many cases, horseradish perox-
idase or other enzymes are co-immobil ized with
chloroperoxidase (CPO) and immobilized on various supports
[63, 64]. A noteworthy study is that of Cheng et al. [65], who
proposed a polydopamine-tethered CPO/HRP-TiO2 nano-
composite as an enzyme-photo bifunctional synergistic cata-
lyst in water treatment. In this case, the TiO2 played the roles
of both a solid and a photocatalyst in the decolorization of
organic dyes. Furthermore, Kiran et al. [57] immobilized lig-
nin peroxidase on functionalized MnFe2O4 and utilized it to
decolorize dyes. Graphene oxide was employed for modifica-
tion, changing the surface properties of MnFe2O4 to make
them more hydrophilic for the binding of biomolecules.

In summary, functionalized materials play an important
role in the immobilization of enzymes. The selection of an
appropriate modifier makes it possible to change the character
of the carrier surface in a way that increases the efficiency of
the immobilization process. Additionally, in this case, the
bonds between the enzyme and support are more stable, which
is important when the discussed system is used repeatedly for
industrial applications. The examples presented above indi-
cate that biocatalytic systems based on functionalized mate-
rials can effectively decolorize and degrade toxic dyes in a

water environment. Moreover, the research shows that puri-
fied solutions (both model and real) are less toxic after degra-
dation using functionalized material/enzyme systems com-
pared with the solutions before degradation.

Pharmaceutically Active Compounds

Pharmaceutical pollution has become an increasingly serious
problem due to the increased consumption of pharmaceuticals
and growth of the pharmaceutical industry. In addition, the
prevalence of chronic diseases, the development of science
and technology, and the growing world population have con-
tributed to the increasing presence of pharmaceutically active
compounds in the aquatic environment [66••, 67]. These pol-
lutants are discharged by various antibiotics and medicines,
including those available without prescription [68, 69]. As in
in the case of dyes, pharmaceutical pollutants can be degraded
by biological methods (especially using immobilized oxido-
reductases) into simpler and safer derivatives [70, 71].

One pharmaceutical frequently used to evaluate the effi-
ciency of enzymatic treatment is diclofenac, which is a non-
steroidal anti-inflammatory drug. In water, diclofenac causes
genetic and systemic damage to various living organisms [70,
72]. Xu et al. [73] employed functionalized carbon nanotubes
as the support matrix for laccase to prepare a polyvinyl alcohol
(PVA)/chitosan (CS)/multi-walled carbon nanotubes
(MWNTs) composite nanofibrous membrane. It was reported
that after immobilization on PVA/CS/MWNTs, the laccase
retained high activity and demonstrated a high rate of removal
of diclofenac from the wastewater. A study by Teheran et al.
[74] presented biochar activated by polyacrylonitrile (PAN)
and entrapped in nanofibers by an electrospinning method.
This process provided adsorption capability in the membrane
and increased the contact time between the immobilized
laccase and the pharmaceutical pollutants. Experiments using
biochar as a carrier for laccase in order to biodegrade
diclofenac were also performed by Lionappan et al. [75]. In
this report, the biochar was modified with citric acid, which
allowed the introduction of carbonyl groups to the biochar
surface. This increased the reaction between the enzyme and
the support. Diclofenac was also biotransformed with great
efficiency by laccase immobilized on amino-functionalized
TiO2 [76]. The biocatalyst presented by Garcia-Morales
et al. is a good alternative for removing pharmaceutical com-
pounds from water environments. Immobilized laccase was
also used to transform or degrade diclofenac from industrial
effluents in a study by Neelkant et al. [77]. A polyvinyl
alginate–silicon dioxide matrix was utilized. Liquid
chromatography–mass spectrometry (LC-MS) analysis
showed that diclofenac was transformed through a ring-
opening reaction and mineralization after hydroxylation.

Tetracycline (TC) and carbamazepine (CBZ) are other
pharmaceutical compounds that have also been used to
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demonstrate the efficiency of immobilized enzymes. A wide
range of sexually transmitted diseases, as well as gastritis,
peptic ulcers, and lower respiratory tract infections, are treatedwith
tetracycline and its derivatives. In turn, carbamazepine is used as
an anticonvulsant and mood-stabilizing drug to treat epilepsy and
bipolar disorder. Interesting research concerning the removal of
tetracycline was conducted by Teheran et al. [78]. Laccase was
immobilized on a polyacrylonitrile–biochar composite
nanofibrous membrane. The resulting biocatalytic system, used
in continuousmode, achieved a chlortetracycline removal efficien-
cy of around 50%. The same pharmaceutical compound was
biodegraded by Garcia-Delgado et al. [79••]. In this case, amino-
functionalized stevensite and biochar were employed to immobi-
lize laccase. The results showed that the immobilized laccase sys-
tem could degrade 100% of the tetracycline. In other studies, car-
bamazepine was removed from wastewater by laccase
immobilized on oxygen-functionalized nanobiochars [80] and pol-
yimide aerogels [81]. The nanobiochar was treated with acid, thus
introducing carboxylic groups to the surface, which led to the
greatest immobilization efficiency. At the same time, a high deg-
radation of CBZ was achieved. Similar results were obtained with
laccase immobilized on polyimide aerogels.

Based on the above-mentioned reports, it may be conclud-
ed that enzymes immobilized on functionalized materials can
be used successfully to degrade pharmaceutical pollutants.
Different types of materials functionalized by various com-
pounds are used as supports for oxidoreductase immobiliza-
tion. The results presented demonstrate the great efficiency of
biocatalytic systems based on these materials in the degrada-
tion of pharmaceutical pollutants. Oxidoreductases supported
on functionalized materials exhibit higher activity and better
performance in the removal of pharmaceutical compounds.
Moreover, they enable the reusability of the supported enzyme
over several degradation cycles and can lead to a lower toxic-
ity of the solutions after treatment.

Phenol Compounds and Polycyclic Aromatic
Hydrocarbons

Expanding industrial activity can lead to an increased occur-
rence of toxic chemicals such as phenolic compounds in
wastewater. These compounds may derive from the
metallurgic, petrochemical, and pharmaceutical industries
and organic chemical synthesis. Phenolic compounds pose
an enormous hazard to organisms and the environment and
should therefore be quickly removed. Enzymatic methods are
commonly used to degrade these industrial chemicals [82, 83].

Horseradish peroxidase (HRP) and laccase (Lac) are effec-
tive enzymes for converting phenolic compounds in aqueous
solutions to polymeric phenolic aggregates [83]. They
have been immobilized on different functionalized inor-
ganic oxides to improve their stability in the degrada-
tion of phenolic compounds.

Silica and its functionalized forms have also been used as
support matrices for immobilizing enzymes in order to remove
phenolic pollutants. Vishu et al. [84] reported a biocatalytic
system consisting of a co-immobilized lignolytic enzyme cas-
cade on multifunctionalized magnetic silica microspheres
(MSMS). A facile method for the co-immobilization of
laccase and peroxidase on MSMS was evaluated, the optimi-
zation of the operational parameters was carried out, and the
reaction kinetics were determined. The prepared biocatalyst
was used in the transformation of phenolic contaminants in
the wastewater from a biorefinery. The results demonstrated
the effective removal of different classes of phenolic com-
pounds (phenol, chloro-, trichloro- and dichlorophenol, cre-
sols, dimethyl-, 2-methyl-4,6-dinitro-, 4-nitro-, tetrachloro-
and pentachlorophenol). Silica-based material was also been
studied by Mohammadi et al. [85]. In this case, the silica was
modified with epoxy groups, and the laccase was covalently
immobilized using nucleophilic attack by the amino groups of
the laccase on the epoxy groups of the support. The perfor-
mance of the biocatalytic systemwas evaluated in the removal
of phenolic constituents, including phenol, p-chlorophenol,
and catechol. The degradation of the catechol was highly ef-
ficient (about 95%). A nanocomposite based on reduced
graphene oxide (GO) and silica was also used to immobilize
HRP [86]. GO and its reduced form (RGO), due to the pres-
ence of carboxylic, hydroxyl, and epoxide groups on the sur-
face, are suitable matrices for enzyme immobilization.
Moreover, composites with RGO and silica offer good surface
area, surface roughness, and functionalization. Vineh et al.
[86] evaluated the kinetic parameters, reusability, and stability
of the enzyme for catalytic activity. Additionally, the obtained
biocatalyst (GO/SiO2/HRP) was utilized in the removal of
high concentrations of phenol compounds from the water so-
lution. The same research group also reported results
concerning the immobilization of HRP on amino-
functionalized RGO which confirmed the conclusions from
the previous study [87•].

Many materials based on Fe3O4 are applied in the immo-
bilization of enzymes because of their unique properties. Due
to its ferromagnetic features, the magnetite support allows the
prepared biocatalytic system to be easily recovered from the
reaction [15]. The literature shows that Fe3O4 can be modified
with biopolymers, polymers, and functional groups. Chitosan
was used by Zhang et al. [88] to coat Fe3O4 nanoparticles.
Furthermore, the product was used as a support for laccase
immobilization, and the resulting biocatalysts were highly ef-
ficient in the degradation of the chlorophenol in the water
solution. Interesting studies were also reported by Wu et al.
[89], who modified Fe3O4 with amino groups. Then laccase
was covalently adsorbed onto the amino-functionalized Fe3O4

and used to remove the phenolic compounds, achieving ap-
proximately 85% efficiency. After the reaction, the biocatalyt-
ic system was separated from the solution using a magnet.
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Other papers report on composites or hybrids containing mag-
netite particles. For example, Fe3O4 was coated with MoS2
during a synthesis process and then modified with
polyethyleneimine, which created an electrostatic interaction
between the core shell composite (like Fe3O4@MoS2) and
laccase and improved the dispersion of the magnetic nanopar-
ticles [90]. In this way the efficiency of the laccase immobili-
zation increased. Moreover, the biocatalytic system construct-
ed was used in the degradation of persistent organic pollutants
(e.g., bisphenol) in a water environment. Significant investi-
gations involving the biodegradation of phenol were re-
ported by Zhang et al. [24] and Li et al. [91]. They
used Fe3O4-based composites with carbon nanotubes
and nanodiamond, respectively, upon which horseradish
peroxidase was immobilized. In both cases, the degra-
dation of the phenol was highly efficient.

Polymers and biopolymers represent interesting groups of
materials that are utilized as supports for oxidoreductase im-
mobilization. In recent studies, polymers have been function-
alized or linked with other compounds to improve their prop-
erties before immobilization is performed. In the research by
Mohamed et al. [92], an acrylic fiber polymer was employed
as a matrix for HRP. Before the immobilization process, the
polymer was pretreated with hydroxylamine hydrochloride to
obtain an amidoximated polymer. This material was addition-
ally activated with acrylic chloride. Then HRP was
immobilized on the cyanuric chloride–amidoxime acrylic
polymer and was used as an efficient catalyst in the degrada-
tion of aromatic pollutants from wastewater. Similar research
was presented by Almulaiky et al. [93]. However, in this case,
the polymer was treated with hydrazine to introduce
amidrazone groups, which act as nucleophilic sites suitable
for cyanuric chloride activation and consequently improve
the immobilization of the enzyme. Other investigations con-
cern the enzymatic oxidative polymerization of phenol and
bisphenol catalyzed by laccase enzyme immobilized on poly(-
acrylonitrile-co-styrene/pyrrole) nanofibers (AN-co-ST/Py)
[94]. Interesting studies are reported by Liu et al. [95], who
proposed a novel immobilization technology in which laccase
was immobilized on a 3D bioprinted matrix hydrogel. The
hydrogel contained different monomers: acrylamide (AM),
hydroxyapatite (HA), and sodium alginate (SA) in various
compositions. The prepared biocatalyst was used in the deg-
radation of phenolic compounds, achieving a high yield.

In addition to synthesized polymers, biopolymers are also
useful materials for constructing biocatalytic systems to treat
phenolic pollutants. For example, hybrids based on
polyamide/chitosan [96] or polyvinyl alcohol/chitosan [97]
were used to immobilize laccase and chloroperoxidase, re-
spectively. The proposed matrix was characterized by a high
specific surface area, numerous binding sites, and good me-
chanical properties. This facilitated the immobilization of
laccase on its surface, which allowed repeated application in

the degradation of bisphenol and its derivatives. Chitosan che-
lated with Cu ions and supporting immobilized laccase was
successfully used to remove phenol from an aqueous solution
[98]. Bisphenol has also been successfully degraded by
biocatalysts based on other polysaccharides, such as agarose.
Before the immobilization of laccase, the surface of the sac-
charose was functionalized with monoaminoethyl-N-
aminoethyl (MANAE) [99]. Similar studies were reported
by Brungari et al. [100], who used a different kind of laccase.
In both cases, the proposed biocatalytic systems displayed
high enzymatic and biodegradation activity.

In addition to studies on traditional materials, recent re-
search by Zu et al. is worth mentioning [101]. AY-type zeolite
was employed as a matrix for the laccase. Zeolites are charac-
terized by wide availability, low price, and high thermal and
acidic stability. Furthermore, their surfaces can be modified to
improve their mesoporous structure. These properties enable
zeolites to be used as supports for biomolecules. Zu et al.
prepared sodium zeolite (NaY) and its modified desilicated
(DSY) and dealuminated (DAY) forms. The modification
led to significant improvement in immobilization performance
and enabled the highly efficient biodegradation of bisphenol S
and other phenolic compounds.

Polycyclic aromatic hydrocarbons (PAHs) have also been
degraded using immobilized enzymes. As with organic dyes,
pharmaceuticals and phenol compounds, PAHs are another
significant group of environmental pollutants. PAHs have
two or more fused benzene rings originating from natural or
anthropogenic sources. They have harmful biological, toxic,
mutagenic, and carcinogenic effects on the environment [102,
103]. For example, Bautista et al. immobilized laccase on
amino-functionalized SBA 15 (a silica material) [104] and
used it to remove naphthalene, phenanthrene, and anthracene
from wastewater. The designed biocatalyst exhibited high in-
corporation yields of laccase and excellent biodegradation of
various PAHs. Nonionic surfactant-modified clay with
immobilized fungal laccase has also been reported as effective
in removing PAH from groundwater. Naphthalene and phen-
anthrene were successfully biodegraded in the presence of this
biocatalytic system [105]. The bioconversion of polycyclic
aromatic hydrocarbons was also achieved by Apriceno et al.
[106], who reported the covalent immobilization of laccase on
glutaraldehyde-activated chitosan. Anthracene was efficiently
removed by the obtained immobilized laccase with a high
catalytic yield. Interesting research was reported by Chen
et al. [107], who applied laccase to the surface of calcium-
modified chitosan–alginate (CA-Ca-SBE). Their results
showed that the immobilized laccase was a promising biocat-
alyst for application in wastewater treatment due to its high
performance in the degradation of phenanthrene in water.

In summary, the high degradation efficiency of phenol
compounds and polycyclic aromatic hydrocarbons can be
achieved using biocatalysts based on functionalized materials
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and enzymes. The support matrices considered protect the
enzyme from the toxic effects of the pollutants and increase
the effectiveness of their removal. The utilization of catalytic
systems based on enzymes and functionalized materials en-
sures the rapid, easy, and low-cost degradation of phenolic
compounds in wastewater.

The most common functionalized materials employed for
enzymatic immobilization and their performance in removing
organic dyes, pharmaceuticals, phenolic compounds, and
polyacrylic aromatic hydrocarbons fromwastewaters are sum-
marized in Table 1.

Conclusions

This review has identified and presented information concerning
different biocatalytic systems based on functionalized materials
and enzyme immobilization. It aimed to review the applications
of such biocatalytic systems for removing chemical pollutants
(e.g., organic dyes, pharmaceuticals, phenol compounds, and poly-
cyclic aromatic hydrocarbons) from wastewater. Materials in or-
ganic, inorganic, hybrid, and composite forms can be functional-
ized to increase their affinity to enzymes. In general, using the
materials considered here, the immobilized enzymes exhibit high
performance in the degradation of pollutants. In most cases, the
immobilized enzymes are oxidoreductases, such as laccase and
peroxidase. A further search for new enzymes and materials is
recommended and is expected to improve the range and practical-
ity of immobilized enzymes for wastewater treatment. This review
also demonstrated that immobilized enzymes effectively contrib-
ute to the removal of pollutants from aqueous solutions (primarily
organics, dyes, pharmaceuticals, and phenolic compounds). This
work is expected to be useful for further developing newmaterials
for enzyme immobilization with improved stability and effective-
ness in the removal of water pollutants. Additionally, the informa-
tion from this review may have practical significance in the selec-
tion of materials and immobilization methods, and the identifica-
tion of suitable pollutants for treatment.
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