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Abstract
Purpose of Review During the past decades, the number and size of megacities have been growing dramatically in China.Most of
Chinese megacities are suffering from heavy PM2.5 pollution. In the pollution formation, the planetary boundary layer (PBL)
plays an important role. This review is aimed at presenting the current state of understanding of the PBL-PM2.5 interaction in
megacities, as well as to identify the main gaps in current knowledge and further research needs.
Recent Findings The PBL is critical to the formation of urban PM2.5 pollution at multiple temporal scales, ranging from diurnal
change to seasonal variation. For the essential PBL structure/process in pollution, the coastal megacities have different concerns
from the mountainous or land-locked megacities. In the coastal cities, the recirculation induced by sea-land breeze can accumu-
late pollutants, whereas in the valley/basin, the blocking effects of terrains can lead to stagnant conditions and thermal inversion.
Within a megacity, although the urbanization-induced land use change can cause thermodynamic perturbations and facilitate the
development of PBL, the increases in emissions outweigh this impact, resulting in a net increase of aerosol concentration.
Moreover, the aerosol radiative effects can modify the PBL by heating the upper layers and reducing the surface heat flux,
suppressing the PBL and exacerbating the pollution.
Summary This review presented the PBL-PM2.5 interaction in 13 Chinese megacities with various geographic conditions and
elucidated the critical influencing processes. To further understand the complicated interactions, long-term observations of
meteorology and aerosol properties with multi-layers in the PBL need to be implemented.
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Introduction

Megacities are usually defined as urban agglomerations with a
population exceeding 10 million [1, 2•]. During the second

half of the twentieth century, the number and size of mega-
cities increased dramatically, especially in the developing
world [2•], which enforce substantial and extended ef-
fects on environmental conditions [3••, 4–6]. The air
pollution has become one of the most important problems of
megacities [1, 3••].

Based on the population data of municipalities and
prefectural level cities in 2017, there are in total 13 megacities
in China (Table 1), all of which are suffering from high load-
ings of PM2.5 (particles with an aerodynamic diameter of less
than 2.5 μm), with an annual value significantly exceeding the
WHO guideline of 10 μg m−3. PM2.5 not only has detrimental
impacts on visibility and human health [7, 8] but also influ-
ences the ecosystem, local/regional weather, and climate
change [9, 10, 11•]. The frequent occurrence of PM2.5 pollu-
tion episodes in China is primarily caused by the high emis-
sions of anthropogenic pollutants [3••, 12], except for the oc-
casional occurrence of dust events in spring [13]. Industry,
traffic exhaust, power plants, domestic heating, fertilizer
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application, and farming all contribute to the high emissions of
pollutants [4, 14, 15]. Organic matter and SNA (sum of sulfur,
nitrate, and ammonium) are found to be the dominant PM2.5

components in the megacities in China [3••], on average
which contribute approximately 26% and 40%, respectively.

In addition to the emissions, the pollution level for a mega-
city is largely determined by the structure and process of plan-
etary boundary layer (PBL) [16–19], which is the lowest por-
tion of the troposphere. The PBL represents sensitive and
variable coupling agents that regulate the fluxes of energy,
momentum, and matter between the surface and the free tro-
posphere [20]. After being emitted into the atmosphere, the
fate of pollutants (e.g., dispersion, mixing, transport, transfor-
mation, deposition) is strongly dependent on the PBL
charactersitics [18, 21]. In the vertical direction, the thermal
stratification controls the intensity of thermal buoyancy, and
the PBL wind in combination with the surface roughness es-
tablishes the strength of mechanical turbulence [16, 18].
Together they regulate the upward dispersion of pollutants
and the exchanging of cleaner air from above [18]. The con-
cept of boundary layer height (BLH) is widely used to char-
acterize the vertical limit of the dilution volume of pollutants
[22, 23, 24•, 25]. In the horizontal dimension, the wind fields
below the BLH are critical to the pollutant dilution and the
distance of downwind transport [18, 26]. When suspended in
the PBL, the pollutants may induce feedback to PBL structure
and undergo physical/chemical transformations, which are rel-
evant to meteorological factors such as humidity, temperature,
solar radiation, and the presence of certain atmospheric sub-
stances [11•, 18, 27–30].

Urbanization is one of the most essential human-induced
changes in land use [31], resulting in a high percentage of

asphalt and concrete in the megacities. Due to the differences
in surface properties and wasted heat from anthropogenic ac-
tivities, the air temperature in the densely built-up urban areas
can be warmer than that of rural surroundings by up to several
degrees Celsius [31, 32], especially during the night. This
heating phenomenon is called the urban heat island (UHI),
which not only impacts the thermal stability of PBL directly
[33, 34] but also affects the transport of pollutants by inducing
local thermal circulation [18]. In a megacity, the distribution
of the buildings and urban structures also dynamically influ-
ence air flow andmicroclimate, enhance turbulence, and mod-
ify the mixing, dispersion, and deposition of pollutants within
street canyons [5, 31, 35, 36].

The megacities in China are with a variety of geographic
conditions (e.g., inland, coastal, mountainous) (Table 1). The
urban PBL structure and wind fields inside and their subse-
quent interaction and effect on transport and dispersion of
pollutants are highly dependent on the existence of terrains/
seas [37, 38]. Besides, the large-scale synoptic pattern also
plays a vital role in modulating the PBL structure through
warm/cold advections [16, 39, 40]. Hence, the complex inter-
actions between PBL and aerosol pollution in megacities in-
clude the links shown in Fig. 1 and have the following spe-
cifics: (1) nonlinear interactions between surface properties,
emissions, and meteorology; (2) multiple spatial and temporal
scales; and (3) complicated feedbacks between PBL and
aerosols.

Recently, the importance of PBL dynamics and physics in
controlling key aspects of PM2.5 pollution in China is becom-
ing increasingly recognized [11•, 24•, 41, 42]. This paper in-
tends to review the current status of studies (mostly after
2015) on the complex PBL-pollution interactions in

Table 1 Population and PM2.5

concentration of megacities in
China in 2017

Megacity Population (million) PM2.5 annual average
concentration (μg m−3)

Location

Beijing 21.71 58 North China Plain
Tianjin 10.50 62

Shijiazhuang 10.88 86

Baoding 11.68 84

Linyi 10.56 60

Shanghai 24.18 39 Yangtze River Delta
Suzhou 10.68 42

Guangzhou 14.50 35 Pearl River Delta
Shenzhen 12.53 28

Chongqing 33.90 45 Sichuan Basin
Chengdu 16.04 56

Wuhan 10.89 52 Central China
Nanyang 10.05 56

Data sources: National Bureau of Statistics andMinistry of Ecology and Environment of the People’s Republic of
China. Note that Baoding, Linyi and Nanyang have a relatively smaller portion of the urban population at
prefectural level compared with other cities, but all have dense populations and the potential to achive a higher
urbanization level in the near future
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megacities in different geographic regions with various cli-
mates and to identify the main gaps in our current knowledge
as well as further research needs in this important field of
research. The remainder of this review is organized according
to the geographic locations of megacities. The most polluted
North China Plain (NCP) is first presented in the next section,
then followed by Yangtze River Delta (YRD), Pearl River
Delta (PRD), Sichuan Basin (SCB), and Central China.

North China Plain

There are 5 megacities (Beijing, Tianjin, Shijiazhuang,
Baoding, and Linyi) in the NCP (32–40° N, 114–121° E)
(Table 1), which is one of the most polluted and densely pop-
ulated regions in China. Located in a warm temperate zone,
the NCP has a semi-humid climate with four distinctive sea-
sons: short springs and autumns and long summers and win-
ters. The mean annual precipitation in the NCP is 500–
600 mm, and nearly 60% of annual precipitation occurs in
summer [43]. On a seasonal basis, the PM2.5 pollution in the
NCP is most massive in winter, followed by autumn and
spring, and reaches its minimum in summer [24•, 44]. This
seasonal variation in pollution is not only attributed to the
changes in emissions (e.g., heating in winter) and precipitation
but also to the differences in the BLH [21, 24•, 45•].

Surrounded by mountains and seas, the geography condi-
tions impact the PBL and air quality in the megacities of the
NCP in complex ways [45•, 46, 47]. The plain is bordered on
the north by the Yan Mountains, on the west by the Taihang
Mountains and the Henan highlands, and on the southwest by
the Tongbai and Dabie Mountains. From northeast to south-
east, it faces the Bohai Sea, the hills of Shandong Peninsula,
and the Yellow Sea. The terrains behave like a dustpan that
accumulates air pollutants in the cities close to the mountains,
such as Beijing, Shijiazhuang, and Baoding [1]. Under weak
synoptic situations, the blocking effects of mountains
can suppress the downward transport of momentum from free
troposphere to the PBL over these megacities, leading to calm
wind and weak mixing condition and exacerbating the PM2.5

pollution [47].
In addition, the local thermal contrast between the moun-

tains (land) and plains (sea) can induce thermal wind systems
(e.g., mountain-plain breeze and sea-land breeze) under syn-
optically quiescent conditions [18, 37, 45•]. The UHI can also
result in a local breeze between the downtown areas and sur-
rounding rural areas [48, 49], but it is usually weaker than the
mountain-plain breeze and sea-land breeze in the NCP [50].
The thermodynamic perturbations and turbulent mixings in-
duced by urbanization on surface properties can facilitate the
growth of urban PBL and the dispersion of PM2.5 [51], while
the urbanization-induced increases in aerosol emissions out-
weigh those of land use modification, resulting in a net

increase of aerosol concentration in megacities [52, 53•].
The local thermally circulations in the NCP are generally sub-
optimal pollution ventilators: first, the speed of these winds is
usually rather low (less than 7 ms−1) [18]; second, they are
closed circulation systems that accumulate pollutants in a lim-
ited box [45•]; and third, they exhibit a diurnal reversal in the
direction of winds (e.g., upslope/inland breeze during the day
and downslope/offshore breeze after sunset) that leads to a
recirculation of pollutants [45•, 54].

On a regional scale, the megacities in the NCP usually
experience heavy PM2.5 pollution simultaneously, which is
caused by specific synoptic patterns with warm advection
[24•]. To address the relationships between synoptic pattern
and aerosol pollution, several studies applied T-mode princi-
ple component analysis [55] to classify the pressure fields in
NCP objectively and investigated the PBL structure [24•, 39,
56, 57]. The heavy pollution episodes in Beijing are often
associated with a high-pressure system located to the east or
southeast of the city at 925-hPa level, accompanying with
southerly PBL winds that bring in pollutants from southern
regions [24•, 39, 57]. In the vertical direction, the warm ad-
vection above the PBL induced by synoptic forcings can
strengthen the inversion and thereby inhibit the growth of
PBL [16, 24•, 39, 57, 58], suppressing the diluting effect of
vertical mixing and leading to a high PM2.5 concentration near
surface. The mountain-plain breeze circulation can also en-
hance the existing inversion [45•, 54, 58]. In the afternoon,
the return flow of the closed circulation of mountain-plain
breeze can superimpose on the prevailing wind and bring
warmer air from the mountains to the neighboring cities
(e.g., Beijing, Shijiazhuang, and Baoding), strengthening the
inversion layer and leading to a shallow PBL [45•, 54, 58].

During the heavy pollution episodes, the cumulative explo-
sive growths of PM2.5 mass were often found to be associated
with stable atmospheric stratification, southerly slight or calm
winds, and near-surface anomalous inversion [59]. The high
concentrations of aerosols can enhance the stability of urban
PBL and in turn decrease the BLH and consequently further
exacerbate the pollution [54, 60, 61•, 62–64], which has been
known as the “two-way feedback mechanism” [11•]. The de-
creased PBL can increase relative humidity (RH) by weaken-
ing the diffusion of water vapor, facilitating the formation of
secondary inorganic aerosols and worsening the air quality.
This RH-related mechanism is self-amplifying, leading to
faster formation and accumulation of aerosols within the
PBL [65]. Among the compositions of particulate matter, the
black carbon (BC) aerosol, intensively emitted by residential
combustion, industrial activities, and transportation, has been
identified as the main culprit causing the PBL-aerosol feed-
back in the megacities [27, 61•]. By heating the upper PBL
and reducing the surface heat flux, the aerosol radiative effect
of light-absorbing BC aerosol can substantially suppress the
development of PBL [66]. This process has been referred to as
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the “dome effect” of BC, which played a vital role in the
formation of prolonging haze events in the NCP during
December 2013 [61•]. In addition, the light-scattering aerosols
also play an important role in lowering BLH by cooling the
land surface, which leads to an increase in RH and accumula-
tions of aerosols [67, 68].

The contributions of the PBL meteorology and aerosol
feedback to PM2.5 concentration in Beijing have been quanti-
tatively examined, which were responsible for approximately
84% of the explosive growth of PM2.5 during the cumulative
stage [69]. Since the heating/diming efficiency is sensitive to
the vertical distribution of aerosols, it is necessary to update
the vertical profile of aerosols in the model to improve the
simulation of PBL-aerosol feedback in the megacities [70].
Moreover, the vertical distributions of temperature, humidity,
and precursor gases also play a role in modulating the chem-
ical reaction rate and gas-particle partitioning at different
heights [11•, 29, 30, 68]. For instance, due to the more cooling
condition aloft that favors the gas-particle partitioning, the
mass fraction and concentration of particulate nitrate were
reported higher aloft (e.g., 260 m) than at the ground level in
Beijing [29]. The nighttime integrated production of particu-
late nitrate in the residual layer above can significantly in-
crease the near-surface aerosol concentration in the next morn-
ing through vertical mixing [71].

Yangtze River Delta

The YRD (28–33° N, 118–123° E), located in the coastal
regions of eastern China, has two megacities (Shanghai and
Suzhou) (Table 1) and enjoys a humid subtropical monsoon
climate with four distinct seasons. The mean annual

precipitation in YRD is 1000–1400 mm, and the rainy season
lasts from April to September. Similar to the NCP, the PM2.5

concentration in YRD also peaks in winter and has the lowest
value in summer, which is influenced by the seasonal varia-
tions in emission, BLH, prevailing wind, and precipitation
[21, 24•, 72, 73]. Comparing with the PM2.5 pollution in
NCP, the pollution in YRD is lighter (Table 1), but the annual
average pollution concentration is still significantly higher
than the guideline of WHO.

During the past decades, the YRD has been experiencing
an intensive urban expansion and become the largest metro-
politan cluster in the world [53•]. This remarkable urbaniza-
tion can lead to a decrease in surface and lower tropospheric
PM2.5 concentration by increasing the BLH and ventilation
over the urban areas, favoring the dispersion of pollutants
from urbanized areas to their immediate vicinities [53•, 74];
however, the increased pollutant emissions add even more,
resulting in a net increase in the occurrence of haze, particu-
larly in winer [53•].

In the YRD, the vertical distribution of PM2.5 in the urban
areas is observed to be strongly correlated with the meteoro-
logical variables within PBL, such as temperature, RH, and
the existence of inversion [75, 76]. Based on the long-term
continuous measurements in the western YRD, the complex
linkages between the PBL meteorology and the diurnal evo-
lution of pollutants have been recognized [60, 77], including
the fumigation of residual-layer plumes, the turbulent mixing
of pollutants within a convective PBL, and the formation of
elevated pollution layer.

Given the importance of BC for air quality and regional
climate [61•], in December 2013, an intensive field campaign
was launched in Shanghai to unravel the vertical structures of
PBL and BC [76]. During a diurnal cycle, the BC

Fig. 1 Schematic showing the
complex interactions between
PBL and aerosol pollution in a
megacity
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concentration at ground level was modulated by both the
emission and BLH, leading to the highest BC level in the
morning associated with high traffic emission and shallow
BLH. In the afternoon and after sunset, distinct vertical pro-
files of BC were observed using the tether balloon [76]. The
profiles at night showed strong gradients from the high con-
centration at ground level to low concentration near the top of
PBL at around 200 m AGL, while in the afternoon, the BC
particles were well mixed in the PBL with a depth of more
than 1000 m. The BC particles can modify the PBL meteorol-
ogy and air quality. For example, in the harvest seasons, the
biomass burning plumes with considerable amounts of light-
absorbing aerosols (e.g., BC and brown carbon), are found to
cause a significant cooling at the ground surface and warming
in the atmosphere, resulting in the “dome effect” over the
YRD. Such a modification can suppress the vertical mixing
and dispersion of pollutants and lead to heavy pollution in the
lower PBL [60], which is not only limited to biomass burning
events. In winter, the shallow PBL in YRD often coincides
with high extinction of aerosols at low altitude, leading to an
enhanced cooling effect within the near-surface layer and the
suppression of BLH [72]. The PBL-pollution interaction is a
common phenomenon across the YRD, which can further
modify cloud properties and precipitation patterns [60].

From the perspective of synoptic condition, under the con-
trol of slowly migrating anti-cyclone, the subsidence airflow
can suppress the vertical mixing and favor the accumulation of
pollutants within a relatively shallow PBL over the YRD [73,
78–80], notably when the subsidence thermal inversion or
nocturnal surface inversion formed [80]. The equal pressure
field associated with strong thermal inversion and high RH is
another typical pattern that causes heavy pollution in the YRD
[81]. Besides, the strong northwesterly frontal airflow can
cause trans-border transport of aerosols from the NCP to the
YRD, leading to a deteriorated air quality in the YRD mega-
cities [79]. Under stagnant synoptic conditions when the east-
to-southeast winds prevail in the YRD, the sea-land breeze
would frequently develop, resulting in the recirculation of
airflow in the coastal cities [82, 83], which allows the accu-
mulation of aerosols and leads to heavy pollution events.

Pearl River Delta

The PRD (21–25° N, 111–115° E), located in the coastal re-
gion of southern China, has two megacities (Table 1):
Guangzhou and Shenzhen. It is controlled by a subtropical
monsoon climate characterized by warm winters and hot and
humid summers. The annual precipitation is 1600–1900 mm,
with rainy season lasting from April to September [84]. The
PM2.5 pollution in PRD is heaviest during winter, followed by
spring and autumn, and summer is the cleanest season [21,
85]. Although the air quality in the megacities of PRD is much

better than those northern megacities in China, it still cannot
meet the annual guideline of the WHO (Table 1).

Based on the continuous multi-wavelength Raman and po-
larization lidar observations in the PRD, lofted layers of aero-
sol were often observed above the PBL [84]. The heights of
these lofted layers exhibit a seasonal dependence, with heights
below 2 km AGL during winter and heights up to
5 km AGL in spring. The occurrence of lofted aerosol
layers may be related to the regional transport of pol-
lutants, diurnal growth/evolution of PBL, and local ther-
mally driven circulations [84, 86]. The lofted aerosols can
impact the precipitation and lightning in the PRD: it may
suppress the light and moderate rainfall, but enhance the
heavy rainfall and lightning [87].

In the PRD, tropical cyclone is a typical weather condition
responsible for poor air quality [88•], especially during sum-
mer and autumn. The peripheral subsidence airflow induced
by the tropical cyclones can reduce the BLH in the megacities
and produce stagnation of surface flow, thereby limiting the
vertical mixing and horizontal diffusion of locally emitted
pollutants [88•]. The subsidence is often associated with ther-
mal inversion layers over the urban areas, which can strongly
inhibit the growth of PBL. During the intensive PBL observa-
tions over the PRD in October 2004 and July 2006, the occur-
rence frequency of inversion associated with the subsidence of
tropical cyclones was ~ 52%, and most of the inversion layers
occurred at the height below 1000 m AGL [88•]. Another
typical situation that can lead to inversion and heavy pollution
is the warm period before a cold front, in which the occurrence
frequency of inversion was ~ 77% during the intensive PBL
observations, and the surface inversion occurred more fre-
quently than the elevated inversion [88•]. In addition, two
kinds of typical PBL structure that leads to poor air quality
in PRD were observed during the winter in 2013 [86]: weak
vertical diffusion ability type and weak horizontal transporta-
tion ability type. The first type is featured by moderate wind
speed, consistent wind direction, and thick inversion at 600–
1000 m AGL, and the latter is characterized by calm wind,
varying wind direction, and shallow intense surface inversion
layer [86].

Similar to the YRD, when the PRD is under the control of
weak synoptic systems (e.g., anticyclone), the sea-land breeze
frequently develops, which can lead to the formation of inver-
sion layers and the recirculation of pollutants [86, 88•, 89]. For
example, the pollutants are observed initially transported
away from Xinken (22.36° N, 113.35° E), but subsequently
returned [88•]. Besides, the high urbanization level in the PRD
can enhance turbulent mixing within the PBL and modify
local thermal circulations, such as the initiation of UHI
circulation and strengthening of sea breeze [90]. Despite
the urbanization processes which increase the BLH over
the urban areas in the PRD, the induced surface UHI
convergence and intensified sea breeze may still act to
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exacerbate the pollution through enhancing the pollutant re-
circulation [89, 90].

Sichuan Basin

The SCB (28–32° N, 103–108° E) is the most developed
region in southwestern China, located east to the Tibetan
Plateau, with the Qin Mountains to the north and the
Yunnan-Guizhou Plateau to the south. There are two mega-
cities in the SCB: Chongqing and Chengdu (Table 1). The
SCB is generally at low altitudes of ~ 500 m. It has subtropical
monsoon climate with high temperature and RH. The
annual precipitation is 1000–1300 mm, with rainy sea-
son lasting from June to October. This region has long
been recognized as a low visibility area with high aerosol
pollution level [91]. During an annual cycle, the most serious
PM2.5 pollution occurs in winter, and the lowest pollution
level is in summer [21, 24•, 92].

Due to the blocking effects of surrounding terrains, the
wind in the SCB is quite weak, especially in the western part
[93]. From the clean stage to polluted stage, the wind speed in
Chengdu typically shows a substantial decrease [94]. The low-
er wind speed is unfavorable to the diffusion of pollutants. The
wind direction also differs under various polluted/clean stages.
For example, the stronger northeasterly wind often prevails
during the clean period in Chengdu, which carries cleaner
air masses from the less polluted areas to the city [94]; while
during the polluted period, the wind usually comes from the
south of Chengdu, where many industrial cities are located
(e.g., Luzhou, Panzhihua), leading to the transport of pollut-
ants and the deterioration of air quality in Chengdu [94].
Moreover, the mountain ranges to the west of Chengdu act
as a barrier to the air flow from the east and cause the accu-
mulation of pollutants in front of the mountain [93, 95]. In
addition to the weak wind, the high RH is also critical to the
pollution in the SCB. The aqueous-phase reaction is a key
formation pathway for the PM2.5 species [94].

Since the weak 10-m wind along with shallow PBL tends
to restrict the diffusion of PM2.5, a specific day can be defined
as an air stagnation day when it has no precipitation and the
combining index of 10-m wind speed and BLH are below a
threshold [47]. It is found that the SCB is exposed to the air
stagnation conditions for approximately half of the year. From
2013 to 2016, the occurrence frequency of air stagnation days
in SCB during winter was ~ 77% in SCB [93]. The BLHs in
the margins of the basin are lower than those at the center
during winter, and the areas with the shallowest PBL are ex-
actly where Chengdu and Chongqing are located [93], leading
to an extremely high occurrence frequency of air stagnation
and heavy pollution in these two megacities.

Similar to those megacities in the NCP, Chengdu and
Chongqing also often experience the stagnation conditions

and resultant heavy PM2.5 pollution simultaneously [24•].
Comparing with the clean days, those days with heavy pollu-
tion in the SCB are typically characterized by low BLH and
strong thermal inversion at 900-hPa level [24•]. The strong
thermal inversion is often associated with the low-pressure
system at 700-hPa level, induced by the dynamic and thermo-
dynamic effects of the Tibetan Plateau [96]. Comparing with
other flat regions, the air quality issue associated with thermal
inversion is further aggravated in the SCB since the source
area is topographically confined, and the inversion lid usually
lies at a lower elevation than the basin sides. Moreover, the
surrounding elevated terrains could induce lee eddies in the
basin, which could trap the pollutants, leading to heavy pol-
lution in the whole SCB [24•].

Besides, during the harvest season from February to
October, biomass burning is an essential contributor to air-
borne particles in the SCB, owing to the widespread burning
activity after harvest and large consumption of agricultural
residues for energy source [97]. For instance, the emitted par-
ticles from crop residues were observed to rapidly increase the
PM2.5 concentration in Chengdu [97]. During a diurnal cycle,
the pollution is often characterized by dramatic build-up of
aerosol concentration at night, when intensive burning
of crop residues is carried out and the BLH is decreased
to the minimum level [97]. Since the biomass burning
plumes contain light-absorbing aerosols, they could cause sig-
nificant impact to the PBL dynamics through the “dome ef-
fect” [11•, 60, 98].

Central China

There are three provinces in Central China (29–36° N, 108–
117° E), including Henan, Hubei, and Hunan. The subtropical
monsoon climate controls the southern part of Central China,
while the northern part is influenced by the temperate mon-
soon climate, leading to distinct annual precipitation from the
south (~ 1500 mm) to the north (~ 500 mm). It has two mega-
cities: Wuhan and Nanyang (Table 1). Comparing with those
abovementioned regions, where the PBL-pollution link-
ages have been extensively investigated, the studies on
the PM2.5 pollution and PBL structure in Central China are
quite limited. Only a few studies focused on the air quality
issues in Wuhan.

Similar to the seasonal change of pollution in the NCP, the
PM2.5 concentration in Wuhan also demonstrates a pro-
nounced seasonal variation, with the peak in winter and min-
imum in summer, which is modulated by the changes in pre-
cipitation, emission, and PBL structure [21, 24•, 99]. Based on
radiosonde data and PM2.5 measurements in summer from
2013 to 2016, the relationships between the BLH and PM2.5

pollution in Wuhan were elucidated [100]. Noticeable diurnal
variation of BLH is revealed by the sounding data, which
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peaks in the afternoon and decreases quickly after sunset.
Such a diurnal change in BLH is reversely correlated with the
diurnal variation of PM2.5 concentration. The day-to-day co-
variations in BLH and PM2.5 concentrations were also exam-
ined, and significant anti-correlation was found. These results
imply the critical roles of PBL in the PM2.5 pollution in Wuhan
[100]. Two synoptic patterns characterized by northeasterly
winds are found to be associated with heavy pollution in
Wuhan. Influencing by the northeasterly prevailing winds, the
pollutants emitted from the NCP and the YRD can be
transported to Wuhan, worsening the pollution [100]. The case
study of PM2.5 pollution on 12 October 2014 also emphasizes
the significant impact of long-range transport of pollutants from
NCP to Wuhan [101], which could contribute ~ 60% of PM2.5

in Wuhan. Besides, the intensive biomass burnings in and
around Wuhan are found to be critical to the air quality during
the summer and autumn [102, 103]. During the pollution epi-
sodes dominated by biomass burning, the aerosol plume can
induce “doom effect” to modify the PBL thermal structure and
exacerbate the pollution in Central China [11•, 98].

Conclusions

In 2017, there are in total 13 megacities in China, including
five cities in the NCP (Beijing, Tianjin, Shijiazhuang,
Baoding, and Linyi), two cities in the YRD (Shanghai and
Suzhou), two cities in the PRD (Guangzhou and Shenzhen),
two cities in the SCB (Chongqing and Chengdu), and two
cities in Central China (Wuhan and Nanyang). Most of
these megacities are suffering from heavy PM2.5 pollution.
Table 2 summarizes the recent studies on the PBL and aerosol
pollution in China. The air quality issues and key influencing
processes in these megacities differ significantly, which are
relevant to several factors, such as meteorology, topography,
demography, transportation, fuel quality, energy usage, and
the level of industrialization, urbanization, and socio-
economic development.

As the buffer zone between the surface and the free tropo-
sphere, PBL meteorology is one of the most critical factors
regulating the PM2.5 pollution in the urban areas. The BLH
directly determines the vertical volume for the dispersion and

Table 2 Summary of recent
studies (mostly after 2015) on the
PBL and aerosol pollution in
Chinese megacities

Location Research focus References

North China Plain Synoptic pattern Miao et al. [39, 57], Ye et al. [56]

Mountain-plain and sea-land breezes Miao et al. [28, 33, 45•, 54], Hu et al. [58]

Impacts of urbanization Yu et al. [34], Zheng et al. [49],

Miao et al. [35, 36, 50], Chen et al. [51]

Aerosol radiative feedback Miao et al. [54], Zhong et al. [59, 68, 69],

Ding et al. [61•], Quan et al. [62],

Gao et al. [63], Huang et al. [66],

Qiu et al. [67], Wang et al. [70]

Yangtze River Delta Synoptic pattern Yang et al. [40], Shu et al. [73],

Leng et al. [78], Kang et al. [79],

Liao et al. [80], Zhou et al. [82]

Sea-land breeze Huang et al. [83]

Impacts of urbanization Zhong et al. [53•], Xie et al. [74]

Aerosol radiative feedback Ding et al. [60], Sun et al. [72],

Li et al. [76], Zhong et al. [11•]

Pearl River Delta Synoptic pattern Wu et al. [88•]

Sea-land breeze Li et al. [86], Lo et al. [89]

Impacts of urbanization Li et al. [90], Lo et al. [89]

Aerosol radiative feedback Zhong et al. [11•]

Sichuan Basin Synoptic pattern Miao et al. [24•], Ning et al. [96]

Topographic impacts Miao et al. [24•], Wang et al. [47]

Liao et al. [93, 95]

Aerosol radiative feedback Zhong et al. [11•]

Central China Synoptic pattern Miao et al. [24•], Liu et al. [100]

Cross-border pollutant transportation Liu et al. [100], Lu et al. [101]

Aerosol radiative feedback Zhong et al. [11•]
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dilution of pollutants; thus, its change modulates the PM2.5

pollution at multiple temporal scales, including the seasonal,
daily, and hourly variations. On a seasonal basis, all the mega-
cities in China experience the most serious PM2.5 pollution in
winter, relevant primarily to the lowest seasonally averaged
BLH in that season. The day-to-day variations of pollution in
megacities are closely governed by the evolution of synoptic
condition and the forced PBL structure. The synoptic
forcings often lead to concurrent drops of BLH, and
synchronous increases of PM2.5 concentration in several
megacities belong to a region, such as the NCP, SCB,
and Central China. During a diurnal cycle, the daily
curve of PM2.5 concentration often shows two maxima,
one in the early morning and one in the evening, consistent
with the low values of BLH and the peaks in activities which
generate pollution at that time.

For the PBL structures and processes, the coastal megacities
may have different concerns to themountainous or land-locked
megacities. In the YRD and PRD, the frequently developed
sea-land breeze can induce recirculation to accumulate the pol-
lutants in the coastal cities. In the NCP, the terrains behave like
a dustpan that accumulates pollutants in the cities close to the
mountains, such as Beijing, Shijiazhuang, and Baoding. The
diurnal reversal in the upslope and downslope winds also leads
a recirculation of pollutants in these cities. During the daytime,
the closed thermal circulation developed between the moun-
tains and plains can bring the aloft warmer air to the cities,
further strengthening the inversion and inhibiting the vertical
mixing of pollutants. In the SCB, the cities are topographically
confined, with frequent occurence of weak near-surface wind
and strong thermal inversion above PBL. As a result, the cities
in SCBare exposed to the air stagnation conditions for approx-
imately half of the year, leading to the frequent heavy pollution
there. In Central China, the air quality in megacities is usually
influenced by the long-range transport of pollutants from up-
stream regions, such as the NCP and YRD.

In the past decades, most cities in China have been
experiencing intensive urban expansion and substantial land
use change. The induced thermodynamic perturbations and
turbulent mixings can facilitate the growth of PBL and the
dispersion of pollutants; however, the urbanization-
induced increases in emissions outweigh those of land
use modification, resulting in a net increase of aerosol
in megacities. Last but not least, during heavy pollution
episodes, the aerosol radiative effects can significantly
modify the PBL structure in megacities, which can heat
the upper PBL and reduce the surface heat flux, leading
to the suppression of the PBL development and the deteriora-
tion of air quality.

Although great efforts have been devoted to elucidating the
complex interactions between the PBL and aerosol pollution
in China in recent years, most studies focused on Beijing,
Shanghai, Guangzhou, and Chengdu, and the PBL structure/

process in the other megacities is still far from well known,
especially for Central China. In addition to those 13 mega-
cities listed in Table 1, the urban PBLs in other heavily pol-
luted and densely populated cities in China also need further
investigations, such as Zhengzhou [24•], Lanzhou [104],
Xi’an [105], Harbin [24•], and Shenyang [106].

Besides, at present, most regions of China still lack ade-
quate long-term continuous PBL observation. The vertical
distributions of both meteorological variables and aerosol
properties within the PBL in megacities need to be better
understood and resolved in the model, as they dominate the
local energetics and mass budgets for more accurate
forecasts. This requires observation campaigns over
key megacities to utilize advanced instruments to obtain
high-resolution vertical profiles.
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