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Abstract Due to the high surface reactivity and redox chem-
istry, iron (Fe) minerals have a strong control on contaminant
speciation, mobility and degradation. This has been well
established for sediment and solution systems, and this review
evaluates the role of Fe minerals in contaminant cycling from
a sediment pollution perspective. Sediment redox conditions
govern the Fe mineralogy, and a detailed description is given
for Fe mineral interactions with contaminants in both oxic and
sub/anoxic sediment horizons. These interactions include con-
taminant immobilisation through adsorption and co-
precipitation mechanisms and contaminant degradation and
speciation changes caused by Fe redox chemistry. Based on
these reductive and adsorptive capabilities, recent advances in
Fe amendment technologies, particularly in the field of
engineered zero-valent Fe nanoparticles, have shown promis-
ing results for the treatment of polluted soils and sediments.
However, the variable chemical and physical dynamics of
sediment systems remains a limitation to the global applica-
tion of these technologies.
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Introduction

Rampant anthropogenic activity has detrimentally in-
creased the pollution levels in all of the earth’s natural
reservoirs [e.g. 1, 2]. Because sediments represent a sink
for these pollutants, sediment pollution in marine, estua-
rine, lacustrine and fluvial systems is increasingly being
recognised as an emerging global concern [3–5].
Accumulation of toxic metals, metalloids and persistent
organic contaminants in aquatic sediments poses a threat
to benthic organisms and can further impact on other
aquatic organisms if contaminants are released into the
aqueous phase either through sediment re-suspension
events (both natural (e.g. slumping, bioturbation) and in-
duced (e.g. dredging activity)) or through chemical vari-
ability in the sediment environment (e.g. redox changes,
pH changes). Trace metals are particularly important in
this regard, as their persistence, toxicology and propensity
to bio-accumulate in higher trophic levels are concerning
for public health [e.g. 6, 7].

Iron is the most abundant transition metal in the Earth’s
crust, yet it is not commonly reported as a soil or sediment
pollutant [8, 9]. An exception lies in the rice industry, where
low oxygen conditions enhance Fe(II) concentrations and can
result in Fe toxicity, which detrimentally affects rice yields
[10, 11]. Under oxic conditions, however, the bioavailability
and toxicity of iron is limited by its exceedingly low solubility
[12] which results in the precipitation and subsequent stability
of iron (oxy-hydr)oxide minerals (e.g. ferrihydrite, goethite,
hematite). These ubiquitous mineral phases are redox reactive
and are well known for their propensity for adsorbing various
inorganic and organic pollutants [e.g. 13–17]. They have thus
attracted much attention as a viable mineral amendment op-
tion and have successfully been applied to remediation of
polluted soils [see reviews 18–20] and sediments [21–23].
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Typically, these amendments can be applied as in situ soil
treatments whereas sediment treatments require either prior
dredging [24] or the development of a confined aquatic dis-
posal cell [25]. Qian and co-workers [23] have shown that in
situ ferrihydrite additions are able to immobilise various trace
metal contaminants in sediments whilst simultaneously de-
creasing their bioavailability and toxicity. Hematite and
zero-valent iron additions have also been shown to reduce
trace metal toxicity in sediments [26] and pilot-scale work
on dredged sediment samples has shown that these mineral
phases have significant ability to immobilise As, Cd, Cu, Mo,
Ni and Zn when applied at a 5 % amendment ratio [24].

Because of the importance of Fe and Fe minerals to con-
taminant cycling and stabilisation, this work assesses the sta-
tus of knowledge of these interactions in contaminated sedi-
ment systems. Although high iron loading can result in Fe
toxicity, these cases are relatively isolated and discussions
on Fe as a pollutant thus fall outside of the scope of this
review. The role of iron mineral amendments for remediation
of polluted sediments is evaluated, and the recent advances in
Fe-based amendment strategies (particularly nano-particulate
and zero-valent Fe amendment strategies) are critically
reviewed.

Iron Mineralogy and Cycling in Sediments

Iron represents the fourth most abundant element and the most
abundant transition metal in the earth’s continental crust.
Much of this iron originates from Fe(II) bound in the lattice
structures of ferro-magnesian silicate minerals (e.g. olivine,
pyroxene, biotite and amphiboles) and in magnetite, a
mixed-valence Fe oxide. Weathering and oxidation under sur-
face environmental conditions cause the low temperature geo-

chemical transformation of these minerals into secondary ox-
ides and clay minerals [e.g. 12]. Under these oxic conditions,
ferric iron (Fe(III)) is the thermodynamically favourable oxi-
dation state and predominantly forms highly insoluble ferric
oxide and ferric oxy-hydroxide mineral phases. These can
exist either as discreet crystals (including nano particles) or
as coatings on other mineral phases, and due to their ubiquity,
redox activity and amphoteric surface reactivity, they are
known to have a strong control on the chemical properties of
soils and sediment.

Depending on the climatic conditions, the most common
soil and sediment Fe (oxy-hydr)oxides are goethite (α-
FeOOH), hematite (Fe2O3) and amorphous and poorly crys-
talline phases (including ferrihydrite and green rusts).
Lepidocrocite (γ-FeOOH) is less common and is typically
found in sub-micron scale association with goethite [27],
and akaganeite (β-FeOOH) is confined to unique chloride-
rich environments (e.g. acid sulphate wetland sediment [28]
and acid mine drainage sediment [29]). The adsorption of
contaminants to these Fe (oxy-hydr)oxides is governed by
the ambient pH conditions and by the reactivity, structure
and chemistry of the hydroxyl groups on the mineral surfaces
[30]. Contaminant adsorption to Femineral surfaces can occur
through inner-sphere and outer-sphere complexation reac-
tions, ligand exchange reactions and through the formation
of ternary complexes (Eqs. 1–7; after [30]). Spectroscopic
investigations have shown that Fe (oxy-hydr)oxide mineralo-
gy can exert a control of the nature of these bonding interac-
tions, thereby impacting the stability and mobility of the com-
plexed contaminants (Fig. 1). For example, spectroscopic
techniques have shown that Se(VI) forms outer-sphere com-
plexwith goethite [32] whereas it coordinates with ferrihydrite
via inner-sphere bidentate bonding ([33]; additional examples
in [31] and in Fig. 1).

The iron (oxy-hydr)oxides are stable in the oxic surface
layers of the sediment (upper few mm to cm, depending on
sediment grain size distribution); however, as minerals and
their associated contaminants are buried and undergo early

diagenesis, their stability and speciation change (Fig. 2).
Ageing reactions lead to the transformation of amorphous
and poorly crysta l l ine phases (e .g. ferr ihydri te ,
schwertmannite) into more crystalline minerals (e.g. goethite,
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hematite), whereas reductive biogeochemical reactions (nota-
bly organic matter degradation) cause a rapid decrease in the
redox potential with depth thereby affecting mineral stability.
In the sub-oxic zone, Fe(III) oxides act as electron acceptors
and, following reductive dissolution pathways, Fe(II) and
adsorbed and co-precipitated contaminants are released into
solution. Mobilised Fe(II)aq can migrate to the redox front to
further interact with pollutants as a reducing agent. In anoxic
sediment, oxygen concentrations are diminished, Fe(III) ox-
ides have largely been reduced and sulphate is an important
electron acceptor. Under strongly anoxic (i.e. sulphidic) con-
ditions, sulphide mineral solubility and stability have a strong
control on the partitioning of inorganic pollutants between
dissolved complexes and solid mineral phases. Iron sulphide
minerals include mackinawite (tetragonal FeS) which typical-
ly precipitates as a nano-particulate phase; greigite (Fe3S4,
inverse spinel structure) which can form from the solid state
transformation of mackinawite; and pyrite (FeS2) which is
typically micro-particulate due to its rapid crystal growth
and is the most common iron sulphide in sediments [36, 37].

Iron Mineral Interactions with Sediment Pollutants

Because iron mineral stability is strongly dependent on the
ambient redox properties of the sediment, large differences
in the Fe mineral interactions with various inorganic and or-
ganic contaminants can be expected between oxic, sub-oxic

and anoxic sediment horizons. The largest volumes of work
have been conducted on Fe oxides which are stable in the oxic
horizons and which are well known for their adsorption ca-
pacity for metals and metalloids in soils and in experimental
systems. Because of the complexities associated with sam-
pling and analysis [38], a far smaller volume of work has been
conducted on the pollutant-mineral interactions in reduced
and in reducing sediment horizons, where Fe carbonates,
phosphates and sulphides are the dominant Fe minerals
present.

Contaminant-Mineral Interactions in Oxic Sediments

Arsenic

Arsenic exists in soils and sediments predominantly as inor-
ganic arsenate (As(V)) and arsenite (As(III)). It is discussed
here separately from toxic trace metals because of its classifi-
cation as a metalloid because it is characterised by a strong and
well-studied association with Fe oxides and because As tox-
icity has been highlighted as a major and currently occurring
human health concern (e.g. Bangladeshi drinking water [39]).
Arsenite is more toxic and more mobile than As(V) [40], and
both forms can be more toxic than many of the
organoarsenical moieties [41]. Arsenic toxicity can bemitigat-
ed by immobilisation through adsorption to or co-precipitation
with different Fe (oxy-hydr)oxide mineral phases [15].
Although both forms show a strong geochemical association

Fig. 1 Comparison between selected bonding interactions at a goethite
surface (a) and a ferrihydrite surface (b) highlighting the effect of
mineralogical controls on contaminant sorption. Se(VI) forms outer-
sphere complexes with goethite and inner-sphere complexes with
ferrihydrite. Sr(II) forms inner-sphere bidentate bonds with goethite but

outer-sphere bonds with ferrihydrite. As(V) forms inner-sphere bidentate
and minor monodentate bonds with goethite, and inner-sphere bidentate
bonds with ferrihydrite [31, and references therein]. Co-precipitation and
occlusion is another mechanism for contaminant sequestration (e.g. Ni(II)
in ferrihydrite structure). Figures are orientated facing the 111 plane
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with Fe, the oxidised form (As(V)) is more strongly bound to
Fe (oxy-hydr)oxide surfaces than As(III). This is achieved
through the formation of bidentate inner-sphere bonding co-
ordination of As(V) at the oxide surface [15, 42], although
monodentate bonding has also been reported, typically when
the pH is greater than eight [42].

Aside from the effects of As speciation and pH, other
chemical and mineralogical factors can affect the stabil-
ity and extent of As adsorption. For example, among
the different Fe (oxy-hydr)oxides, ferrihydrite is known
to have the highest sorption capacity for As due to its
high surface area [17, 43], and Al substitution for
Fe(III) in the various oxide mineral structures has been
shown to decrease As adsorption [44]. Arsenic adsorp-
tion can further be decreased by the presence of Fe-
binding ligands (e.g. dissolved organic matter [45] and
inorganic ligands such as phosphates [46]) which com-
pete for surface bonding sites on Fe (oxy-hydr)oxide
surfaces. In contrast, the presence of Zn can significant-
ly increase the adsorption of As by goethite through the
formation of Zn-AsO4 surface complexes [47].

Trace Metal Pollutants

Unlike organic pollutants which can be degraded, trace metals
(e.g. Cd, Cr, Cu, Ni, Pb, Sn, Zn) remain persistent in sediment
systems, where they can pose severe toxicity risks to benthic
and aquatic organisms [20]. These trace elements must thus
either be removed from the system (relocation and/or ex situ
remediation) or their toxicity must be mitigated through
changing their speciation (e.g. Cr(VI) to Cr(III)) or through
decreasing their mobility (i.e. through geochemical
stabilisation with sediment constituents such as Fe (oxy-hy-
dr)oxide phases). Relative to As, trace metals are not as
strongly adsorbed to Fe mineral surfaces and the stability of
these various adsorption complexes is often more strongly
dependent on parameters (especially pH) other than the Fe
mineralogy and concentration [48]. For example, Cd(II) is
known to form edge-sharing and corner-sharing inner-sphere
complexes with goethite and ferrihydrite [16], yet in marine
sediments with high Cl− activity, the formation of mobile Cd-
chloride complexes inhibits surface adsorption to sediment
minerals [49].

Fig. 2 Interactions between Fe mineral phases and inorganic and organic
contaminants and the transformations and variations that occur due to
sediment biogeochemistry. (1) Ageing transformations from poorly
crystalline phases (e.g. ferrihydrite, schwertmannite) to more crystalline
phases (e.g. goethite, hematite) typically lead to an expulsion of adsorbed
contaminants due to decreases in mineral surface area. However, divalent
cations associated with the more crystalline phases typically become
more recalcitrant [34]. (2) Reductive dissolution of Fe oxide minerals
leads to the release of adsorbed and co-precipitated contaminants, with
a concomitant release of reduced Fe(II) into solution. (3) Disturbances to
the sediment structure during diagenesis (e.g. bioturbation, dredging and
sediment re-suspension) can lead to speciation changes (due to infiltrating

O2) and can also lead to release of contaminants into the water column,
thus posing a threat to aquatic organisms. (4) The released flux of Fe(II)
can act as an electron donor during coupled redox transformation of
contaminant phases. This is the premise on which the Fe(0) and Fe(II)
amendment strategies are based. (5) The reduced Fe(II) flux can also re-
precipitate at the redox boundary to form poorly crystalline phases
(including mixed metal species such as FeAsO4-H2O) which can
incorporate various trace metal contaminants. (6) Under highly
anaerobic conditions, sulphur speciation has the strongest control on
contaminant chemistry. Pyrite readily precipitates and can incorporate
trace metals such as Co and Ni. Effect of Eh on redox couples is after [35]
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Chromium exists in sediment horizons in either its trivalent
(Cr(III)) or more toxic hexavalent (Cr(VI)) form [e.g. 50], and
both species have been shown to interact with Fe minerals
[51]. Depending on Fe (oxy-hydr)oxide mineralogy, bonding
interactions range from inner-sphere monodentate and
bidentate coordination to epitaxial and non-epitaxial precipi-
tation on oxide surfaces (see Table 1 in [31]). Notably, Cr(VI)
toxicity can be mitigated by reductive precipitation at Fe(II)
structural sites on magnetite surfaces [52]. Ferric (oxy-hy-
dr)oxide surfaces can also play a strong role in catalysing
the reduction of Cr(VI) by Fe(II) resulting in the surface pre-
cipitation of Cr(OH)3 [53]. Finally, adsorption of Cr(III) to Fe
(oxy-hydr)oxide surfaces can inhibit its Mn-oxide-mediated
oxidation to toxic Cr(VI) [54].

Adsorption of divalent metal ions (e.g. Cu(II), Pb(II),
Zn(II)) to Fe (oxy-hydr)oxide surfaces is most strongly con-
trolled by ambient sediment pH. Because the point of zero
charge (PZC) for these minerals occurs at circumneutral pH
[12], their surfaces become increasingly positive as pH de-
creases, thereby decreasing the likelihood of interaction with
cationic metals. Fe (oxy-hydr)oxides are generally regarded as
being a good sink for Cu [20] and have been shown to form
inner-sphere complexes with goethite and poorly crystalline
Fe oxy-hydroxides (see Table 1 in [31]). Adsorption of Cu has
also been shown to block the complexation of other divalent
contaminants (i.e. Zn) through competition for sorption sites
on Fe (oxy-hydr)oxide surfaces [55]. Zn also forms inner-
sphere complexes with Fe (oxy-hydr)oxides and the exact
bonding configuration is strongly dependent on Fe mineralo-
gy and pH [56, 57]. Similarly, Pb bonding interaction is par-
tially controlled by mineralogy, forming bidentate edge-
sharing complexes with goethite [58] and multinuclear com-
plexes with ferrihydrite [59]. In spite of the formation of these
inner-sphere bonds to Fe (oxy-hydr)oxides, Pb shows a much
stronger bonding affinity for Mn oxides which are thus up to
40 times more efficient in stabilising this toxic metal [60, 61].

Organic Pollutants

Iron oxides are known to have strong geochemical in-
teractions and associations with organic matter in soils
[62] and in deposited and suspended sediments [63, 64].
The interactions between Fe minerals and organic con-
taminants (e.g. polycyclic aromatic hydrocarbons,
polychlorinated biphenols, antibiotics etc.) are compli-
cated by the wide range in organic contaminant struc-
ture and functional group chemistry. However, multiple
studies have shown that Fe mineral phases can adsorb
organic contaminants thereby stabilising their mobility
in soil and sediment systems [e.g. 13, 14, 65]. For an-
tibiotic contaminant phases, the bonding interaction is
attributed to chemical complexation at the Fe oxide sur-
faces [14, 65] and can be inhibited by the presence of

competing ions (e.g. P, Ca [14]). However, the forma-
tion of these surface complexes may not always lead to
contaminant immobilisation, as the complexation can
lead to ligand-promoted dissolution of Fe mineral
phases [66]. Fe minerals can also play a catalytic role
in organic pollutant degradation through oxidative
Fenton-like reaction pathways [67, 68].

Contaminant-Mineral Interactions in Sub-Oxic
and Anoxic Sediments

At depths below the upper-most oxic sediment layer, the sed-
iment redox potential decreases, causing a decrease in the
stability of Fe(III) mineral phases with a concomitant increase
in the stability of porewater Fe(II) and reduced secondary
minerals (e.g. vivianite (Fe3(PO4)2; siderite (FeCO3) and
Fe(II) sulphides). This reduction of the Fe(III) (oxy-hydr)ox-
ide minerals and production of Fe(II) gives rise to a number of
dynamic chemical processes that can have impact on the spe-
ciation and mobility of sediment pollutants (Fig. 2).
Importantly, the reductive dissolution of Fe (oxy-hydr)oxide
minerals leads to the release of adsorbed and co-precipitated
pollutants into the pore waters, potentially representing a sig-
nificant source of pollutants into the overlying water column
[69]. For example, the reducing conditions associated with
flooded rice paddies results in the release of high concentra-
tions of As(III) to the soil porewater [70, 71]. The released
flux of Fe(II) can affect contaminant fate in two ways: direct
interaction with the contaminants through coupled redox
transformation [35] or in situ re-oxidation to precipitate oxide
phases with co-precipitated contaminants [72].

Interaction between reduced Fe and pollutants has been
well studied, and a range of remediation techniques utilises
this principle to stabilise inorganic pollutants and degrade or-
ganic pollutants through oxidation by Fe(II) (e.g. FeSO4 and
Fe(0) amendment technologies (Table 1; [18]). For example,
Fe(II) can facilitate the reduction of Cr(VI) to its less toxic
Cr(III) form [135], and Cu(II) has been shown to reduce to
Cu(I) [136] and to native copper [137]. Fe(II) is not significant
in reducing As(V) to the more toxic As(III) form [138]; how-
ever, the reverse reaction can be catalysed under oxic and
anoxic conditions when As(III) is oxidised by enhanced
Fe(II) reactivity at a Fe(III) (oxy-hydr)oxide mineral surface
[139, 140].

The Fe(II) flux can also re-oxidise to precipitate in situ a
variety of poorly crystalline mineral phases (e.g.
schwertmannite (Fe8O8(OH)6(SO4).nH2O), green-rust
(mixed-valence amorphous phase) and ferrihydrite) depend-
ing on the ambient solution properties (e.g. pH, Eh, Fe and
contaminant concentrations). Ferrihydrite is known to incor-
porate As, Cd, Cu, Pb and Zn during precipitation [e.g. 141]
with many of the divalent cations becoming less extractable
upon ageing to goethite [34]. Similarly, ageing of
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Table 1 Non-exhaustive list of laboratory and field experiments involving Fe materials interacting with common soil and sediment contaminants

Contaminant Iron treatment Ref. Amendment ratio, effectiveness and additional notes

As FeSO4+lime [73] Fe amendment ratio (Fe:As)=2:1; depending on soil type, 97.2–99.5 % of As stabilised without CaCO3

addition, 95.5–99.4 % of As stabilised with the addition of CaCO3

[74] Additions resulting in 0.2 % Fe oxides in soils resulted in 22 % reduction in As uptake by various
vegetables (0.5 % concentration led to a 32 % reduction in As uptake)

[75] Amendments of 1.89 % FeSO4 and 0.68 % lime resulted in a 84 % reduction in lettuce As concentration

[76] Amendment added at 1 wt% concentration, 68.2–98.0 % reduction in uptake by ryegrass

Synthetic Fe oxy-
hydroxides

[77] 1 wt% resulting in 65–97 %As stabilisation depending on soil type (5 wt% addition results in 78–97 %As
stabilisation)

[78] 1 and 3 wt%, soluble As concentrations decreased by∼65 %

Fe(0)+compost+beringite [79] Amended with 1 wt% Fe(0), 5 wt% organic matter and 5 wt% beringite, focus on the effects on
phytoremediation

Fe(0) [80] As removal capacity=7.5 mg As per gramme of Fe(0)

[81] Amendment added at 1 wt% concentration leading to a 60–69 % decrease in As leachability

[82] Column-based field experiments, up to 4.4 mg As accumulated per g Fe(0)+sand, decreasing aqueous As
concentration to 10 μg/L

[83] 1 g Fe(0) added to 41.64 mL solution (2 mg/L As); experimental system comparing effectiveness of
various engineered Fe(0) particles

[84] Experimental work showing both oxidation and reduction of As(III) in contact with Fe(0) nanoparticles

[85] 1 wt% amendment ratio resulting in significant reduction of As in leachates (98 %), porewater (99 %) and
plant shoots (84 %)

Ferrihydrite [86] 1–2 wt% added to soils, no appreciable change in As extractability

Fe(0)+beringite [87] 1 % Fe(0)+5 % beringite, results in 87 % reduction in As extractability after 6 years

Cd Fe(0) [88] 1.0 nM Cd solution loaded with 0.5 g/L Fe(0); maximum adsorption to Fe(0) was 225 mg/g

[89] Soil amended with 2 wt% Fe(0), 4.1–36.7 % improvement in immobilisation/extractability depending on
test used

[90] Soil amended with 1 wt% Fe(0), up to 30 % decrease in mobile Cd

Steel sludge [91] Amended with 0.6 wt% steel sludge, decreased Cd accumulation in plants by 58.8 %

Red mud [92] Soil amended with 0.25–0.2 wt% red mud, exchangeable Cd reduced by 42–69 % depending on soil
properties

[93] Soil amended with 0.25–0.2 wt% red mud, bioaccumulation in plant leaves decreased on average by 57 %

[94] Concentration of 10 g/kg red mud added to soil, Cd extractability decreased by 70 % and Cd plant
extractability by 38–87 %

[95] Soil amended with 5 wt% red mud resulted in ∼76 % reduction in porewater Cd after 25 months

Cu Ferrihydrite [96] 10 wt% additions of ferrihydrite reduced Cu extractability by 92 %

Red mud [97] Soils amended with 0.25, 2 and 5 wt% red mud, labile pool of Cu decreased by 30 %

[95] Soil amended with 5 wt% red mud resulted in ∼37 % reduction in porewater Cd

Fe(0) [85] Soil stabilised with 1 wt% Fe(0), reduced Cu leaching by 93 % but increased its bioavailability

[90] Soil amended with 1 wt% Fe(0), 10 % decrease in mobile Cu

[98] Soil stabilised with 2 wt% Fe(0) and 5 wt% compost, recalcitrant Fe oxy-hydroxide bound Cu increased
from 22 to 50 %

Fe(0)+organic matter [99] Soil amended with 2 wt% Fe(0) and 5 wt% organic matter (OM) decreased soil solution Cu by 93–99 %
depending on nature of OM

Cr Fe(0) [100] Experimental batch experiments; removal capacity of 50–180 mg Cr per gramme Fe(0)

[101] 10:3 Fe(0) to Cr loading ratio resulted in 90 % adsorption of Cr in three days

[102] Experimental work, variable rate constants reported for different Fe:Cr amendment ratios and for different
Fe(0) size fractions

Pb Red mud [92] Soil amended with 0.25–0.2 wt% red mud, exchangeable Pb reduced by 30–92 % depending on soil
properties

[95] Soil amended with 5 wt% red mud resulted in ∼75 % reduction in porewater Pb after 25 months

[93] Soil amended with 0.25–0.2 wt% red mud, bioaccumulation of Pb in plant leaves decreased by ∼68 % in
two plants

Fe(0) [81] Amendment added at 1 wt% concentration, limited effect on Pb leachability

[89] Soil amended with 2 wt% Fe(0), 1.7–25.1 % improvement in immobilisation/extractability depending on
test used

Amorphous iron oxides [78] 1 and 3 wt%, porewater and lexiviate Pb concentrations decreased by >90 %

Se Fe(II) [103] Variable Fe(II) bearing phases tested
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Table 1 (continued)

Contaminant Iron treatment Ref. Amendment ratio, effectiveness and additional notes

Iron hydroxides [104] Experimental work with variable parameters tested; 0.1 g/L Fe added 50 mg/L Se solution results in
specific removal of 155 mg/g

Fe(0) [105] Batch experiments; nano Fe(0) uptake capacity of Se up to 0.1 Se:Fe molar ratio

Fe(0)/Ni [104] Experimental work with variable parameters tested; 0.1 g/L Fe added 50 mg/L Se solution results in
specific removal of 225 mg/g

U Fe(0) [106] 0.05 g Fe(0) added to 400 mL of effluent, achieves 98 % removal of U from solution within 48 h

[107] Reacted solution contained 200 μM U(VI) and 492.3 μM nanoFe, >93 % of U removed from solution
within 10 min at pH 6.9

[108] 0.1 g of nano Fe(0) added to 400 mL U-contaminated water; 98 % removal from water

Magnetite [108] 0.1 g of nano magnetite added to 400 mL U-contaminated water; <20 % removal from water

Zn Red mud [94] Concentration of 10 g/kg red mud added to soil, Zn extractability decreased by 89 % and Cd plant
extractability by 50–81 %

Fe(0) [81] Amendment added at 1 wt% concentration, limited effect to Zn leachability

[90] Soil amended with 1 wt% Fe(0), up to 31 % decrease in mobile Zn

Amorphous iron oxides [78] 1 and 3 wt%, porewater and lexiviate Zn concentrations decreased by >90 %

Atrazine Fe(0) [109] 30 mg/L atrazine solution treated with 2 % (w/v) nano Fe(0) and 5 % (w/v) Fe(0); ∼50 % and 20 %
removal efficiencies, respectively

Chlorinated
methane

Fe(0) [110] Batch experiments; 1 g Fe(0) reacted with 2 mL (100–800 uM) stock diluted to 40 mL; degradation rates
reported

[111] Batch experiments; 0.25 g Fe(0) reacted with 10 μL (0.1 mM) stock in 20 mL DI water; complete
reduction of organics between 20 and 100 h

Magnetite [112] Batch experiments; 25 g/L magnetite reacted with 20 μM CCl4, rate constants determined

Chlorinated
ethane

Fe(0) [113] Batch experiments, variable Fe particle loading (0.08–0.40 g/L) tested with variable chlorinated ethane
speciation and initial concentration.

Fe/Pd [114] 5 g/L Fe nanoparticles reacted with 20–30 g/L chlorinated ethanes, extent of degradation varied according
to organic speciation

Chlorinated
ethene

Fe(0) [115] Column experiment: 15 wt% Fe(0) in silica matrix, degradation of various trichloroethene concentrations
tested

[116] Column experiments; trichloroethene reaction rates reported

[117] 15 g Fe(0) reacted with 60 mL of solution (conc.=2 mg/L TCE), results in complete degradation of TCE

Disordered Fe(0) [118] Batch experiments under excess Fe and Fe limited conditions, variable results

Iron+palladidized-iron [114] 5 g/L Fe nanoparticles reacted with 30 g/L chlorinated ethenes, degradation results in <1 % chlorinated
intermediates

[119] Batch experiments with variable Fe and TCE loadings, effects of cellulose stabilisers tested

Nano Fe+Ni particles [120] 350 mg/L trichloroethene reacted with 1 g/L Fe/Ni particles results in complete dechlorination in 576 h

[121] 0.1 g Fe/Ni nanoparticles reacted with 40 mL of 24 ppm trichloroethene; 75 % dechlorination in 2 h

Fe(II)/hematite [122] 200–260 mM Fe oxide reacted with 0.25 mM TCE, complete degradation after 6 days

Fe(0)-silica composite [123] 0.4 g Fe particles reacted with 10 mL solution containing 20 ppm TCE, complete degradation of TCE
achieved

Granular iron [124] Column experiment, >97 % TCE removal efficiency

Chlorinated
benzene

Cu/Fe particles [125] ∼0.2 g Fe particles reacted with 5 mL of 0.2 mg/L hexachlorobenzene solution, 98 % dechlorination
within 48 h

Polychlorinated
biphenyls

Fe(0) [126] 1.5 μmol PCB dry reacted with 0.5 g Fe(0) powder, 95 % dechlorination at 400 °C

Humic acid+Fe(0) [127] 0.3 g Fe(0) added to 40 mL of 5 mg/L 4-chlorobiphenyl solution; 86.3 % degradation in 48 h in the
presence of humics

Pd/Fe [128] ∼2 g Fe/Pd particles reacted with 5 mL of 20 ppm PCB solution, full degradation achieved

[129] 0.71 g/L Fe/Pd loading able to fully degrade 15 mg/L PCB, insignificant reaction with unpalladized Fe

DDT Iron by-products [130] 150 mL of 5 mg/L DDT solution treated with 5 % (w/v) Fe, >95 % removal of DDTwithin 30 days

DNAPL Emulsified Fe(0) [131] Field experiments, 670 gal of emulsion (17 % Fe) injected into 15×9.5×10 ft volume; >80 % TCE
breakdown in 90 days

TNT Fe(0) [132] Batch experiments, 2 g Fe(0) reacted with 1 mL of 10−3M nitrobenzene diluted to 60 mL; rate constants
reported

[133] 1 % (w/v) Fe(0) removed 70 mg/L TNT from aqueous solution within 8 h

[134] Batch experiments, 17–100 g/L Fe(0) reacted with 4–352 μMTNT; complete degradation at high Fe:TNT
ratios
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schwertmannite to goethite leads to increased Cr incorporation
in the mineral structure, whereas Cu, Ni and Zn concentrations
have been found to decrease with ageing [142]. In sediment
systems with high As concentrations, a number of discreet co-
precipitated mineral phases are known to form (e.g. FeAsO4-
H2O, FeAsO4.2H2O and Fe3(AsO4)2), many of which are
more stable and less soluble than the complexes that form
when As is merely adsorbed to Fe (oxy-hydr)oxide surfaces
[34, 36].

Under increasingly anoxic conditions, sulphate reduction
proceeds thus causing the sediments to become sulphidic and
leading to the precipitation of various sulphide mineral
phases. The precipitation of metal sulphides in anoxic sedi-
ments is controlled by the speed of the metals’water exchange
reaction kinetics: Cd, Cu, Pb and Zn sulphides typically pre-
cipitate before the formation of pyrite (FeS2) whereas Co and
Ni have slower reaction kinetics and can be incorporated into
the pyrite structure [143, 144]. Mackinawite and greigite are
also known to incorporate variable amounts of Cu, Co and Ni
[36, 145]. Reduced As is incorporated into the pyrite structure,
whereas reduced Cr is not chalcophyllic and therefore does
not associate with precipitating pyrite [143]. Pyrite shows rel-
atively slow dissolution kinetics and thus represents a relative-
ly good sink for co-precipitated and occluded contaminant
phases. Furthermore, the pyrite mineral surface can also play
a role in contaminant transformation [146] and sorption [147]
processes.

Iron-Based Remediation of Contaminated Sediments

Based on the chemical and mineralogical interactions of nat-
ural Fe with contaminant phases, a range of techniques has
become available in the last two decades to treat contaminated
sediments and soils using iron amendment strategies
(Table 1). These techniques exploit either the adsorption or
reduction properties of Fe [148–150] and can be applied as
in situ [23] or ex situ [24] remediation strategies. The efficien-
cy of either pathway is controlled by factors affecting the
biogeochemical cycling of iron [151].

Sorption-based technologies typically utilise the
known associations and chemical bonding interactions
between mineral surfaces and toxic metals and metal-
loids, as described in ‘Iron Mineral Interactions with
Sediment Pollutants’ section. These remediation tech-
niques are thus used as in situ amendments to
immobilise toxic metal(loid)s and to reduce their bio-
availability in contaminated sediments [e.g. 19], and
their efficiency is partially controlled by the mineralogy
of the Fe mineral amendment. Due to their high specific
surface areas, amorphous Fe (oxy-hydr)oxides are the
most effective amendment when considering sorption
capaci ty, yet their long-term stabi l i ty may be

compromised by contaminant release during ageing
and/or recrystallization (e.g. As, Cu, Zn, Ni lost to so-
lution during the schwertmannite to goethite transforma-
tion [142, 152]. However, dynamic recrystallization of
Fe minerals (e.g. during ageing) is known to have com-
plex effects on trace metal redistribution [153] and can
represent an important trapping mechanism (e.g. for As
[70]). Overall, when considering long-term immobilisa-
tion, the more crystalline Fe oxides are typically con-
sidered to be more effective, as they have shown better
long-term retention of trace metals in soil systems [19,
34]. Mechanistically, the trace metal immobilisation can
be achieved by inner-sphere or outer-sphere surface
complexation reactions (Fig. 1), with inner-sphere coor-
dination regarded as being more stable (Eqs. 1, 2, 4, 5).
For example, the inner-sphere complexation reactions of
Ni(II) and Cr(VI) with Fe mineral surfaces can be
expressed as:

≡FeOH þ Ni2þ←→ ≡FeO−Niþ þ Hþ ð8Þ
≡FeOH þ Cr2O7

2‐←→≡Fe−Cr2O7
‐ þ OH− ð9Þ

In chemical treatment methods, iron is generally used
as a reductant for its ability to act as an electron donor
(Fig. 3). From our review of literature, it is clear that
the chemical treatment methods are primarily used for
the treatment of contaminants in the porewater solution
and limited research is available for their use for the
treatment of soils and sediments [154]. Most commonly,
the Fenton Reaction or a similar pathway is used
(Fig. 3) where Fe(0) or Fe(II) are used to produce
non-selective highly reactive oxidants for the breakdown
of persistent organic compounds, such as PCBs, pesti-
cides, fuels and explosives [148, 155, 156], and to
change the speciation of redox reactive inorganic pollut-
ants (e.g. Cr, Cu). Nano-zero-valent iron (Fe(0)) is the
most commonly used iron phase in these treatments be-
cause of its low standard electron potential (Eo=
−0.44 V; [155]), which is lower than many trace metals
and organic compounds [157]. Ferrous iron amendments
including phosphates [158, 159], sulphates [73, 160]
and sulphides [150] are also applicable to the reductive
treatment of industrial wastes. In addition to their reduc-
tive capabilities, the introduction of reduced Fe phases
to contaminated sediment porewater systems can lead to
the in situ precipitation of Fe sulphides (under anoxic
conditions) which can sequester Co, Ni and other trace
divalent trace metal cations [143, 144]. Similarly, under
oxic conditions, the in situ precipitation of Fe oxy-
hydroxides can strongly stabilise contaminants through
co-precipitation pathways. For example, iron sulphate
amendments are particularly effective in this regard
and can have better metal retention efficiency than Fe
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oxide amendments when compared in soil systems [81].
However, such Fe(II) amendments may require addition-
al buffering capacity (e.g. lime additions) to counteract
the acidity released during Fe oxy-hydroxide formation
(Eq. 10), as some trace metals (e.g. Cu, Zn) show en-
hanced mobility with decreasing pH [160].

4FeSO4 þ O2 þ 6H2O→4FeOOHþ 4SO4
2− þ 8Hþ ð10Þ

Recent Advances in Fe-Based Remediation

A review of the recently published literature (Scopus andWeb
of Science) reveals that the most notable developmental work
occurring in the last 5 years has been in the field of iron
nanoparticle (particularly zero-valent iron nanoparticle) reme-
diation technologies. Over 500 related articles have been pub-
lished within the last 3 years alone. Thus, despite the historical
focus on the use of bulk iron minerals for sediment amend-
ment, we focus here on the recent developments within the
field of Fe nanoparticle amendments for improving the effi-
ciency of waste remediation.

Although there is a lack of consensus on the definition of a
nanoparticle, generally, any particle with one dimension less
than 100 nm is regarded as being nano-particulate [161]. Iron
nanoparticles may occur naturally or are produced as by-
products of other reactions. However, for remediation pur-
poses, engineered particles are preferred as their specific prop-
erties and composition can be controlled, and their efficiency
can thus be optimised [e.g. 162–164]. Depending on the prop-
erties desired, these engineered Fe nanoparticles can be pro-
duced by a variety of physical, chemical and biological
methods, with co-precipitation, hydrothermal and
microemulsion chemical techniques being most prevalent
[165, 166]. The choice of preparation technique can have a
strong control on the resultant nanoparticle size distribution,
stability, magnetism, reactivity and surface chemistry, and
these properties can be further modified by the application
of surface coatings [165]. A diverse array of engineered Fe
nanoparticles has thus been developed, and although zero-
valent Fe nanoparticles (and modifications thereof) are most

common, other Fe minerals have also been synthesised at the
nano-scale and applied to contaminant remediation studies.
For example, Lin and co-workers [167] synthesised magnetic
γ-FeOOH nanoparticles that adsorb As(III) and As(V) over a
wide pH range (3–11) and cellulose-stabilised FeS nanoparti-
cles have been shown to reduce Hg leachability by 99 %
[150]. Magnetite [108, 168], hematite [169], maghemite
[170], hydrous iron oxide [171] and Fe phosphate nanoparti-
cles [158, 159] have also all been developed and tested for
their reactivity towards various contaminant phases.

Figure 4 highlights a number of factors that render these
different Fe nano-particulate minerals more effective at con-
taminant breakdown and adsorption, relative to their respec-
tive bulk counterparts. In particular, Fe nanoparticles are
characterised by a large surface area to particle size ratio
(Fig. 4a), where the difference between available surface area
in micro- (10 m2 kg−1) and nano- (30,000 m2 kg−1) particles is
shown to be substantive [172]. Laboratory studies conducted
by Waychunas and co-workers [31] have shown that the ab-
solute uptake of bivalent metals follows the expected trend,
where adsorption was highest in nanoparticles with the
smallest size and largest surface area (∼300 m2 g−1). The re-
activity of Fe nanoparticle surfaces is also much greater than
observed for bulk Fe mineral surfaces (Fig. 4b). This is
reflected in mathematical modelling, where Noubactep et al.
[173] have shown that smaller sized zero-valent iron particles
release a greater number of electrons and follow faster release
kinetics (Fig. 4c) than larger sized particles, and this could
enhance their effectiveness and efficiency during reductive
treatment of affected sediments.

This enhanced reactivity and chemical instability can how-
ever also be a hindrance to the use of iron nanoparticles, as it
affects their mobility and results in untargeted reactivity
[174–177]. To overcome these issues and to increase Fe nano-
particle effectiveness, scientists modify Fe nanoparticles using
other metallic elements (e.g. bimetallic nanoparticles) or by
altering their surface characteristics, typically through the ad-
dition of a coating media. The performance of Fe(0) nanopar-
ticles has been improved by synthesising bimetallic Fe nano-
particles, which typically exhibit better catalytic abilities in
breaking down various pollutants [163]. Bimetallic nanopar-
ticles have been synthesised with metals that have a higher
redox potential than Fe, including Ag [178], Cu [179], Ni
[104, 121] and Pd [114, 119, 148]. By acting as electron trans-
fer media, these metals prevent the self-inhibitory effects as-
sociated with oxy-hydroxide precipitation on monometallic
Fe(0) nanoparticle surfaces (Hu et al. ref 27-in Liu). Surface
modification and membrane coatings can further improve the
effectiveness of Fe nanoparticles, particularly in soil and sed-
iment systems where they readily aggregate and where their
reactivity and adsorptive behaviour can be misdirected to-
wards the non-pollutant moieties in the soil/sediment system.
Nanoparticle dispersion (and hydrophobicity), mobility and

Fig. 3 Example of Fenton-like reaction catalysed by Fe(0) amendment
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stability have been enhanced by different organic surface
modifiers including starch [102, 180], cellulose [181], oils

[182] and various other anionic polymers and non-ionic sur-
factants [177, 183–185]. Silicon-based coatings (e.g.
tetraethyl orthosilicate) can also enhance nanoparticle disper-
sion, and commercial applications of this technology are now
available [186]. Besides increasing particle mobility, surface
coatings can increase the specificity of Fe nanoparticle reac-
tivity, particularly when functional groups with selective che-
lating ability are used [187, 188].

In summary, recent developments in Fe-based remediation
of polluted sediments and soils have drawn on a fundamental
understanding of the adsorptive and redox reactive properties
of Fe and Fe minerals (‘Iron Mineral Interactions with
Sediment Pollutants’ section). The advent of nanotechnology
has enabled the synthesis and study of nano-sized Fe mate-
rials, which have been shown to have higher specific surface
area and reactivity than their bulk counterparts (Fig. 4). As
such, most developmental work has focused on the synthesis
of novel Fe-based nanotechnologies for contaminant remedi-
ation. In particular, bimetallic particles and various surface
modifications have been used to ensure that particles are easily
mobilised in sediments (i.e. they do not aggregate easily or
rapidly [164, 189, 190]); that the particles contain enough
zero-valent Fe content and surface area for optimised reaction
or targeted interaction with contaminants [150, 184]; and that
the stabiliser characteristics do not negatively affect mobility
and reactivity [157, 191, 192]. However, many of these tech-
nologies have yet to be tested in natural soil and sediment
systems, where their impacts on biodegradation pathways
[151] remain to be evaluated. Future work should further fo-
cus on field testing and on establishing the long-term stability
and ageing of the amendment products, particularly if the
amendments are to be applied as in situ treatments [e.g. 23]
to sediments and soils with dynamic redox conditions.
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