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Abstract
Purpose of Review  To describe how general prescriptions to protect temperate and boreal forests against pests have been 
affecting the conservation of insect diversity, (2) to identify potential conflicts between biodiversity conservation actions and 
pest control, and (3) to provide future directions to reconcile forest pest management with insect conservation.
Recent Findings  Despite dealing with the same habitats and organisms, forest pest management and insect conservation 
have been separate disciplines, often pursuing conflicting goals. However, there is a large intersection between the two, as 
interventions to control pests can have repercussions on biodiversity and vice versa. In several regions, forest pest manage-
ment is shifting from reactive measures to contain on-going outbreaks to proactive strategies to create forest landscapes that 
are more resistant and resilient against pests in the long-term. These developments suggest a possible convergence between 
pest management and insect conservation objectives.
Summary  Several reactive measures adopted to control pests can cause negative impacts on non-target insects, although 
effects are sometimes localized and often context-dependent. Following ecological, economic, and social considerations, 
pest management has been evolving towards diversifying forests across multiple spatial scales to reduce the severity of out-
breaks and the risk of damage. Such strategies concur with multiple conservation goals to increase insect diversity across 
intensive forest landscapes. Insect conservation has traditionally targeted saproxylic organisms, neglecting the conservation 
of other insect guilds and seldom assessing side effects on pests. Despite some important knowledge gaps, we propose com-
plementary approaches to combine multiple diversification strategies at the landscape scale to reconcile pest management 
with insect conservation.

Keywords  Disturbances · Landscape diversification · Multifunctionality · Pest outbreak · Protected areas

Introduction

In the Anthropocene, insect-related forest disturbances have 
strongly increased in severity and frequency [1, 2]. On the one 
hand, global change is causing faster insect development rates 
and lower mortality under a warming climate, providing higher 
amounts of breeding substrates for wood-boring insects after 
abiotic disturbances, and reducing the overall forest adaptive 
resistance to attacking organisms [3, 4]. On the other hand, 
modern forestry has often created homogenous landscapes of 
productive forests [5], which are becoming more and more 

sensitive to insect outbreaks and to other biotic and abiotic 
disturbances [6]. Against this background, forest pest man-
agement has been playing a key role in controlling or prevent-
ing damage caused by native and non-native insects attacking 
boreal and temperate forests. Historically, the central objective 
of pest management has been to provide effective solutions 
to reduce timber losses when insects competed with humans 
for the forest goods, often ignoring the consequences of these 
interventions on other organisms [7]. Insecticides constituted 
the earliest and predominant management option, and their 
application still persists in some regions [8]. However, in the 
last decades, applied forest entomology has started to focus on 
proactive actions to reduce the risk of pest damage [9, 10••]. 
Despite several paradigm shifts, from reactive interventions to 
more ecosystem-based solutions, new approaches for the man-
agement of forest pests are continuously needed to face new 
threats and to meet changing needs of multiple stakeholders 
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[11, 12••]. This is because the social perception of forests has 
dramatically changed with forests no longer seen as a sole 
source of timber, but rather as diverse and dynamic ecosys-
tems harbouring high biodiversity, and thus sustaining a wide 
range of ecosystem functions and services [13]. Since many 
such functions and services are delivered by insects, there is 
an increasing awareness of their ecological importance, and 
insect conservation is slowly entering the global biodiversity 
conservation agenda [14].

Besides the anthropocentric definition of plant pests, insects 
underpin pivotal ecosystem functions, such as pest control, 
nutrient cycling, plant pollination, and herbivory, and they are 
key components of food webs transferring large amounts of 
energy from primary producers to higher trophic levels [15, 
16]. However, most forests in temperate and boreal regions 
have been subjected to habitat loss and fragmentation or have 
been heavily altered and simplified to increase timber produc-
tion of a few economically important tree species [17]. Hence, 
a large body of conservation research has focused on saprox-
ylic arthropods or other groups associated with old-growth 
conditions, while the conservation status of many taxa belong-
ing to other feeding guilds such as canopy-, ground-, and soil-
dwelling taxa remains largely unknown [18, 19, 20•].

Forest entomology is now facing the urgent challenge to 
provide practitioners and owners guidelines to protect exist-
ing forests from pest damage and to design more resistant 
and resilient forests against future known and yet unknown 
threats, while creating habitat conditions suitable for main-
taining high species diversity and associated ecosystem 
services. Against this background, we aim (i) to describe 
how forest pest management has historically changed and 
to identify the consequences of the different pest control 
approaches on insect conservation, (ii) to identify potential 
risks for pest control deriving from actions aimed at increas-
ing insect diversity, (iii) to propose strategies to reconcile 
forest pest management and insect conservation, identifying 
barriers and knowledge gaps that prevent the implementation 
of the proposed strategies. The review focuses on temper-
ate and boreal forests because of the large body of research 
available. We excluded intensive artificial monoculture plan-
tations, such as short-rotation poplar or Eucalyptus planta-
tions where pest control relies routinely on insecticides and 
ecosystem multifunctionality is never considered among the 
management objectives.

Historical Development of Forest Pest 
Management and Consequences for Insect 
Conservation

The need for applied entomology to be integrated into forest 
management has emerged at the end of the previous century, 
after growing concerns on the major threats posed by insects 

to the provision of timber [11]. Over time, forest pest man-
agement deeply rooted within the academic education of 
forest sciences and the forestry sector, where it continues to 
provide knowledge support for the control of pests in pro-
ductive forests [7]. Forest entomologists have historically 
prioritized pest control, paying very little attention to insect 
conservation, apart from a few flagship species [21]. Thus, 
despite dealing with the same habitats, forest pest manage-
ment and insect conservation have been separate disciplines, 
often pursuing conflicting goals [22]. However, the interven-
tions to fight pests are expected to have repercussions on 
multiple taxa of conservation concern, and, vice versa, inter-
ventions aimed at protecting insect diversity could affect 
pest population dynamics and related timber losses [23, 
24]. As the attention for forest biodiversity conservation is 
increasing, traditional pest management is losing ground in 
the forest sciences and forest entomology has started adopt-
ing a holistic approach with substantial inputs from ecology 
and conservation biology [25]. In the following sections, 
we provide a general overview of the response of non-target 
insects to the most common control interventions proposed 
to reduce pest damage [9, 10••]. As the availability of stud-
ies testing simultaneously the response of both pests and 
non-target taxa is very limited, we will qualitatively review 
studies considering either pests or taxa of conservation con-
cern starting from reactive measures to contain on-going 
pest outbreaks to more proactive strategies to increase the 
resistance and resilience of forests.

Reactive Control Measures

Chemical and Biological Insecticides

Applications of insecticides have a long history in forest pest 
management. Inorganic chemical compounds containing 
lead arsenate were used to control spongy moth (Lymantria 
dispar) in North America already in 1893, with ground and 
aerial application equipment gradually adapted from agricul-
ture to reach large and remote areas [26]. A significant leap 
in insecticide use was represented by the development of 
organochlorine insecticides, such as DDT in the 1940s. For 
over 20 years, spray programmes were routinely conducted 
against the spruce budworm (Choristoneura fumiferana) and 
other defoliating insects in North America [8] and against 
various pine and oak moths in Europe [27]. Starting from 
the mid-1960s, evidence on insecticide resistance [28] and 
alarming environmental concerns over the toxicity on fishes, 
birds, aquatic invertebrates, and pollinators [29] fostered 
the development of more specific chemical compounds and 
alternative pest control approaches. The development of 
more specific insecticides with lower side effects has con-
tinued since then, and several reviews on such developments 
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are available for North America, Europe, and Australia [8, 
30, 31].

It is hard to generalize the effect of insecticides on non-
target organisms, as their impacts depend on the chemical 
and microbial compounds used, context, and spatial scale of 
application. Overall, broad-spectrum insecticide formula-
tions are highly effective against most pests, but have often 
severe and persistent negative impacts on non-target organ-
isms. Conversely, recent chemical and biological formula-
tions have shown mixed responses both on their efficacy 
against pests and their impact on non-target organisms [7, 
31, 32]. Surprisingly, there are few studies on the topic in 
the recent literature, and many only deal with short-term 
effects on single taxa finding mixed responses depending 
on the selected group [8, 33–35]. Due to their sometimes 
long-term inefficacy [36], their controversial effects on 
non-target organisms, and society concerns on impacts on 
human health, the large-scale application of both chemical 
and biological insecticides is now considered as a last-resort 
emergency measure to contain large pest outbreaks [30, 37]. 
However, they are commonly used at the local scale, for 
example to protect felled stands [38], seedlings [39], or in 
urban forests, for instance against pine and oak procession-
ary moth caterpillars with urticating hairs [40]. Despite the 
potential risks for biodiversity, the application of insecti-
cides might still be considered an option, in particular when 
highly destructive non-native pests critically endanger the 
capacity of forest ecosystems to persist. Notable examples 
are the potential long-term negative effects of a no-interven-
tion strategy to control the invasive spongy moth [41] or the 
emerald ash borer (Agrilus planipennis) in North America 
[42, 43]. Although large-scale applications of insecticides 
will likely be even more restricted in the future, thorough 
research is needed to evaluate the potential cascading effects 
of chemical and biological insecticide applications to fight 
on-going native and non-native pests in multipurpose forests.

Semiochemicals

Besides their application in pest monitoring, semiochemicals 
are also used as pest management tools, with mass trap-
ping, anti-aggregation, and mating disruption as the most 
common approaches [7]. While some authors question the 
efficiency of trapping performance for reducing bark beetle 
populations [44], most studies on the topic conclude that 
semiochemicals have good potential in locally suppressing 
low to moderate pest population densities [45] and reducing 
damage to healthy trees [46]. Notable case studies include 
the local eradication of small isolated spongy moth popula-
tions [47] and the local containment of bark beetles across 
western North America and Europe [46, 48]. Being highly 
selective to the target pest species, semiochemicals are con-
sidered relatively safe for vertebrates and beneficial insects 

[45]. In addition, several strategies exist to reduce potential 
negative effects, such as using trap designs to physically 
exclude non-target taxa or identifying more species-specific 
lures that reduce the attractiveness for non-target organisms 
[49]. As semiochemical-based pest management is usually 
applied at small spatial scales, the potential negative impact 
on predators and parasitoids responding to the same cues as 
the target pest is limited [50] and likely does not cause strong 
impacts at the ecosystem level.

Classical Biological Control

Invasions of non-native insects are a major impact on for-
ests globally, particularly in temperate regions [51]. Because 
forests are complex, long-lived ecosystems, managing non-
native pests has often successfully relied on classical bio-
logical control [52]. Looking at the past, classical biological 
control has led to the control of at least 226 invasive insects 
worldwide since 1888, with only a few cases of documented 
negative impacts [53, 54]. The risks for non-target organisms 
are generally considered limited as there is an increasing 
emphasis and legal requirements on the selection of bio-
control agents that are highly host-specific [55]. While some 
authors warn of potential apparent competition between spe-
cialist control agents and non-target native organisms [56], 
most of these interactions remain hypothetical rather than 
realized [54, 57, 58] and classical biocontrol is considered 
an effective, safe, and sustainable method for the long-term 
management of non-native pests [59]. While in Europe 
new releases are expected due to the increasing number of 
non-native species invading temperate forests [55], North 
America faces a decreasing trend in the adoption of classical 
biocontrol [60], leading to likely opportunity costs. Provided 
that a zero-risk scenario is unrealistic in all pest manage-
ment approaches, recent decision models already adopted 
in some countries, such as New Zealand, carefully balance 
the magnitude of social and environmental benefits of clas-
sical biological control against the degree of risk that can 
be accepted [54].

Salvage and Sanitation Logging to Control Wood‑Boring 
Insects

The potential impact on biodiversity of removing damaged 
and susceptible trees with salvage and sanitary logging 
to lower the risk of spread of wood-boring pests has been 
long debated in the academic and policy arena [61]. On the 
one hand, while it is still common practice to salvage as 
much timber by logging before it deteriorates, solid scien-
tific evidence of its efficacy in preventing outbreak spread 
is still doubtful [62]. Recent simulation models show that 
high effectiveness in preventing bark beetle outbreaks can 
be achieved only with very high removal intensities [63], 
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while empirical studies sometimes found the contrary [37]. 
On the other hand, the intensive logging of damaged trees 
has a clear negative impact on biodiversity and multiple eco-
system services [64]. The insects most likely to be affected 
are forest specialists such as saproxylic species [65], but 
also ground- and soil-dwelling species [66], that can ben-
efit from microhabitat and climate heterogeneity related to 
unlogged disturbed areas. This impact is of particular con-
cern for conservation when logging is carried out in pro-
tected areas, besides generating social protests and heated 
debates among stakeholders [67, 68]. A recent global study 
indicated that at least 75% of a naturally disturbed area needs 
to be left unlogged to maintain 90% of its unique species, 
whereas retaining 50% of a naturally disturbed forest rapidly 
decreases its unique species richness by one-fourth [69•]. 
As a result, there is an increasing consensus among ecolo-
gists and conservationists that several major pests are in fact 
keystone species regulating forest disturbance dynamics [11, 
70]. However, experiments successfully comparing salvaged 
and unlogged disturbed areas indicate that some non-sap-
roxylic beetles and pollinators are not reduced by salvage 
logging operations [71–73] and that salvage logging might 
even create more diverse communities of saproxylic taxa, 
likely due to the diversity of deadwood found in salvaged 
plots [71].

Proactive Management

Forestry Interventions

Since the early 2000s, advances in forest pest management 
have proposed a shift from directly managing pests and 
their impacts to a proactive management to indirectly con-
trol pests by creating ecosystems that are more resistant and 
resilient to multiple disturbances [9]. These interventions 
can be implemented at both the local and landscape scale 
[10••]. However, at the local scale, it is often impossible 
to identify a single optimal management due to the vari-
ety of practices carried out in one rotation cycle that often 
cause complex non-linear effects on pests depending on the 
environmental context and the focal pest species. Similarly, 
insect diversity responses are expected to be mixed depend-
ing on the feeding guilds and species-specific habitat and 
resource requirements [19]. However, there are some inter-
ventions proposed by pest managers that are expected to 
have more predictable effects on both target and non-target 
taxa according to the available empirical evidence.

First, increasing tree diversity is generally acknowledged 
as a winning strategy for reducing pest damage across sev-
eral forest types through associational resistance (i.e. het-
erospecific neighbours reduce the risk of a focal tree being 
attacked by herbivores) [74] and improved pressure from 
natural enemies [75]. This strategy also concurs with the 

general conservation goal to increase insect diversity as 
predicted by the habitat heterogeneity hypothesis, i.e. an 
increase in the number of niches leads to an increase in spe-
cies diversity [76]. The effects should be more evident for 
tree and canopy-dwelling species that profit from higher host 
plant diversity, structural complexity, and micro-climatic 
variability [77], but similar effects are expected for ground- 
and soil-dwelling species due to the increase in biotic and 
abiotic heterogeneity [78]. Examples in the literature report 
promising results in replacing Norway spruce monocultures 
with spruce and birch or spruce and Scots pine plantations in 
Sweden [79] and in larch-birch mixtures in Chinese boreal 
forests [80]. However, converting monocultures to mixed-
species stands is a social as much as a technical choice and 
cannot always be achieved in commercial forestry [81]. 
Under these circumstances, the most adopted alternative is 
increasing forest structural diversity by applying uneven-
aged silvicultural treatments. For instance, shelterwood and 
selection systems have been shown to promote invertebrate 
predators while reducing the abundance of bark beetles in 
Sitka spruce plantations in the UK [82, 83].

Second, the positive effects of tree diversity on insect 
herbivores at the stand scale suggest that increasing forest 
heterogeneity could also work at larger spatial scales through 
landscape diversification [84•], although this strategy has 
received less attention. For instance, the presence of for-
est patches belonging to different forest types can reduce 
successful colonization of suitable stands by pests at the 
landscape scale [85] or at least reduce the overall timber loss 
due to the co-occurrence of multiple host species [10••], 
although exceptions for polyphagous species potentially 
occurring as metapopulations exist [86]. Again, landscape 
diversification is often suggested as the key strategy also 
to boost insect diversity across different taxa and feeding 
guilds through increased habitat diversity [87••, 88]. How-
ever, while there is a strong emphasis on landscape diver-
sity to protect insects in agriculture-dominated landscapes, 
research in forest-dominated landscapes is limited due to 
the disproportionate attention to forest-interior organisms 
relying on deadwood and old-growth conditions [89, 90]. 
However, it is well known that many forest generalist spe-
cies are also favoured by a mixture of forests and open habi-
tats such as wetlands, grasslands, clearings, or regenerating 
stands [91, 92]. For habitat specialists, we should consider 
that increasing habitat diversity can lead to habitat area limi-
tation and dispersal limitation causing unimodal and even 
negative relationships between species richness and habitat 
heterogeneity [93].

Third, thinning is frequently encouraged to increase vig-
our of remaining trees and reduce infestation levels [94]. 
For instance, early thinning was strongly recommended in 
the National Strategy for control of sirex woodwasp (Sirex 
noctilio) in Australia [95] and for increasing resistance to 



107Current Forestry Reports (2024) 10:103–118	

bark beetle outbreaks [96]. However, the effects of forest 
thinning on other invertebrates are not well understood, 
and the literature on this topic is mostly anecdotal. The 
few available studies found that the distribution of insect 
biomass between thinned and unthinned pine stands varied 
among taxa, indicating that the response is highly species-
specific [97]. However, canopy opening in thinned stands 
may allow for higher light penetration, which may favour 
organisms depending on understorey vegetation such as 
pollinators [91] and soil arthropods [98].

Last, reducing the length of rotation cycles is often sug-
gested to reduce the impacts of several wood-boring spe-
cies, in particular bark beetles that usually prefer to attack 
large-diameter trees [10••, 99]. Besides climate change, 
a key trigger of recent major outbreaks of pests, such as 
eastern spruce budworm, mountain pine beetle, and Eura-
sian spruce bark beetle, was the creation of large areas of 
mature or over-mature forests [84•]. Here, there is a clear 
conflict with the conservation of species related to dead-
wood, old trees, and in general to more mature conditions 
[100]. The risk of increasing forest age, however, depends 
critically on the spatial scale and on the existing age het-
erogeneity. Most of the work done in insect conservation 
has focused on this driver suggesting to either increase 
tree age and forest continuity within protected areas or to 
promote old-growth conditions within intensive managed 
forests. There are also some indications that the protection 
of remnant old-growth forests within the landscape matrix 
may be valuable for maintaining the diversity of plant and 
arthropod predators that can minimize future outbreaks 
through improved natural biocontrol [101].

Insect Conservation Actions and Potential 
Risks for Pest Control

Intensive forestry has highly modified natural forest eco-
systems, causing alarming impacts on insect diversity 
[102]. To counteract such negative effects, several habitat 
enhancement and restoration practices to protect biodiver-
sity have been increasingly implemented, both in semi-
natural secondary forests and in commercial plantations. 
One question that can arise from forest owners, foresters, 
and applied forest entomologists is whether these meas-
ures could also favour pest populations and cause eco-
nomic losses. The literature on the topic is surprisingly 
poor, and there are only a few studies that explicitly tested 
this idea, mostly in boreal forests [23, 103]. In the follow-
ing sections, we describe the potential pest risks related 
to the major conservation actions implemented to increase 
insect diversity.

Promotion of Old‑Growth Conditions

In structurally simplified managed stands, such as com-
mercial plantations or intensive forests, the development 
of many components of old-growth forests to benefit bio-
diversity can be accelerated through several silvicultural 
interventions. A wide array of uneven-aged silvicultural 
treatments [104], retention forestry [105], habitat resto-
ration [18], extended rotation [106], and set-aside [107] 
have been proposed, with the general aim of enhancing 
stand structural and compositional diversity. In secondary 
forests, increasing the availability and diversity of dead-
wood is among the most common interventions to increase 
insect diversity. A recent meta-analysis on the impacts of 
deadwood manipulation on saproxylic insects where also 
the response of pests was evaluated indicates little-to-mod-
erate risks in restoring larger availability of deadwood for 
managed forests [20•]. However, these results are related 
to small-scale interventions such as creation of deadwood 
from live trees, addition of existing fresh deadwood, or 
prescribed burning. When the spatial scale of these inter-
ventions increases, for instance resulting in the creation of 
large areas of mature stands belonging to a single forest 
type, the risk of pest outbreaks could possibly be of legiti-
mate concern [108]. Although these practices can help 
managed forests to increase their old-growth attributes, 
true old-growth forests generally host higher insect diver-
sity than improved managed forests [109].

Protected Areas and Natural Disturbance Dynamics

The ecological benefits of natural disturbances in increas-
ing forest complexity across spatial scales have long been 
recognized [110]. Against this background, many recent 
conservation studies call for creating permanent protected 
areas where natural forest disturbance dynamics—includ-
ing insect pest outbreaks—are retained [111]. Particu-
larly in large disturbed areas, it is essential to limit post-
disturbance logging in refugial areas, such as unburned 
patches in a post-fire landscape or stands surviving bark 
beetle attacks. Indeed, many authors suggested that log-
ging under these circumstances homogenizes landscapes 
and should be avoided, particularly in areas with high 
ecological values [64, 69•]. However, a non-management 
strategy is often seen as an opportunity for pests to build 
up their populations and to spread to neighbouring areas 
[37]. These contrasting understandings of post-distur-
bance dynamics result in disputes about land management 
options and often generate political and social conflicts, 
particularly in Europe, where there is a large extent of 
land-sharing between forestry and conservation [61].
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Increasing Forest Amount and Connectivity Across 
Mixed Landscapes

Most of the world’s forests are interspersed with productive 
lands [112]. For instance in Europe, 40% of the forests have 
in their close surroundings a mosaic of other semi-natural, 
agricultural, and urban areas [113]. It is well known that 
there are strong and rapid negative responses of forest biodi-
versity to fragmentation arising from decreased habitat area, 
reduced connectivity, and the creation of disturbed habitat 
edges [112]. Recent empirical studies confirmed that habitat 
amount appears fundamental for the conservation of for-
est insect specialists at the local [114] and landscape scale 
[87••]. However, smaller habitat patches can cumulatively 
sustain higher levels of species richness at the landscape 
scale and should not be neglected in conservation [115]. 
Additionally, there is increasing evidence on the importance 
of connectivity to support specialists with low dispersal abil-
ity both at the local and at the landscape scale [116]. Since 
many insect organisms providing key ecosystem services 
to crops, such as pollination and pest control, critically 
depend on forests [117, 118], there is also a strong interest 
by agroecologists and agricultural entomologists in protect-
ing, conserving, or restoring forests across mixed landscapes 
[119–121]. However, outbreaks of destructive insect herbi-
vores might also be facilitated by high connectivity among 
forest patches [122, 123], although pest responses are often 
non-linear and context-dependent [124]. Understanding the 
positive and negative effects of increasing forest amount 
and connectivity across mixed landscapes is needed to help 
land managers anticipate trade-offs among forest-associated 
insect conservation, increased risk of pest herbivory, and 
potential negative spillover between habitats [125].

Knowledge Gaps

In reviewing the available literature about the potential con-
flicts and synergies between pest management and insect 
conservation, we identified several knowledge gaps. First, 
very few studies tested at the same time the effects of con-
servation measures or pest management strategies on both 
biodiversity and pests. Similarly, some species that are con-
sidered pests in a particular context might be endangered 
species in others (see for instance ref. [126]), and more 
research should acknowledge this when suggesting differ-
ent management actions. Second, because conifers are the 
most dominant and valuable tree species in current temper-
ate and boreal forest production areas, pest control manage-
ment and research have focused almost exclusively on these 
forest types. However, broadleaved forests can host several 
species of conservation concern and have several highly 
destructive pests [43, 127], which are not being adequately 

represented in the literature. Third, insect conservation has 
largely focused on saproxylic arthropods, while canopy, 
soil, and water arthropods are still underrepresented in the 
literature, and insect conservation and pest management 
might have contrasting effects depending on the guilds con-
sidered. Fourth, potential interactions between local (e.g. 
tree diversity, stand age) and landscape factors (e.g. con-
nectivity, landscape complexity) have been seldom tested. 
Fifth, while there is much evidence supporting the move-
ment of organisms from forests to other managed land uses 
in mixed landscapes, very little attention has been given to 
the potential spillover in the opposite direction [125]. Last, 
experimental and observational studies are often carried out 
at small spatial scales and over the short term. Landscape 
management is increasingly considered a promising frontier 
for improving forest resistance and resilience to large-scale 
outbreaks [10••], and more research should focus on multi-
actor approaches to land management and explore its long-
term cascading effects. To this end, integration of social 
science with landscape planning and forest management is 
crucial for understanding where conflicts between policy and 
practice lie and for overcoming barriers to implementing 
strategic solutions in forestry.

Reconciling Pest Management and Insect 
Conservation

One way to cope with increasingly frequent and severe biotic 
stressors while preserving unique forest insect biodiversity is 
to promote forest resistance and resilience at multiple spatial 
and temporal scales [128]. In this section, we combine the 
principles with empirical support described above to outline 
complementary operational strategies to reconcile protection 
from pests and conservation of insect diversity.

Strategy 1: Forest Diversification at Multiple Spatial 
Scales

There is now a general consensus among forest entomolo-
gists that higher genetic, specific, functional, and structural 
diversity increases the probability of forest ecosystems to 
resist to damaging insect attacks and to functionally per-
sist after the disturbance [128, 129]. While forest manag-
ers and policymakers are increasingly acknowledging the 
benefits of tree diversity at the stand scale [5, 74, 130], this 
strategy has been recently proposed also at the landscape 
scale [10••, 84•]. Forest diversification at the stand scale is 
expected to support also a wide range of species associated 
with multiple habitats, thus being key to insect conservation 
[131–133]. Similarly, conservation synthesis studies have 
concluded that the best overall biodiversity outcome can be 
achieved through a mosaic of different forest types within 
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the same landscape [134, 135]. Despite increasing evidence 
of multiple benefits, planning the diversification of produc-
tive forests is a complex task, and several open questions 
still remain.

First, a major knowledge gap is the operational resolu-
tion of the forest landscape mosaic. Global analyses sug-
gest that multiple ecosystem functions increase synergis-
tically with plant diversity at higher spatial scales [136]. 
However, since managing landscapes for resilience becomes 
more challenging as the scale of interventions increases, it is 
essential to find compromises between the highest opportu-
nities to reduce pests and an optimal achievement of insect 
conservation goals. Solid scientific knowledge on ecosystem 
diversification and the associated costs of transforming a 
pure forest into a mixed forest is available only for a few 
systems [137] and at the local scale [138]. Additionally, even 
at the local scale, many diversification aspects still need fur-
ther clarifications, for instance the choice of the best spe-
cies identity and the proportion of each mix component to 
simultaneously decrease stand vulnerability to pests and to 
increase insect diversity [139, 140]. Finally, despite the posi-
tive general trend for pest control, it is important to consider 
that tree diversity has highly variable outcomes depending 
on taxa and study systems [75], with some authors reporting 
even associational susceptibility [141].

Second, the underlying forest ownership structure and 
the regulatory system in place within a country are key 
elements for the implementation of any kind of landscape 
diversification interventions. For instance, the achievement 
of large-scale conservation designs will occur more readily 
in landscapes containing large blocks of public or former 

timber industry forestlands [142]. Conversely, landscapes 
dominated by small-scale private owners have greater poten-
tial to strengthen sustainable development in forestry that 
integrates nature conservation and timber production, due to 
increased variability in scope, management, and practices at 
finer spatial scales [143, 144]. Recent outbreak events and 
post-disturbance management approaches have readily dem-
onstrated the increasing desire of the general public to par-
ticipate in decision-making [12••]. Participation of different 
forest owners coupled with inclusive policy instruments and 
supported by effective governance systems may foster the 
development of novel management solutions addressing for-
est multifunctionality [145]. Despite the profound impact of 
public engagement on the sustainability of actual and future 
forest management and of the fulfilment of national policy 
goals, this socio-ecological aspect is seldom included in 
research on forest management.

Third, when designing diversified forest landscapes, it 
is necessary to consider also the contribution of non-forest 
habitat patches in determining the dynamics of both pests 
and insects of conservation concern (Fig. 1). Besides forest 
diversification at the landscape scale, recent syntheses have 
proposed to decrease the matrix contrast with forest habi-
tats through increasing tree cover, promoting semi-natural 
elements and agroforestry [87••, 146]. This is likely to pro-
mote forest habitat connectivity, supporting beneficial forest 
insects and related ecosystem services to non-forest habitats. 
Moreover, forest patches embedded in a high-quality matrix 
could boost forest-dwelling natural enemies across hetero-
geneous landscapes, potentially minimizing the spread of 
insect pests to the forest interior. While increasing landscape 
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diversity appears as a promising approach to improve con-
ditions in intensive and homogenous forest landscapes, we 
should not neglect the need to protect entire landscapes of 
old-growth forests where natural dynamics can be allowed 
at large spatial scales. To inform forest managers and land 
planners with sound evidence on how to best improve forest 
resilience with diversification, it is fundamental to set up 
real-world experiments integrating concepts of biodiversity 
and multifunctionality, including multiple spatial scales and 
multiple aspects of structural diversity of forests [147•]. 
Although agricultural entomology, forest entomology, and 
forest insect conservation would benefit from sharing knowl-
edge and perspectives, the delivery of agriculturally relevant 
ecosystem services should not be the primary argument for 
the conservation and restoration of forests, that have impor-
tant values per se.

Strategy 2: Explicitly Incorporate Insects 
in the Design and Management of Protected Areas

Although 18% of global forests are currently included in 
protected areas, only c. 10% of boreal and temperate for-
ests are under protection [17]. Because of their major role 
both as forest disturbance agents and taxa of conservation 
concern, insects should be explicitly considered in the 
design and management of protected areas [14]. Due to the 

relatively low requirements in terms of habitat amount and 
resources of many insect species, these protected areas could 
be sometimes smaller than those designed to protect verte-
brates [89, 115, 148]. In mixed landscapes, the pest-related 
risks connected to protected areas are unknown [109], while 
they can be more substantial if landscapes are dominated 
by single tree species in former productive forests [149, 
150] (Fig. 2A). One key question to design protected areas 
for insects and to tailor management to meet their habitat 
and resource requirements is whether there is a good cross-
taxon congruence with other groups of conservation con-
cern. Here, most of the available data come from saproxylic 
insects, which usually exhibit weak, positive correlation with 
other taxa such as fungi, bryophytes, plants, or birds [151]. 
As in many other ecosystems, the lack of data on species 
occurrence, population trends, and level of threat are still 
the major constraints in insect conservation.

Strategy 3: Management of Natural Disturbances 
to Benefit Both Biodiversity Conservation 
and Forest Protection

Disturbances may support insects of conservation concern 
[152], but simultaneously increase pest outbreaks irrespec-
tive of other climatic triggers [153]. As outlined above, 
the strongest conflict between pest management and insect 
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erally beneficial to reduce pest outbreak risk, while the effects of set-
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diversified forest ecosystems. Similarly, we expect a strong interde-
pendence between landscape diversification and protected area effec-
tiveness per unit area for the conservation of forest insect biodiversity
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conservation lies within the decisions about post-disturbance 
management. Often large-scale disturbances simultaneously 
impact both protected and productive areas, creating con-
flicts between different stakeholders [61]. Forest owners, 
managers, and conservationists have often different goals 
and contrasting positions about intervention options. Allow-
ing some forests to be shaped by natural processes is con-
gruent with multiple goals of forest management, even in 
densely settled landscapes [154]. Indeed, the importance of 
pests in promoting forest ecosystem successional dynamics 
and supporting biodiversity and multiple ecosystem services 
is being increasingly acknowledged [111, 155], although 
such positive effects might not benefit all insect guilds in 
the long term. Here, we propose a hybrid approach where 
intensive post-disturbance management and non-interven-
tion are not mutually exclusive and can be combined within 
the same landscapes. For instance, small logged areas scat-
tered across a forest-dominated landscape can favour taxa 
that can benefit from a larger availability of flowers in forest 
openings and ecotones [91]. At the regional scale, having a 
fine-scale mosaic of logged and unlogged windthrows within 
a continuous forest cover can promote insect diversity of 
multiple taxa by increasing beta diversity between habitats 
[73]. Despite recent advances in forest ecology and man-
agement, there is still strong legal and social pressure to 
suppress biotic disturbances and control the natural dynam-
ics of disturbed forests (see for instance ref. [156]), and an 
intensified conversation about how society can coexist with 
disturbances is timely needed [154, 157].

Implementation of Multiple Strategies

To build multifunctional and resilient forest landscapes, 
the three proposed strategies could be simultaneously 
adopted after regional adaptation. In particular, it is nec-
essary to consider first the predominant land planning 
approach, i.e. land-sharing or land-sparing [158], and to 
assess the underlying heterogeneity of the working land-
scapes. Then, when implementing pest management, land 
planners and stakeholders should consider the interde-
pendence between the amount and configuration of land 
under protection needed and the general level of forestry 
intensity outside protected areas [159]. The implementa-
tion of multiple forest diversification strategies at the local 
and landscape scale is expected to synergistically increase 
the protection efficiency per unit area, thus achieving max-
imized biodiversity conservation due to the habitat diver-
sity effect (Fig. 2B). However, setting aside also entire 
forest landscapes for conservation is strictly non-negotia-
ble [87••], and policies to improve landscape diversity 
should not work antagonistically with the creation of large 
protected areas. Small-scale conservation interventions 

could also be implemented without a formal protection, 
for example by retaining veteran trees or small set-aside 
areas within productive landscapes [159]. Although even 
the implementation of small conservation interventions 
within productive stands is not straightforward due to dif-
ferent perspectives between foresters and conservationists 
[160], such management measures are expected to have 
positive effects on a large spectrum of species of conserva-
tion concern. On the contrary, conservation actions do not 
seem to impose significant economic costs or phytosani-
tary risks, although there is large uncertainty in mixed 
landscapes (Fig. 2A).

For forest-dominated landscapes, several management 
approaches targeting resilience have been proposed [161••], 
among which triad forestry represents an interesting frame-
work to promote forest multifunctionality at the landscape 
scale. Triad forestry refers to a landscape-scale management 
regime that combines forests with contrasting functions, 
such as intensive plantations for timber production, forest 
reserves for biodiversity conservation, and a dominant forest 
matrix extensively managed for multiple uses [158, 162••] 
Several local and regional examples already exist in North 
America [163, 164], in Europe [165], and in Oceania [166, 
167]. We propose to expand this idea by allowing natural 
disturbance dynamics to help increase structural and com-
positional heterogeneity at the landscape scale [168]. Again, 
careful planning and participation of multiple stakeholders is 
needed to identify areas where natural disturbance dynamics 
is compatible with other desired ecosystem services [154].

In mixed agricultural-forest landscapes, the triad for-
estry system should ideally also consider the composition 
and configuration of non-forest patches. Additionally, for-
est edges represent important habitats, possibly sustaining 
a high proportion of insects acting beneficially both in the 
forest interior and in non-forest habitats [169]. However, 
the application of such a multifunctional approach in the 
management of forests in mixed-used landscapes requires 
a deep understanding of the social, economic, and cultural 
factors that influence private land uses. When forest is the 
natural land cover in anthropogenic landscapes, priority 
should be given to conserving primary forest patches and 
their non-forest features. By contrast, in mixed landscapes 
where forests have a long history of human disturbance, it is 
essential to find a compromise to preserve both such forests 
and other habitats with contrasting land use goals. It is par-
ticularly challenging to maintain a high diversity of habitats 
across landscapes and simultaneously to maintain a suffi-
cient degree of habitat connectivity and amount. Increasing 
habitat diversity increases the potential number of species 
that may exist in a given area but simultaneously reduces the 
amount of habitat area and connectivity available for special-
ists and, thus, increases the likelihood of stochastic extinc-
tions [93]. In this context, recent integration of landscape 
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and network ecology could help in understanding how insect 
species move and use forest and open habitats across hetero-
geneous landscapes [170, 171].

Conclusions

Scientific evidence for a positive diversity-functioning rela-
tionship in pest control is emerging across different research 
fields from agroecology [172], to landscape ecology [173] to 
forest pest management [130, 174, 175•]. Since conservation 
research has also proposed this strategy to boost multi-taxa 
diversity at large spatial scales [176], the times are ripe to 
join forces by specialists from forest pest management and 
conservation biology. Although forests often possess two 
major contrasting management objectives, i.e. either timber 
production or biodiversity conservation, diversifying forest 
landscapes appears as the most effective way to reduce con-
flicts between contrasting objectives in forest uses [177]. 
Recent simulation studies suggest that this forest resilience-
oriented management can also overcome the threats of cli-
mate change and provide multiple ecosystem functions and 
services [178]. However, we should not neglect to maintain 
a high conservation priority for the few remaining areas 
where large primary forests are under threat [12••, 179]. 
While there are now several economic and legislative tools 
to implement diversification in agriculture, particularly in 
Europe (e.g. European Green Deal), the forest sector is still 
struggling with the adoption of similar policy frameworks. 
Major barriers include the lack of a long-term policy or 
management plans reflecting the long-lived nature of trees, 
the current wood-market demands, and a lack of tailored 
policy instruments that hamper the integration of pest con-
trol and conservation measures [84•]. Other barriers include 
the availability of relevant scientific knowledge and related 
knowledge gaps, complex relationships between multiple 
stakeholders, and the legal framework in which forest man-
agement operates [180•]. We acknowledge that the higher 
the variability in environmental conditions, ownership struc-
ture, and economic and socio-cultural conditions, the more 
complex is to develop strategies adapted to the local and 
regional needs [181]. However, there are emerging signs 
indicating the feasibility of maintaining both high timber 
production and structural elements of importance for biodi-
versity at a relatively minor economic cost and to the benefit 
of many species of conservation concern [182, 183]. Insect 
conservation and pest management do not appear to be in 
strong conflict when a modern proactive management based 
on forest diversification is preferred over reactive emer-
gency measures. Achieving this requires context-dependent 
changes in management at the landscape scale, long-term 
monitoring, and evidence-based adaptation plans that need 

to be harmonized with rapidly evolving socio-economic 
systems.
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