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Abstract
Purpose of Review The successful application of thermal infrared (TIR) remote sensing in the agricultural domain, largely 
driven by the arrival of new platforms and sensors that substantially increased thermal data resolution and availability, has 
sparked interest in thermography as a tool for monitoring forest health. In this review, we take a step back to reflect on what 
physiological responses are reflected in leaf and canopy temperature and summarise research activities on TIR remote sensing 
of stress responses in forest environments, highlighting current methodological challenges, open questions, and promising 
opportunities.
Recent Findings This systematic literature review showed that whilst the focus still remains on satellite imagery, Uncrewed 
Aerial Vehicles (UAVs) are playing an increasingly important role in testing the capabilities and sensitivity to stress onset 
at the individual tree level. To date, drought stress has been the focal point of research, largely due to its direct link to sto-
matal functioning at leaf level. Though, research into thermal responses to other stressors, e.g. pathogens, is also gaining 
momentum.
Summary Disentangling stress-induced canopy temperature variations from environmental factors and structural influences 
remains the main challenge for broader application of TIR remote sensing. Further development and testing of approaches 
for thermal data analysis, including their applicability for different tree species and sensitivity under different climatic condi-
tions, are required to establish how TIR remote sensing can best complement existing forest health monitoring approaches.

Keywords Thermal infrared remote sensing · Thermography · Canopy temperature · Forest health · Stress response · 
Vegetation

Introduction

Abnormal temperature deviations have long been known 
to be reflective of ailments in living beings. In healthcare 
settings, temperature measurements are taken as part of the 
regular routine checks of vital signs to help understand the 
health status and detect infection onset early. In plants, leaf 
temperature deviations are similarly reflective of physi-
ological changes and can be used as early indicators of 
disruptions to plant functioning. The links between leaf 
temperature and its functioning are well known and have 
long been investigated in both laboratory and outdoor set-
tings using thermal sensors: various studies on crops have 
linked leaf temperature to stomatal conductance and have 
demonstrated its feasibility for identifying drought stress 
[1–4] and pre-visual disease symptoms [5–8]. Yet, the 
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applicability of thermography for stress onset detection and 
health monitoring purposes in forest environments remains 
scarcely explored.

Thermal sensors measure the amount of radiation emit-
ted from observed surfaces, which subsequently can be 
converted to temperature readings. They operate in the 
thermal infrared (TIR) region of the electromagnetic 
spectrum, which occupies wavelengths from 3 to 14 µm; 
however, due to atmospheric absorption, only two regions 
can effectively be utilised: 3–5 µm (MWIR) and 8–14 µm 
(LWIR) with the latter being typically used for remote 
sensing applications since daytime thermal MWIR imagery 
can be contaminated by reflected sunlight and require addi-
tional corrections. The origins of thermal infrared (TIR) 
remote sensing can be traced back to the 1960s when the 
TIROS-2 satellite, equipped with an infrared thermometer, 
was launched into orbit [9]. Since then, TIR remote sens-
ing has proliferated with a range of existing satellite mis-
sions featuring sensors with thermal bands (e.g. Landsat, 
MODIS, ECOSTRESS) and a number of private ventures 
launched with the aim of tackling the limitations of exist-
ing satellite TIR imaging capabilities in the near future 
(e.g. Orora technologies, Hydrosat, Contellr).

The applications of TIR remote sensing are very broad, 
including climatology, hydrology, agronomy, and ecology. 
In forest settings, most focus has so far been put on detec-
tion, study, and management of biomass burning; a range 
of active fire detection methods have been developed over 
the years [10–12], and operational active fire products are 
now available in near-real time to aid fire management (e.g. 
[13, 14]). The use of thermal imagery for fire burn mapping, 
estimation of live fuel moisture content, and fire risk assess-
ment has also been explored [12, 15–17]. Though, in the lat-
ter case, remotely sensed surface temperature has generally 
been used as an environmental variable indicating the onset 
and occurrence of dry conditions rather than as an indicator 
of health status.

The arrival of new platforms and sensors, which increased 
spatial resolution (from hundreds of metres to several deci-
metres) and availability of thermal data, together with their 
successful application in the agricultural domain (e.g. 
[18–22]) has sparked interest in TIR remote sensing as a 
tool for detecting and assessing stress responses in forests. 
The number of studies on this topic has markedly increased 
since around 2005 (Fig. 1), with many of the earlier publica-
tions being review articles that were only highlighting this 
potential. Although the research focus still remains on satel-
lite imagery, Uncrewed Aerial Vehicles (UAVs) are playing 
an increasingly important role in testing the capabilities and 
sensitivity to stress onset at individual tree level, providing 
high spatial resolution data at a fraction of the cost of air-
borne campaigns (for local case studies). Additionally, Fig. 1 
highlights that drought stress, largely due to its direct link to 

stomatal functioning at leaf level, has so far been the focal 
point of research in forests. Nonetheless, thermal responses 
to other stressors are also starting to be researched; we iden-
tified 15 studies that investigated other specific stressors, 
out of which 14 focused on infections and infestations and 1 
on frost damage. This shows the desire to better understand 
what is possible and feasible with TIR remote sensing and 
how it can complement existing forest health monitoring 
approaches.

Here, in response to this interest, we take a step back 
to reflect on what physiological responses are reflected in 
leaf and canopy temperature and discuss how TIR remote 
sensing is currently utilised in forest environments for 
identification and monitoring of stress. Subsequently, we 
highlight current methodological challenges, open ques-
tions, and promising opportunities for future explorations 
into the thermal domain. As the use of thermography for 
applications surrounding forest fires falls outside the scope 
of this review, readers specifically interested in this topic 
are instead advised to refer to Szpakowski and Jensen [17], 
Leblon et al. [12], and Wooster et al. [11], who have already 
covered this aspect in depth.

Physiological Responses to Stress Onset

Physical and Physiological Aspects 
of Thermoregulation

Plants exchange heat with the environment continuously, 
and these thermoregulatory changes can be endothermic 
(absorbing energy) or exothermic (releasing energy) depend-
ing on the state of thermal equilibrium of the plant [23]. 
Incoming solar radiation is considered the primary source of 
thermal energy for plants; in the TIR region, it delivers heat 
to the plant body, whereas in specific visible wavebands, it 
is absorbed by leaves for photosynthesis [24]. Subsequent 
breakdown of photosynthates during cellular respiration 
results in the generation of intrinsic heat within plant tissues 
[25]. Heat is also generated within leaves when excess light 
energy is transduced to thermal energy by specific carot-
enoids for photoprotection via non-photochemical quenching 
[26]. In addition, longwave radiative heat exchange to and 
from neighbouring surfaces also accounts for the transfer of 
thermal energy between a plant and its surroundings [27].

Although persistent, the influence of these processes on 
sensible plant temperature is masked by transpirational and 
convective heat transfer [27, 28]. Overall plant temperature 
is affected remarkably by transpiration via stomatal opening 
in response to environmental stimuli and stressors (Fig. 2a) 
[23]. Stomatal opening for the uptake and release of  CO2 and 
 O2 to facilitate photosynthesis and respiration also leads to 
evaporation of water from the leaf [29, 30]. When stomata 
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open, water molecules near the stomatal aperture absorb 
energy from the surrounding tissue, generating the latent 
heat of transpiration and enabling the water molecules to 
overcome leaf boundary layer resistance and escape, result-
ing in rapid cooling of the leaf [27, 30]. Herein, the leaf 
boundary layer refers to the thin layer of calm air adjacent to 
the leaf surface that influences how quickly gases and energy 
are exchanged between the leaf and the surrounding air, with 
thicker layers leading to reduced transfer of heat,  CO2, and 
water vapour [31]. Since the thickness of the leaf bound-
ary layer tends to increase with leaf size, heat is transferred 
faster in smaller leaves, which leads to their equilibrium 
temperatures being closer to the ambient air compared to 
larger leaves [32]. This effect was illustrated via substantial 
differences in heat transfer between broadleaf and needleleaf 
trees [33] with needleleaf species exhibiting considerably 
smaller leaf-to-air temperature differences (0.3–2.8 °C) than 
broadleaf species (4.5–4.8 °C) [33]. Other factors such as 
sunlight, wind speed, humidity, air temperature, and respi-
ration influence transpirational cooling rates across a tree 
crown dynamically (Fig. 2b); for instance, fully-exposed 
sun-lit leaves in the upper canopy are typically exposed to 

higher temperatures and have higher transpirational cooling 
rates compared to partially shaded leaves lower in the crown 
[34, 35]. These differences, however, also depend on canopy 
structure, which affects aerodynamics, and consequently the 
transfer of heat via convection [36].

Convective heat exchange occurs passively when air mol-
ecules in contact with the plant surface act as a medium for 
transferring heat to and from the atmosphere to maintain 
thermal equilibrium (Fig. 2e). During this process, the role 
of leaves predominates compared to the trunk and woody 
branches due to the insulating nature of wood and bark, as 
well as the evolutionary design of the trunk in the form of a 
cylinder, which minimises surface area to volume ratio for 
heat exchange [37]. Canopy architectural traits such as leaf 
density, branching pattern, and vertical distribution of leaves 
play a crucial role in temperature regulation via convective 
heat exchange (Fig. 2e) [33]. As indicated by studies on vari-
ous tree species, compact canopies, i.e. having high leaf den-
sity, dissipate heat slowly and appear warm, whereas trees 
with relatively open canopies tend to have equal or lower 
temperatures compared to ambient [33, 38]. This trend in 
convective heat transfer may be extrapolated to total canopy 

Fig. 1  Number of TIR remote sensing publications (until the end of 
2022) focusing on detection and assessment of stress responses in 
forests, categorised by the imaging platform (top) and the topic (bot-
tom). The counts are based on systematic literature search results 
from Web of Science and Scopus—a summary of the literature search 
and exclusion criteria is provided in the Supplementary Material. 

Note: ‘multiscale’ refers to studies that used data from multiple plat-
forms, whilst ‘other’ refers to review publications and otherwise unat-
tributed studies. It should also be noted that in the case of fire risk 
assessment studies, we excluded publications where surface tempera-
ture was used as an environmental variable rather than as an indicator 
of health status
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cover. In closed canopies, a smaller proportion of the tree 
crown is exposed to direct sunlight and air movement due 
to partial shading by neighbouring trees. Whereas in more 
open canopies, wind turbulence is higher, which may lead to 
higher leaf transpiration creating a greater potential for heat 
dissipation. To what degree these factors affect canopy tem-
perature is strongly dependent on water availability and the 
influence of immediate surroundings on the microclimate 
(e.g. forest edge vs continuous forest canopy).

Level of hydration is a predominant factor that impacts 
plant temperature by directly influencing stomatal movement 
for regulating transpiration as a ‘water retention reflex’. 
Reduction in turgor pressure within the plant due to low 
moisture availability results in the shrinking of guard cells 

and consequently the stomatal aperture, ultimately resulting 
in reduced transpirational cooling [39]. Low relative 
humidity, high vapour pressure deficit, and wind promote 
evaporative water loss and, hence, tend to trigger stomatal 
closure [39–42]. In contrast, very high relative humidity 
may reduce transpirational cooling by directly deterring 
evaporation. Abscisic acid (ABA), a phytohormone involved 
in various stress responses, plays a crucial role in stomatal 
closure in response to environmental stimuli by inducing 
osmotic water efflux from the guard cells to regulate water 
loss [43, 44]. Regulation of temperature via transpiration in 
response to these environmental changes may vary markedly 
depending on the sensitivity of stomatal conductance 
in different species and must be considered when using 

Fig. 2  Schematic diagram summarising plant thermoregulation con-
cepts. a Leaves maximise surface area for heat exchange through 
convection and actively regulate overall plant temperature by control-
ling transpiration in response to external stimuli. b Rate of transpira-
tion therefore varies within and between canopies depending on the 
level of exposure to environmental factors (solar radiation, humidity, 
air temperature), i.e. leaves in upper vs. lower canopy and emergent 
trees vs. non-emergent neighbours. c In normal conditions, stomata 
open in response to sunlight. Though, when irradiation reaches high 

levels, stomata tend to close to avoid photosynthetic photooxidative 
stress, which leads to reduced transpirational cooling. d Stress onset 
typically triggers stomatal closure. During drought, it occurs due to 
reduced hydraulic conductance, whereas during flooding, it is a sys-
temic response to root anoxia. e Canopy architectural traits and for-
est characteristics also play a role in determining canopy temperature 
since they affect temperature regulation via convective heat exchange 
by directly influencing aerodynamics
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thermography. For instance, isohydric plant species ration 
water content by adopting a ‘water conservation’ behaviour, 
whereas anisohydric plants display a ‘risk-taking’ behaviour 
by allowing leaf water potential to drop very low. Hence, 
stomatal responses in isohydric plant species are more 
rapid compared to anisohydric plants [45]. At canopy level, 
differences in responses between individual trees occur due 
to variations in hydraulic path length, i.e. the distance over 
which water is transported from roots to individual leaves 
(Fig. 2b). Sensitivity to water shortages increases with the 
hydraulic path length; hence, larger trees have a higher risk 
of embolism formation and mortality [46–48]. In addition, 
emergent trees have a larger proportion of their crown 
exposed, experiencing higher wind speeds and irradiance 
levels compared to their non-emergent neighbours (Fig. 2b). 
Consequently, they operate more closely to their critical leaf 
temperature, further increasing their sensitivity to drought 
and/or heatwaves [46–48].

Thermoregulation in Response to Cyclic 
Environmental Changes and Stress

Canopy temperature varies considerably following diurnal 
and seasonal patterns in response to changing environmental 
conditions (Fig. 2c, d) [49–51]. In forests, it is tightly cou-
pled to air temperature and will follow similar diurnal and 
seasonal trends [52]. This is in contrast to short vegetation, 
such as agricultural crops, which experience greater fluctua-
tions, often considerably deviating from ambient tempera-
ture. Apart from these anticipated environmental variations, 
plant thermoregulation also occurs in response to various 
abiotic and biotic stresses [23, 53, 54]. In general, all such 
responses are regulated by a network of signalling events 
mediated by various genes and plant growth regulators [43, 
44]. Under normal conditions, stomata open in response to 
sunlight for photosynthetic gas exchange and transpiration, 
with the process being reversed at night [55, 56]. Thus, in 
thermal imagery, a healthy, photosynthesising canopy gen-
erally appears cooler than a stressed canopy due to undis-
turbed transpirational cooling [39, 57]. However, stomata 
close under high light conditions, occurring naturally when 
the sun is at its peak, to avoid photosynthetic photooxidative 
stress. This results in a ‘midday depression’ in photosynthe-
sis and stomatal gas exchange [52, 58], potentially leading to 
reduced transpirational cooling in addition to excess radia-
tive heat gain resulting in a significant change in canopy 
temperature.

Like light, ambient temperature affects canopy thermal 
signature by influencing stomatal opening. Warm weather 
encourages stomatal opening to promote transpiration for 
alleviating heat stress [59]. However, excessive evaporative 
loss from the soil due to very high air temperatures may 
indirectly lead to stomatal closure via long-distance ABA 

signalling initiated by osmotic stress in the roots [60]. This 
phenomenon is frequently observed in drought-stressed can-
opies and is noticeable as a spike in temperature [23, 38, 39]. 
Flooding of the roots also triggers stomatal closure by stress 
signalling due to root anoxia [53, 61]. Although detrimen-
tal during summer, this reduction in stomatal conductance 
to deter transpiration was found to help herbaceous plants 
conserve heat and moisture during winter [60, 62]. Though, 
how different stress intensities and coping mechanisms 
affect thermal patterns of evergreen species in wintertime 
still remains unexplored.

In general, retention of moisture and heat by stomatal 
closure occurs at the cost of photosynthetic activity, and 
vice versa. Since leaf senescence due to seasonal changes or 
stress essentially involves sustained ABA signalling for sto-
matal closure to pause photosynthesis [43], it may be tracked 
reliably as the change in leaf temperature, which manifests 
before other symptoms. Biotic stress due to disease and her-
bivory was also found to increase plant temperature in crops 
by triggering stomatal closure [23, 63]; salicylic acid, an 
endogenous plant growth regulator and defensive compound 
that promotes stomatal closure, has been frequently reported 
to be upregulated in response to various biotic stressors [64]. 
Thermal fluctuations under biotic stress may be detected as 
localised (leaf level) or canopy-wide responses depending 
upon the nature and level of stress. Root damage caused by 
viruses, fungal or bacterial pathogens, and root nematodes 
have the potential to elicit systemic symptoms due to water 
scarcity and widespread stomatal closure and may cause 
canopy-level thermal responses. In contrast, temperature 
change caused by foliar diseases and herbivory or mechani-
cal injury may be more localised depending on the extent of 
damage. Although well documented in crops, such responses 
have not been studied extensively in forest species. However, 
positive reports on various fruit trees indicate the feasibil-
ity of thermal imaging for biotic stress detection in forest 
species [63].

Developments and Trends in TIR Remote 
Sensing of Stress Responses in Forest 
Ecosystems

TIR Remote Sensing Concepts and Technologies

TIR sensors principally measure thermal radiance emitted 
by the land surface, where the incoming solar radiation inter-
acts with the ground. The resultant imagery typically has 
coarser spatial resolution than optical imagery due to the low 
amount of energy reaching the sensor, relative to the amount 
of radiation reflected at shorter wavelengths. For instance, 
the spatial resolution of MODIS optical data is 250/500 m 
and that of TIR data is 1000 m. Similarly, Landsat 9 optical 
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imagery has a spatial resolution of 30 m, whereas for TIR 
imagery, it is 100 m (Table 1). Over the years, advances 
in satellite technology and sensor design have enabled sig-
nificant improvements in the level of detail captured, with 
some missions now collecting data at 60 m spatial resolution 
(Table 1). The upcoming Sentinel LSTM mission, planned 
for launch in 2028, will further improve it to 50 m with a 
1–3-day revisit time.

Thermal radiance measured by TIR sensors can subse-
quently be converted to Land Surface Temperature (LST) by 
accounting for atmospheric effects on the signal and emis-
sivity properties of the observed surface. Emissivity defines 
the proportion of energy that a given surface emits relative 
to a blackbody, a hypothetical perfect radiator that absorbs 
all incident energy, and then emits it back as heat. Emissivity 
of real-life materials varies as a function of wavelength and 
strongly depends on surface type and its properties. Even 
for leaves, distinctive differences in emissivity spectra can 
be found between species [78, 79] and across development 
stages [80]. Richardson et al. [80] found the emissivity value 
in a number of deciduous tree species to decrease from about 
0.99 to 0.95 (across 8–14 µm) as the foliage matured fol-
lowing cuticle development and thickening. Despite these 
differences, generic emissivity values (of 0.95–0.99 for 
leaves and 0.98–99 for canopies) obtained from generalised 
tables are typically used to retrieve plant temperature from 
broadband thermal imagery, largely due to the shortage of 
relevant TIR spectral libraries that is being addressed by the 
ECOSTRESS mission through the collection of vegetation 
and non-photosynthetic vegetation spectra [81].

Where multiple thermal bands are available, both LST 
and emissivity can be retrieved through the use of Tem-
perature Emissivity Separation (TES) methods; their perfor-
mance, however, depends on the number of available ther-
mal bands and accurate elimination of atmospheric effects 
on the signal [82–85]. Signal-to-noise ratio is a crucial con-
sideration during the design of thermal sensors since the 
amount of energy emitted in the TIR region is much lower 
than the amount of energy reflected at shorter wavelengths, 
significantly restricting achievable spatial resolution. Addi-
tionally, with an increasing distance between the sensor and 
the surface, progressive attenuation of the signal can occur, 
leading to unique emissivity features becoming weaker or 
disappearing altogether [86]. This is part of the reason why 
hyperspectral TIR sensing is still restricted to laboratory, 
ground and occasional airborne measurements, e.g. [79, 86, 
87].

High-end thermal sensors are typically equipped with 
quantum detectors to achieve short response times and very 
high sensitivities. These require an external cooling system 
that makes them bulky and expensive and significantly lim-
its their application to airborne and satellite missions. The 
development of sensors based on thermal detectors that do 

not require cooling has allowed for significant miniaturisa-
tion of thermal cameras, making such sensors sufficiently 
lightweight for inclusion as part of a UAV payload. However, 
the lack of a cooling system results in slow response time 
and low signal-to-noise ratio and makes such cameras sensi-
tive to changes in environmental conditions—a significant 
issue highlighted by a number of studies [88–90]. The ability 
to detect stress can therefore not only be affected by plant 
physiological responses but also by the choice of an imaging 
sensor, with trade-offs having to be made between thermal 
sensitivity and spatial, spectral, and temporal resolutions.

Regional‑Level Monitoring of Forest Vitality

To date, thermal responses to stressors have mostly been 
investigated at the regional scale owing to the spatial reso-
lution typically achievable with satellite and airborne sen-
sors. The systematic literature search (see Supplementary 
Material for details) showed that thermal metrics derived 
from satellite data have largely been used for fire-related 
stresses (Fig. 3); this was also indicated by Johnston et al. 
[91]. Most of the studies used LST, typically derived from 
MODIS (Moderate Resolution Imaging Spectroradiom-
eter) [92, 93] or NOAA-AVHRR (National Oceanic and 
Atmospheric Administration-Advanced Very High Resolu-
tion Radiometer) sensors [94], which proved valuable for 
mapping areas where forest fires occurred, and for early 
fire warning by capturing dryness, or drought stress, of 
forests [94–96]. Similar to forest fire mapping where the 
loss of foliage leads to an increase in canopy temperature, 
LST has additionally been used to map defoliation caused 
by insect outbreaks [68, 97, 98]; Abdullah et al. [97] even 
found canopy temperature increase to be more sensitive to 
subtle canopy changes caused by bark beetle defoliation than 
standard vegetation indices.

A large proportion of the identified satellite-based studies 
used thermal information to capture the extent and severity 
of droughts on forests, largely focusing on the analysis of 
LST time series, either directly or through the use of Tem-
perature Condition Index (TCI) that normalises LST relative 
to historical minimum and maximum values. In many cases, 
large-scale analyses were performed, comparing responses 
of different land cover types and broadly defined forest types 
(deciduous vs. evergreen and/or broadleaf vs. needleleaf) to 
drought onsets [100–102]. The effects of well-known cli-
mate extreme events such as El Niño were also frequently 
evaluated in the Amazon [103, 104]. Few studies were 
undertaken in temperate study areas, where LST proved to 
be a useful predictor of drought [105] or the water status 
[106] in a range of tree species. In the study of Mildrexler 
et al. [105], it was used in combination with a water balance 
to assess vulnerability of different forest types in Oregon and 
Washington, USA.
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Despite the relatively broad use of satellite-derived 
thermal metrics that have proven valuable for monitor-
ing drought, the link with tree physiology (e.g. tree radial 
growth) remains underexplored. Several studies using satel-
lite-derived vegetation indices (e.g. NDVI) were able to cap-
ture physical damage on trees, but indicated that more subtle 
stresses, such as drought stress, were difficult to capture and 
only possible when leaf discoloration occurred, e.g. due to 
a heatwave [107, 108]. At airborne level, investigations into 
drought responses in the thermal domain have so far largely 
focused on intercomparisons. Pierce et al. [109] observed 
that whilst large differences in relative leaf water content 
clearly exhibited themselves in thermal imagery of needle-
leaf plots, smaller differences were not discernible at that 
scale. Scherrer et al. [38] similarly observed canopy tem-
perature readings in ‘dry’ and ‘moist’ forest sites to diverge 
during drought onset, with responses differing between spe-
cies, though these could not be attributed to the measured 
differences in sap flow. With rapidly evolving sensors with 
higher spatial, temporal, and spectral resolutions, opportu-
nities are now opening to perform such investigations with 
satellite-derived thermal indices and to link them to field 
observations to study species-specific drought responses, 
detect droughts, and establish their effects on tree growth.

Local‑Level Investigations with UAV Thermography

UAVs equipped with miniaturised sensors are often praised 
for their flexibility of deployment and ability to capture a 
very high level of spatial detail (Table 1), offering the chance 
to individually measure dominant trees. A growing number 
of studies have demonstrated the potential of different UAV 
sensors for vegetation surveys, with applications including 
extraction of structural parameters [110, 111], species clas-
sification [112, 113], health monitoring [114, 115], phenol-
ogy tracking [116, 117], and mapping of flowering resources 
[118, 119]. In the case of UAV thermography, capabilities 
are being extensively explored for precision agriculture 
applications to aid early stress detection and irrigation 
scheduling, with a broad range of studies successfully relat-
ing canopy temperature with stress intensity in both non-
woody crops [22, 120, 121] and orchard trees [18–21]. In 
contrast, the uptake in forestry has so far been minimal; we 
identified only 8 research publications, which utilised UAV-
borne thermal cameras to investigate stress responses in a 
forest setting (Fig. 4) [71–75, 77, 122, 123]. These gener-
ally made relative temperature comparisons, finding more 
stressed trees to have higher canopy temperatures.

The investigated stress agents were varied, with more 
emphasis on biotic stressors rather than water scarcity 
(Fig. 4). We associate this diversity with the ability to 
investigate thermal responses of individual trees, which 
has so far been impossible to achieve (in the case of Ta
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satellite imagery due to spatial resolution), costly (in the 
case of airborne campaigns), or logistically complex (for 
proximal sensors). Previous airborne campaigns, which 
assessed defoliation induced by insect and disease out-
breaks and found canopy temperature increase to be a 
valuable metric [69, 70], contributed to this interest.

Plant-parasite interactions have emerged as an area of interest 
thanks to high spatial resolution imagery enabling visual sepa-
ration of individual canopies. Yuan et al. [71] found that whilst 
liana infestation caused a significant increase in canopy tempera-
ture, the absolute differences were small, i.e. circa 0.5 °C. Maes 
et al. [73], too, observed mistletoe infestation to increase canopy 
temperature in eucalypt. However, these differences were only 
significant when solar radiation was highest. Smigaj et al. [75] 
similarly found that canopy temperature differences between 
Scots pines with different red band needle blight infection rates 
were most pronounced when the vapour pressure deficit was 
highest. Weather conditions favouring increased transpiration 
rates accentuate these differences as stomata of the stressed 
plants close to prevent water loss, leading to an increase in leaf 
and canopy temperature. The effect of environmental conditions 

should, therefore, be taken into account when planning and con-
ducting UAV-borne thermal surveys.

Beyond environmental variables, forest structure and density 
can impact canopy temperature and potentially obscure thermal 
stress responses. Wang et al. [123] found LiDAR-derived LAI 

Fig. 3  Distribution of study areas from the reviewed literature 
(n = 62), categorised by the used platform (symbol) and the investi-
gated stress agent (colour), overlain on the studied biomes. Note: 
several publications utilised multiple, distant study areas—these are 
marked separately on the map. Bubble charts present the relative fre-
quency at which each thermal metric was used and a given biome was 
studied. For simplificity, TVDI encompasses other indices that com-

bine LST and NDVI to establish non-water stressed and non-transpir-
ing upper baselines. Abbreviations: LST Land Surface Temperature, 
TVDI Temperature-Vegetation Dryness Index,  Tc canopy tempera-
ture,  Ta air temperature, TCI Temperature Condition Index, VHI Veg-
etation Health Index, ESI Evaporative Stress Index. Biome extents 
were sourced from Dinerstein et al. [99]

Fig. 4  Number of thermal remote sensing publications focusing on 
detection and assessment of stress responses in forests, categorised 
by topic for each remote sensing platform—every square represents 
a single publication. Further details on categorisations and the litera-
ture search criteria can be found in the Fig. 1 caption and in the Sup-
plementary Material
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measurements to be well correlated with canopy temperatures, 
impacting the relationship between canopy temperature and 
damage extent from a pine shoot beetle attack. Likewise, Sankey 
and Tatum [77] observed the impact of changing pine forest den-
sity, with trees in thinned areas consistently having significantly 
higher canopy temperatures even though during a severe drought 
the non-thinned stands experienced both lower moisture content 
and higher mortality rates. This discrepancy, however, was not 
reflected in multi-year canopy temperature measurements as the 
difference between a drought and a non-drought year was much 
higher in the non-thinned stands (9.5 °C vs. 6.9 °C), indicating 
higher stress levels were being experienced (compared to the 
non-drought baseline). Variation in differences between canopy 
and air temperature resulting from tree density and height was 
also evident in the study of Javadian et al. [76]; nevertheless, 
diurnal canopy temperature dynamics were closely related to 
tree sap flow measurements and drought stress.

This small pool of studies provides promising insights into 
the potential of UAV thermography, but also highlights that 
the interpretation of differences in canopy temperature may 
not be straightforward due to a range of confounding variables. 
Hence, development and testing of approaches that can enable 
direct interpretation of multitemporal thermal information of 
forest canopies at local scale is imperative for broader applica-
tion of thermography that goes beyond relative comparisons of 
canopy temperatures. Proximal sensing with thermal cameras 
or infrared radiometers deployed on above-canopy observation 
towers, although not covered in depth in this review, could play 
an important role in helping develop these capabilities. Whilst 
covering very limited spatial extents, such sensors allow con-
tinuous monitoring of leaf and/or canopy temperatures, provid-
ing insight into temporal variations. As such, they could guide 
interpretation of UAV datasets, which only provide snapshots 
in time. Even though the use of such sensors still requires 
careful accounting for atmospheric conditions, measurement 
distance, and viewing angle to ensure accurate canopy tem-
perature retrieval [50, 124], a number of studies successfully 
utilised them in forest habitats to characterise diurnal tempera-
ture dynamics [125–127], investigate responses to changing 
soil moisture conditions [54, 127], explore differences between 
species [33, 54, 127], and link canopy temperature measure-
ments with gross primary productivity [128].

Open Challenges and Opportunities 
for Monitoring Stress Responses in Forest 
Ecosystems with TIR Remote Sensing

Disentangling Stress Responses from Environmental 
Factors

The vast majority of reviewed publications used tempera-
ture measurements directly (using LST, canopy temperature, 

or TCI) to identify stress (Fig. 3). In the case of satellite 
imagery, multitemporal analysis was often employed to iden-
tify anomalies (for the time of year) likely caused by drought 
onset or defoliation. Where data from a single acquisition 
were utilised, typically in airborne and UAV studies, relative 
comparisons were made between stands or trees undergoing 
different levels of stress or defoliation. Whilst such a direct 
approach would still be appropriate for comparing canopy 
temperatures in datasets acquired under nearly identical envi-
ronmental settings, it significantly limits the use of thermal 
information for monitoring tree physiological status over 
time. The close relationship between canopy temperature 
and ambient environmental conditions (as mentioned in the 
‘Physiological responses to stress onset’ section) makes it 
difficult to separate stress response from the effects of plant 
thermoregulation.

Different approaches have been developed over the years 
in an attempt to normalise leaf and canopy temperature for 
variations in environmental conditions, with the so-called 
‘stress indices’ typically being utilised in UAV and proximal 
agricultural studies [3, 129, 130]. Among the most com-
monly used are the Crop Water Stress Index (CWSI) and 
canopy-to-air temperature difference  (Tc −  Ta). CWSI intro-
duces a non-water-stressed baseline and a non-transpiring 
upper baseline for normalisation and was shown to robustly 
account for the effects of changing weather conditions [131, 
132]. Several approaches for its derivation were developed, 
requiring a different number of additional input variables 
and effectively offering different levels of normalisation. A 
comprehensive review of these, mainly focussing on agri-
cultural studies, alongside their limitations can be found in 
Maes and Steppe [3] and Nanda et al. [129].  Tc −  Ta is sim-
pler to derive, requiring only ambient temperature as input, 
and has so far been the only thermal ‘stress index’ utilised 
in a forest setting at UAV level [75]. Although providing 
some level of normalisation, it was shown to be adversely 
affected by weather conditions, which complicates its inter-
pretation [3].

At satellite level, several studies used a combination of 
LST and NDVI to help interpret the thermal responses and 
relate them to stress. Similarly to CWSI, a ‘dry edge’ rep-
resenting a non-transpiring upper baseline and a ‘wet edge’ 
representing a non-water-stressed baseline can be used to 
normalise the responses. To derive these and subsequently 
the Temperature–Vegetation Dryness Index (TVDI) or 
similar indices, a sufficiently large study area is required 
to represent the entire range of surface moisture contents, 
from wet to dry and from bare soil to fully vegetated sur-
faces. Although successfully employed for studying drought 
across different land cover types, the TVDI uncertainty 
increases with NDVI values, somewhat reducing its util-
ity to forest studies. A potential way forward could be the 
Evaporative Stress Index (ESI) that has been utilised by 
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Pascolini-Campbell et al. [133] and Yang et al. [134••] to 
study forest mortality rates and is now available as a prod-
uct of the ECOSTRESS mission. ESI is the ratio between 
the potential and actual evapotranspiration and is derived 
with the help of a Penman–Monteith surface energy balance 
model; this adds complexity to its calculation and introduces 
the need for meteorological inputs, significantly limiting its 
application at local scale, but also offers a more comprehen-
sive way of monitoring stress responses.

Further development and testing of approaches for ther-
mal data analysis, including their applicability for different 
tree species and sensitivity under different climatic condi-
tions, is required to establish how thermography can comple-
ment current forest health monitoring approaches. To date, 
very little research has been conducted on species-specific 
thermal stress responses. Addressing this gap will require 
direct links to be made between thermal indices and field 
observations of tree physiological status (e.g. measurements 
of sap flow, radial stem size changes, or leaf water potential) 
and the effects of external factors (e.g. environmental condi-
tions or structural differences), eventually enabling direct 
interpretation of multitemporal thermal information of forest 
canopies.

Modelling Forest Thermal Properties

Surface temperature retrieval from satellite or airborne TIR 
data in forest environments is complicated by numerous 
variables that influence the thermal response. These include 
sun-sensor geometry, atmospheric conditions, forest den-
sity, canopy architecture, temperature, and emissivity of 
canopy components, as well as temperature and emissiv-
ity of soil (for open canopies). The relationship between 
these variables and surface temperature can be examined 
with Radiative Transfer Models (RTMs) that can simulate 
radiation propagation and scattering and the aggregated ther-
mal response for a sample sensor. Simulations require user-
specified structural, optical, and thermal properties of all 
vegetation scene components, as well as atmospheric profile 
[135–137]. RTMs can be divided into simple 1D and more 
complex 3D models based on how they model vegetation 
canopies. 1D models approximate the canopy as one or more 
horizontal layers of homogeneous turbid medium above a 
soil layer, making them unsuitable for heterogeneous sites 
with discontinuous canopies like forests [138–141], whereas 
3D models allow the use of heterogeneous 3D scenes and 
therefore provide a better characterisation of forest canopies. 
An in-depth review of available TIR RTMs and their histori-
cal developments can be found in Cao et al. [138•].

The ability to incorporate structural complexity in sim-
ulations is the main strength of 3D RTMs. These models 
allow the reconstruction of realistic 3D forest scenes where 
canopies are represented as geometric objects (spheroid, 

cone, cylinder) or as detailed 3D models with explicitly 
defined canopy architecture down to leaf and twig level [136, 
1371385). The use of realistic forest scenes was reported to 
improve the accuracy of simulation since vertical and hori-
zontal heterogeneity in structure, as well as the biochemi-
cal and thermal properties of the forest canopy, could be 
accounted for [135, 139, 141]. Despite their superiority, 3D 
RTMs have three main limitations: (i) the simulations are 
slow and computationally demanding [142, 143]; (ii) they 
require the temperature of each scene component as input to 
simulate thermal emissions, i.e. the model can neither simu-
late surface sensible and latent heat fluxes; and (iii) there 
is no link between leaf temperature and biochemical traits 
[135, 138, 144], e.g. reducing leaf water content to simulate 
drought will not result in simulating stomatal closure and 
increasing leaf temperature. To address the latter, 3D RTMs 
can be coupled with atmosphere-soil-canopy energy balance 
models as demonstrated by Baldocchi and Meyers [144] 
and Bian et al. [139]. Though, this approach is yet to be 
employed in the more comprehensive 3D RTMs that explic-
itly define the canopy structure, such as DART (Discrete 
Anisotropic Radiative Transfer) [135, 145] or DIRSIG (Dig-
ital Imaging and Remote Sensing Image Generation) [146]. 
Another potential solution would be to utilise 3D thermal 
temperature point clouds derived from UAV imagery (see 
the ‘3D thermal point clouds: potential and issues’ section) 
as inputs for 3D RTMs to define the 3D temperature distri-
bution within each forest canopy. Though, this would require 
addressing occlusion issues, which hinder the estimation of 
lower canopy and understorey temperature. Deployment of 
proximal sensors in lower canopy layers could potentially 
help alleviate these.

The use of 3D RTMs in the TIR domain presents a prom-
ising avenue for advancing our understanding of forest ther-
mal responses observed by coarse resolution sensors. This 
is due to the ability of 3D RTMs to simulate LST at the 
individual tree level, as a function of brightness temperature 
and emissivity. Of high value is their ability to separate the 
contribution of each scene component (leaf, wood, branches, 
understorey, soil) to the aggregated pixel temperature of a 
given sensor. Furthermore, their capability to simulate the 
same forest scene using multiple sensors (such as UAV-
borne, airborne, and spaceborne) facilitates comparisons 
between simulated datasets at different levels (Fig. 5). Mul-
tiscale comparisons of thermal stress responses in forests 
are still scarce, with the study of Javadian et al. [76] being 
the only one to utilise different platforms for this purpose. 
Parameterisation of realistic forest 3D RTMs at sufficient 
spatial scale to simulate satellite-level thermal responses 
still poses a challenge due to the number of inputs and the 
required spatial extent to be modelled. Therefore, there is 
a need for improved understanding and prioritisation of 
key parameter inputs to enable more accurate and efficient 
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upscaling of such models. In this regard, we see linking sim-
ulations with high spatial resolution measurements obtained 
from UAVs and proximal sensors as a promising approach.

3D Thermal Point Clouds: Potential and Issues

UAV imaging opens the opportunity to derive thermal 
information in three dimensions by utilising the Struc-
ture-from-Motion (SfM) workflow, potentially enabling 
the study of temperature variations across canopy layers. 
Such datasets could prove to be valuable inputs for 3D 
RTMs, helping define the 3D temperature distribution 
within each forest canopy. Whilst promising, SfM process-
ing of thermal UAV data for forests has some specific chal-
lenges since the SfM workflow was originally developed 
for processing red–green–blue (RGB) imagery obtained 
from different viewing angles and/or orientations where 

unique features can be easily identified and matched. Due 
to the inherently low spatial resolution of thermal imagery 
(typically several decimetres) compared to other modali-
ties and often subtle temperature differences within the 
forest canopy that are close to the accuracy of the used 
cameras, it is difficult to find enough corresponding points 
on overlapping images to reconstruct exact camera posi-
tions. This leads to problems with aligning all images and 
low geometrical accuracies, if stitching is possible at all. 
Consequently, when only thermal data is used, the SfM 
processing often fails at the construction of a dense point 
cloud, which is essential for adequate reconstruction of the 
surface and subsequent creation of thermal orthomosaics. 
Many of the reviewed UAV-borne studies faced this issue 
and resorted to using individual thermal images for the 
analysis instead [71, 75, 77, 123].

Fig. 5  a A mixed-species DART forest scene reconstructed from ter-
restrial laser scans of a forest stand in Wytham Woods, UK, that was 
used for a simulation of directional brightness temperature (DBT)—
the 3D forest model was sourced from Calders et  al. [136]. Shown 
alongside is a 3D radiative budget displaying the amount of TIR radi-
ation emitted by each 0.2 m voxel within the scene. b A sample tree 

extracted from the plot showing TIR radiation absorbed and emitted 
by each tree component, i.e. individual leaves, branches, twigs, and 
the stem. c DBT simulated for a range of spatial resolution settings 
illustrating the progressive loss of spatial detail, shown next to the 
corresponding RGB image
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Co-registration with RGB or multispectral datasets, which 
have a higher spatial detail, can aid processing of the thermal 
data. Several methods across different application domains 
have been proposed to achieve this; some require the use of 
ground control points [147, 148], whilst others realise the 
alignment through post-processing of the camera positions 
[149] or alignment of the RGB and TIR point clouds [150]. 
These, however, are either cumbersome to implement or do 
not solve the initial alignment issues faced in forests. One 
way to overcome the highlighted problems and avoid the 
complicated alignment procedures is to co-acquire thermal 
data with coincident high-resolution datasets, such as RGB 
or multispectral data, and use the fused dataset for photo-
grammetric processing, building up on the methodology 
proposed by Ham and Golparvar-Fard [151]. An example 
result of such processing is shown in Fig. 6, for which a 
FLIR Tau 2 thermal camera attached to and synchronised 
with an Airphen multispectral camera was used. Both the 
RGB and TIR point clouds were generated in SfM software, 
though the workflow did not follow the standard SfM proto-
col. Instead, the focus was first put on the reconstruction of 

reliable geometry, for which all images taken by all multi-
spectral cameras and the TIR camera were loaded together 
and co-registered through SfM, followed by the generation 
of a dense point cloud. Only then the responses from differ-
ent cameras were separated and calibrated, and temperature 
values assigned in the 3D space to the previously gener-
ated dense point cloud (Fig. 6). This approach overcomes 
difficulties with aligning thermal images in forest environ-
ments, such as those experienced by Webster et al. [152], 
and results in a good co-registration of multispectral and 
TIR SfM products. The use of TIR data together with RGB 
or multispectral data in the co-registration procedure also 
bypasses several steps applied by Javadnejad et al. [153] 
where the TIR images are only added to the SfM process at 
a later stage and are thus not directly aligned. Such optimisa-
tion of the processing workflow is crucial for the effective 
use of UAV thermography.

Fig. 6  RGB and TIR point 
clouds of a Douglas fir forest 
stand in the Zwolse Bos, the 
Netherlands. The colours in the 
TIR point cloud show the tem-
perature in Kelvin degrees
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Quality of UAV‑Borne Thermal Imagery

The quality of thermal data obtained from UAV platforms is 
strongly impacted by the performance of available miniature 
cameras. Even though manufacturers often claim tempera-
ture reading accuracy to be within 2 °C or 2%, the actual 
offsets can be much larger, especially if environmental con-
ditions are changing. This is due to the way thermal detec-
tors operate; as they absorb IR radiation emitted from an 
observed surface, the amount of produced heat varies, lead-
ing to a change in the electrical properties of the detectors 
and consequently in the recorded image pixel values. Vary-
ing camera body temperature caused by changing ambient 
conditions will, therefore, also affect the detectors. In par-
ticular, rapid increases in camera body temperature caused 
by external heat were shown to strongly affect temperature 
readings in uncooled cameras [89, 90, 154]. Ensuring a cam-
era has sufficient time to adjust to ambient conditions prior 
to the acquisition, and limiting the sun’s influence during 
the acquisition, e.g. through shielding, can help with obtain-
ing more consistent temperature measurements over time. 
Similarly, ensuring a camera is turned on for a sufficient 
time prior to the flight is crucial because significant thermal 
drift occurs during the warming up period—previous studies 
suggested a waiting time between 30 and 60 min is needed 
for miniature uncooled cameras to stabilise [88–90, 147].

Even with these precautions in place, some thermal 
drift is likely to occur and may need to be accounted for 
to ensure that the observed canopy temperature differences 
reflect reality. This can, for example, be achieved through 
the comparison of temperatures recorded for the same areas 
in overlapping images [155]—a feature already available 
in some software implementing the SfM workflow. Alter-
natively, the use of an external heated shutter mounted on 
the camera for mid-flight calibration has been suggested 
for alleviating thermal drift [156]. Atmospheric conditions 
and the measurement distance will also have an effect on 
recorded temperature values, dictating the extent to which 
the thermal signal gets attenuated, with the most significant 
atmospheric factors being relative humidity and atmospheric 
temperature. Where absolute temperature values are needed 
(i.e. for analysis beyond comparison of relative canopy tem-
perature differences), further corrections with the help of 
ground measurements are required. A common approach in 
agricultural studies is to utilise a range of targets on the 
ground (ideally including targets that are hotter and colder 
than plant canopies) and relate their temperatures, as meas-
ured on the ground, to temperatures recorded by the cam-
era; this has for example been applied by Egea et al. [20], 
Messina and Modica [130], and Gómez-Candón et al. [157], 
achieving varying levels of accuracy. Further research is, 
therefore, required to develop robust UAV thermal data col-
lection strategies, bearing in mind the challenges of sensor 

calibration, measurement uncertainties, and temporal stabil-
ity of acquired information.

Exploration into Spectral Emissivity

Whilst thermography is conventionally used for detecting 
early signs of stress through observation of leaf and can-
opy temperatures, it contains further information that can 
potentially be exploited. Spectral variations in emissivity 
can reveal useful absorption features, much like in the VIS-
SWIR spectra. Hyperspectral TIR remote sensing has so far 
been mostly explored in geology for mapping of mineralogy 
and lithology since a wide range of minerals have strong 
absorption and emission bands in the LWIR spectral range 
[158–161]. In plant sciences, little attention has been given 
to it thus far, largely due to the need for specialised instru-
ments that are capable of capturing TIR spectral features 
of plants.

A number of laboratory studies on different plant types 
have shown that spectral emissivity differs between species 
and indicated that spectra are strongly affected by the leaf 
surface composition since penetration of energy into leaf 
surfaces is limited in the TIR region [79, 86, 162, 163]. Only 
recently, the first investigations into the effects of stress on 
leaf spectral emissivity have been performed, revealing 
species-specific responses following exposure to stress 
[164–166]. These were generally attributed to biochemical 
and structural changes occurring in the leaf in response to 
stress. For example, Buitrago et al. [164] and Gerhards et al. 
[165] suggested that increases in emissivity they observed 
were related to an increased thickness of the cuticle, which 
caused a cavity effect, i.e. a loss of spectral contrast and 
an increase in emissivity value that occurs due to multiple 
surface scattering [167]. This change in spectral emissivity 
was found by Gerhards et al. [165] to be more sensitive to 
drought stress onset in potato plants than VNIR and SWIR 
vegetation indices.

Although a promising development, further research is 
required to better understand: (i) how strategies for coping 
with stress affect leaf spectral emissivity in different spe-
cies, (ii) what effects different biotic and abiotic stress agents 
have, and (iii) what levels of stress are discernible in TIR 
spectra. Further canopy-level studies are required to assess 
how distinctive are the stress responses in canopy spectral 
emissivity. Meerdink et al. [79] found that whilst a good pro-
portion of tree species they investigated were spectrally sep-
arable at leaf level, species mapping was no longer possible 
using airborne data due to significant overlaps in TIR spec-
tral responses at canopy level. Ribeiro da Luz and Crowley 
[163] similarly found that canopy geometry and composi-
tion affected spectral emissivity and separability of different 
tree species. Improvements in sensor field of view, signal-
to-noise ratio, and data analysis methods, especially those 
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linking leaf and canopy TIR spectral responses, are therefore 
needed to explore the potential of spectral emissivity.

Conclusions and Outlook for the Future

Monitoring of leaf and canopy temperature can provide 
valuable information on tree physiological status. How-
ever, the influences of environmental factors and structural 
composition pose a challenge for the direct interpretation 
of thermal data. Further development and testing of data 
analysis approaches, including their applicability for dif-
ferent tree species and sensitivity under different climatic 
conditions, is required to establish how thermal remote sens-
ing can best complement current forest health monitoring 
approaches. This will require direct links to be made with 
tree physiological status and the effects of external factors 
(e.g. environmental conditions or structural differences). In 
this regard, we foresee UAV thermography as playing an 
increasingly important role, allowing individual tree analysis 
and derivation of thermal information in three dimensions. 
The use of radiative transfer models could help address some 
of the challenges related to variation in leaf structural traits 
and canopy architecture and allow scaling responses to for-
est stand level, though further model developments are still 
required to make this link possible.

The launch of new satellite missions delivering high spa-
tio-temporal resolution data, such as Sentinel LSTM and 
Landsat Next, will open new possibilities for close monitor-
ing of the variability in LST and, hence, in evapotranspira-
tion. However, full realisation of the TIR data potential for 
forest health monitoring will require multimodal approaches 
that allow distinct stress responses to be investigated. Whilst 
a number of studies have successfully combined hyperspec-
tral/multispectral sensing with LiDAR metrics [168–170], 
the integration of these modalities with TIR data in forest 
environments for stress detection remains relatively unex-
plored despite promising outcomes in the agricultural 
domain [171]. Although not discussed in detail here, we 
recommend such a synergistic approach to both improve 
the understanding of structural effects on the thermal stress 
responses and provide a more holistic overview of forest 
condition.
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