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Abstract
Purpose of Review  Crown detection and measurement at the individual tree level provide detailed information for accurate 
forest management. To efficiently acquire such information, approaches to conduct individual tree detection and crown deline-
ation (ITDCD) using remotely sensed data have been proposed. In recent years, deep learning, specifically convolutional 
neural networks (CNN), has shown potential in this field. This article provides a systematic review of the studies that used 
CNN for ITDCD and identifies major trends and research gaps across six perspectives: accuracy assessment methods, data 
types, platforms and resolutions, forest environments, CNN models, and training strategies and techniques.
Recent Findings  CNN models were mostly applied to high-resolution red–green–blue (RGB) images. When compared 
with other state-of-the-art approaches, CNN models showed significant improvements in accuracy. One study reported an 
increase in detection accuracy of over 11%, while two studies reported increases in F1-score of over 16%. However, model 
performance varied across different forest environments and data types. Several factors including data scarcity, model selec-
tion, and training approaches affected ITDCD results.
Summary  Future studies could (1) explore data fusion approaches to take advantage of the characteristics of different types 
of remote sensing data, (2) further improve data efficiency with customised sample approaches and synthetic samples, (3) 
explore the potential of smaller CNN models and compare their learning efficiency with commonly used models, and (4) 
evaluate impacts of pre-training and parameter tunings.

Keywords  Deep learning · Tree detection · Crown delineation · Forestry · Remote sensing · Object detection · Instance 
segmentation

Introduction

Effective management of trees is reliant upon accurate and 
up-to-date information, including a description of individual 
crowns canopy cover (CC). Canopy cover is a basic met-
ric describing the horizontal spread and distribution of tree 
crowns; it is typically expressed as the percentage of total 
ground area covered by a 2D projection of tree canopy. The 
ease of determining CC and its conceptual simplicity leads 

to CC being a key goal or target in many forest or tree plans, 
including in the United Nations’ State of the World’s For-
ests technical reports [1]. Despite its ubiquity, CC mapping 
fails to distinguish between individual tree crowns. This is 
a limitation as CC mapping cannot be used to effectively 
describe other important characteristics such as variation in 
crown sizes, individual tree location, species, or the health 
of individual trees. This additional level of detail is impor-
tant for the analysis, modelling, or management, of a variety 
of environments, including natural forests, planted forests, 
urban forests, and orchards. Individual tree crown mapping 
has been found to support more accurate analysis of carbon 
storage estimation [2], biodiversity assessment [3], urban 
forest management [4, 5], canopy closure estimation [6], 
ecosystem service modelling [7], and forest health descrip-
tion [8]. In summary, without being able to uniquely identify 
individual tree crowns from canopy cover maps, we can only 
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provide a basic overview of the horizontal structure of treed 
environments.

There are various ways to map individual tree crowns. 
Field measurement of individual tree crowns can be a time-
consuming process, especially when dealing with a large 
number of trees across large areas. As a result, ground-based 
assessments are typically used for small survey areas or 
small numbers of sample plots. Access issues (privately-
owned or otherwise inaccessible land) can limit the ability to 
measure tree crowns in the field [9, 10]. Compared with field 
surveys, remote sensing can provide tree cover information 
at a large scale, more cost-effectively, and is not limited by 
access issues. A conventional way of extracting individual 
crown attributes from remotely sensed data sources (e.g. aer-
ial imagery, lidar, stereo images) is by manually delineating 
trees based on a visual assessment [11–13]. Like fieldwork, 
manual delineation is labour-intensive and subjective. In 
the past decade, numerous methods have been developed 
to automate individual tree detection and crown delinea-
tion (ITDCD) from remote sensing data. These methods are 
mostly based on image analysis techniques or, more recently, 
deep learning approaches [14••].

Image analysis techniques have been developed and 
applied for ITDCD since the 1990s [15]. In general, these 
techniques can be divided into two categories, individual 
tree detection and individual crown delineation. The former 
extracts tree locations or treetops as point features, while 
the latter delineates individual crowns as polygon areas. 
Some commonly known individual tree detection methods 
include local maximum filtering, image binarisation, tem-
plate matching, and scale analysis. Likewise, for individual 
crown delineation, some widely used methods include val-
ley-following, region-growing, and watershed segmentation 
[16]. For some crown delineation methods, individual tree 
detection is required as a preliminary step.

Although many improvements and developments have 
been made to image analysis techniques, there is no con-
sensus on which methods are optimal for use with different 
image types and forest conditions. For applications under 
similar scenarios, methodological comparisons may also be 
difficult due to the varied approaches used in model evalua-
tion. However, a common principle of those techniques is the 
topographic analogy of the canopy surface, which assumes 
the crown centres have a higher reflectance or elevation than 
other parts of the same crown. This assumption can be limit-
ing when those techniques are applied to forests dominated 
by broadleaf species. This is because image analysis tech-
niques generally produce better results on conifers due to 
their excurrent form and apical dominance, rather than on 
broadleaf species with their decurrent form with multiple 
leaders [17, 18]. Some studies have tried to improve the per-
formance of methods like local maximum filtering, water-
shed, and region-growing by applying multiscale analysis 

[19, 20] or by integrating morphological features [21, 22], 
but generalising those models to different scenes is time-
consuming as it requires further analysis on forest features 
and manual adjustments on parameters.

Deep learning (DL), a subclass of machine learning, 
has developed rapidly in the past decade, benefiting from 
improved computing abilities [23]. As a type of neural net-
work, DL models consist of layers of interconnected process-
ing nodes, or neurons, to simulate the structure and functions 
of the human brain. When interpreting data, the early or 
shallow layers extract low-level features and pass these to 
the deeper or later layers, which extract high-level, abstract 
features. With more connected layers, the network becomes 
deeper and gains greater abilities to comprehensively rep-
resent data. Unlike machine learning models, which require 
data transformations or feature selections before conduct-
ing subtasks (e.g. object-based image analysis), DL takes 
data in its raw form and automatically identifies features 
used for detection or classification [24••]. When training 
a DL model, data are passed through the network multiple 
times. The internal parameters that control the activations 
of neurons are adjusted based on desired outputs. Due to 
the complex connections of neurons, such processes usu-
ally require a large amount of data and are computationally 
expensive. However, since DL networks are parallelisable, 
DL has benefited from advancements of graphics processing 
units (GPU), which can use thousands of cores to distribute 
calculations and speed up the training process.

In image analysis tasks, specifically object detection and 
instance segmentation, a commonly used DL model is the 
convolutional neural network (CNN). CNN adds convolu-
tional layers to the fully connected neural network, which 
extract local features at different levels by sliding multiple 
window filters across an image. Each filter is a matrix of 
weights and has a much smaller size than the input image 
to allow extractions of small, meaningful features, such as 
edges, from a location [25]. These convolutional operations 
take both pixel values and the local arrangement of features 
into consideration and therefore can extract more distinctive 
representations from an image [23].

Since 2012, CNN-based models have become state-of-
the-art in many image-analysis challenges and have been 
applied to remote sensing tasks, including ITDCD. CNN 
models have achieved high accuracies (over 90%) in both 
individual tree detection [26, 27] and crown delineation [28, 
29]. In some studies where CNN models were compared 
with traditional techniques for ITDCD using remote sens-
ing imagery, significant improvements in both accuracy and 
inference speed were observed [14••, 30••].

Compared with image analysis techniques, using CNN 
models for ITDCD has two major advantages. Firstly, CNN 
models have transfer-learning ability, such that knowledge 
learned from one site can be transferred to another site, 
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resulting in model generalisability. In contrast, most image 
analysis models rely on pre-defined parameters, which need 
to be manually adjusted when applied to a different environ-
ment or dataset. Secondly, CNN models detect trees at an 
object level by learning patterns from hierarchical combi-
nations of image features [30••]. While other techniques 
describe tree objects solely based on reflectance or morpho-
logical features, CNN models provide a more comprehen-
sive representation of tree appearance with abstract visual 
characteristics [28].

In recent years, there have been an increasing number of 
studies applying CNN models to ITDCD tasks with different 
data and in various forest environments. There have even 
been a small number of reviews that are generally related 
to the topic. These include DL for earth observation [23, 
31], CNNs for vegetation analysis [24••], and other gen-
eral reviews for DL use in remote sensing [32, 33]. Diez 
et al. [34] reviewed DL forestry applications that specifically 
used red-green-blue (RGB) imagery captured by unmanned 
autonomous vehicles (UAVs); five ITDCD-relevant studies 
published between 2017 and March 2021 were included, 
but the methods used by those studies were not compared 
or discussed in detail. Thus, while there have been some 
reviews on the use of CNNs in forested environments, a key 
gap remains. The present review will address this gap by 
performing a systematic review of the literature on the use of 
CNN for ITDCD across six key themes including accuracy 
assessment methods, data types, platforms and resolutions, 
forest environments, CNN models, and training strategies 
and techniques. The results of this systematic review will 
provide a comprehensive summary of relevant studies, give 
researchers a wider understanding of the key findings and 
limitations of the latest approaches, and identify possible 
directions for future research.

Systematic Literature Review Methods

Search Strategy

The systematic review was undertaken using a framework 
called “preferred reporting items for systematic reviews and 
meta-analyses” (PRISMA) [35]. The Scopus database was 
queried using the string: (“convolutional neural network” 
OR “convolutional network” OR “convolution neural net-
work” OR “deep convolution network” OR *cnn* OR 
convnet OR “deep learning”) AND (tree OR canop* OR 
crown* OR forest* OR plant*). The search fields were lim-
ited to abstract, keywords, and title, while the document type 
was limited to published journal articles with full access 
in English or Chinese. The search was further constrained 
to include only articles published between January 2012, 
the year during which deep learning approaches began to 

overtake other machine learning methods and win some 
well-known computer vision competitions [31, 36], and 
December 2021.

Article Selections

After the initial query, search results (n = 7493 results) were 
screened by subject area and title to exclude articles that 
were not related to the topic, for example, medical image 
analysis or studies that focused on tree-like structures within 
CNN algorithms. This reduced the number of articles to 602. 
After further reviewing the article keywords and abstracts 
for relevance, 103 articles were retained. Each of these arti-
cles was checked for inclusion eligibility by reviewing their 
complete contents. The criteria for inclusion were:

•	 The study used CNN-based deep learning methods for 
individual tree detection or crown delineation.

•	 The study used remote sensing data, specifically includ-
ing RGB, multispectral or lidar data captured from UAV, 
aerial, or satellite platforms. Studies using street-level 
images or terrestrial lidar were excluded.

•	 The study included a formal means of assessing the 
accuracy of tree crown detection or delineation. Specifi-
cally, this meant assessment of the extent of a bounding 
box for tree detection or assessment of the mask area 
or bounding polygon in the case of crown delineation. 
Studies using bounding boxes for tree counting without 
an assessment of crown extents were excluded.

Based on these criteria, 35 articles were ultimately 
included in this review. A diagram of the selection process 
is shown in the Appendix (Fig. 3).

The included articles were selected from 20 different 
journals, with the journal Remote Sensing containing the 
most studies (11 out of 35). The earliest published year is 
2019 with only 4 articles. This number later increased to 13 
in 2020 and 14 in 2021. This indicates that applying CNN 
to ITDCD tasks is a growing area of research, especially 
when compared with ITDCD using other image analysis 
techniques that have been well-studied for decades. The arti-
cles and journal information can be found in the Appendix 
(Table 7).

Data Synthesis

The information from the articles were extracted from mul-
tiple perspectives, including ITDCD task, extracted crown 
features, dataset, training process, accuracy assessment, and 
outputs. Information summarised from those perspectives 
were then synthesised and discussed in the context of six 
review themes. A summary of synthesis items and descrip-
tions is shown in the Appendix (Table 8).
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Review of Key Themes in the Literature

Accuracy Assessment Methods

ITDCD accuracy assessment includes both qualitative 
and quantitative evaluations of mapped tree locations 
and crown delineations. For qualitative evaluation, visual 
inspections are usually conducted to compare the map-
ping results with the reference data such as aerial imagery 
or a canopy height model (CHM). Visual inspection not 
only provides a direct sense of the performance of ITDCD 
methods but also a quick overview of the spatial distribu-
tion of errors [17]. For quantitative evaluations, ITDCD 
methods are most often evaluated using metrics commonly 
used in computer vision. These metrics reflect the perfor-
mances of individual tree detection or individual crown 
delineation from various perspectives. Using combinations 
of these metrics can provide a comprehensive understand-
ing of the ITDCD results and sources of error. These met-
rics also provide users with awareness of a model’s perfor-
mance so that it can be used and interpreted appropriately 
in the context of forest planning and management. Detailed 
descriptions of those metrics are shown in Table 1.

Precision and recall (PR; n = 34), F1-score (n = 21), 
and average precision (AP; n = 15) were the most used 
metrics among reviewed literature. Precision reflects 
whether tree crowns are detected correctly, with few false 
positives. Recall reflects a model’s ability to find most 
trees from the imagery, implying the model does not fail 
to detect many reference trees. Both F1-score and AP 
provide a unified measurement of PR, but the two met-
rics are fundamentally different. F1-score tends to reflect 
the balance between PR by calculating harmonic means. 
It represents a certain point on the precision and recall 
curve. In contrast, AP estimates a model’s performance 
by calculating an average of multiple precision values 
across recall points. It represents an area under the pre-
cision and recall curve. A larger area reflects a higher 
accuracy. In this review, two studies [38, 39] included 
both F1-score and AP to provide a more comprehensive 
evaluation of their models.

Apart from PR, F1-score, and AP, other metrics were also 
applied to evaluate ITDCD results in specific situations. The 
mAP, which averages the AP across all detection classes, 
was used for multiclass ITDCD [40, 41]. Overall accuracy 
[27, 29] and detection percentage [42] were applied to assess 

Table 1   Accuracy metrics identified from reviewed studies and their descriptions
Metric name Description

Intersection over union (IoU) The area of overlap between ground-truth and detected results (either as a bounding box or polygon mask) divided by their 
combined area. IoU is usually used to define a true detection

IoU =
Predicted ∩ Ground Truth

Predicted ∪ Ground Truth
  

True positive (TP) The number of correctly detected trees
False negative (FP) The number of missing reference trees in detection results
False positive (FP) The number of other objects that have been mis-detected as trees
Precision The percentage of correctly detected crowns among all the objects that the model has identified. A high precision indicates the 

detected results contain a high proportion of correctly detected trees and few false positives

Precision =
True Positive

True Positive + False Positive
  

Recall The percentage of correctly detected trees among all reference trees. A high recall indicates the model is able to find most trees 
from the imagery and does not fail to detect many reference trees

Recall =
True Positive

True Positive + False Negative

  

Average precision (AP) The average value of multiple precision values at different recall levels from 0 to 1 with a certain number of steps [37]. 
It represents the area below the precision-recall curve. AP reflects the trade-off between precision and recall and is a 
widely used v for evaluating the performance of object detection models

AP =
∑k=n−1

k=0
[Recall(k) − Recall(k + 1)]Precision(k)

Recall(n) = 0,Precision(n) = 1

n = Number of steps.

  

Mean average precision (mAP) The average value of AP across different target classes
mAP =

1

n

∑k=n

k=1
AP

k

AP
k
= the AP of class k

n = the number of target classes

  

F1-score F1-score combines both precision and recall and provides a comprehensive assessment of a model. It is defined as the har-
monic mean of recall and precision. A higher F1-score indicates a better balance between recall and precision

F1 − score = 2
Precision Recall

Precision + Recall

  

Overall accuracy
OA =

True Positive

True Positive + False Negative + False Positive  
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the correct detection ratio. RMSE and R2 were used to evalu-
ate the distribution of tree count numbers [29].

The inconsistencies between studies exist not only in the 
use of accuracy metrics but also in the way those metrics are 
defined. For example, Chadwick et al. [28] defined AP as the 
average values of precision across image tiles rather than 
calculating it across recall levels. Intersection over union 
(IoU) was also set at multiple levels in some studies in con-
trast to a common choice of 50%. When choosing a higher 
IoU threshold, a true positive prediction, either a bounding 
box or a segmented mask, is required to overlap more accu-
rately with the ground truth area. Introducing multiple IoU 
thresholds will result in different ways of calculating met-
rics including AP and mAP but can provide a more detailed 
view of the quality of localisation. In the reviewed studies, 
Ammar et al. [40] calculated AP, mAP, and F1-score at five 
IoU levels ranging from 50 to 90%. Xi et al. [43] and Chiang 
et al. [38] calculated AP over a range of IoUs between 50 
and 95%, which aligns with the standard defined in com-
mon objects in context (COCO), a widely used dataset for 
computer vision competition. It should be noted that this 
cross-IoU AP is defined as mAP in COCO [44, 45].

Comparing CNN models with traditional ITDCD 
approaches across studies is difficult. One reason is that 
CNN introduces the concept of IoU and defines the TP in 
a different way from traditional ITDCD studies. Besides, 
CNN tends to use more RGB images, while traditional 
ITDCD applies more to lidar or fusion datasets [18, 46]. 
However, several studies have shown a significant advantage 
of CNN models. Braga et al. [14••] reported an increase 
in detection accuracy of 11% against the best-performing 
image analysis ITDCD approach, “edge detection and region 
growing”, using satellite RGB images. Pulido et al. [47] 
reported a 16% improvement in F1-score when comparing 
the best-performing CNN model with its counterpart from 
traditional methods, local maximum filtering, using multi-
spectral images, and elevation models. Zheng et al. [48•] 
compared a customised CNN model and five other CNN 
models designed for object detection against random forest 
and support vector machine for tree detection using RGB 
images. The result showed the CNN models outperformed 
two traditional approaches by at least 29.76% and 23.02% in 
F1-score in two study sites.

Data Type

RGB imagery was the most frequently used data type in 
the reviewed studies (26 out of 35 studies). One reason 
is that many CNNs were initially designed for 3-channel 
inputs and pre-trained with large RGB datasets for computer 
vision tasks [31]. Although the domains of pre-training data 
are usually different from ITDCD, the knowledge learned 

through the process still gives the model the ability to 
extract general object features from RGB images and can 
effectively reduce training costs [24••]. As a result, most 
reviewed studies used RGB images directly without modi-
fications to the data or the model structure. A few studies 
adopted pre-processing methods such as cloud removal [49], 
pan-sharpening [14••, 50], or band swapping [51]. Those 
methods are designed for certain image types and forest con-
ditions and therefore may not necessarily be required for all 
RGB datasets.

When using multispectral images or lidar data, adjust-
ments are required to handle higher dimension inputs than 
standard RGB images. These adjustments can be categorised 
into data dimension reduction and model structure modifi-
cations. The former approach simplifies high-dimensional 
data to accommodate the 3-channel input expected by pre-
trained CNN models, while the latter approach modifies the 
architecture of a CNN model to allow direct input of higher-
dimensional data.

In the reviewed studies, dimensional reductions are 
mostly found when processing multispectral images. A com-
mon process is to create a new band, named normalised dif-
ference vegetation index (NDVI), from near-infrared (NIR) 
and red bands. NDVI will then be duplicated three times 
to form a 3-channel image. In traditional ITDCD applica-
tions, NDVI has been widely used for forest area extractions 
[52–54]. In CNN-based applications, however, the benefits 
of using NDVI are varied when adopting different training 
and inference strategies. Mo et al. [55] found NDVI images 
produced a lower accuracy than RGB images when training 
CNN models separately on these two datasets. On the other 
hand, Safonova et al. [56] found that a CNN model trained 
with NDVI, RGB, and the green normalised difference veg-
etation index (GNDVI) produced greater or equivalent accu-
racies than using each of those data types alone. In another 
study conducted by Ampatzidis and Partel [57], NDVI was 
not used in crown detection but in a post-processing step to 
segment crowns within bounding boxes. Apart from deriv-
ing vegetation indices, other approaches have been used 
to reduce the dimensionality of multispectral images into 
3-channel inputs. Xi et al. [43] compared several meth-
ods for band selection and band merging. They found the 
standard false-colour composite integrating red, NIR, and 
green bands produced the most accurate result. Pulido et al. 
[47] derived a new index band from multispectral imagery, 
named the digital elevated vegetation model (DEVM) which 
merges 2D spectral bands with 3D information from struc-
ture-from-motion (SfM) techniques. The DEVM band was 
then converted to a 3-channel image (DEVM × 3) for train-
ing and inference. A similar process was also applied to lidar 
data by Windrim, Bryson [58], who converted 3D lidar point 
clouds to 2D surfaces and then stacked them into 3-channel 
inputs for ITDCD.
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In contrast to reducing data dimensionality, modify-
ing the model structure can be used to enable direct use 
of higher-dimensional data and hence retain more of the 
original information for the model to learn from. This can 
be achieved by extending the first layer of the CNN model 
to accommodate additional input channels. The initial 
weights of those extended channels are usually copied 
from pre-trained RGB channels to reduce training efforts. 
Using this approach, Park et al. [41] created several CNN 
models that used different image products derived from 
multispectral data. Their result showed that adding mul-
tispectral information generally produced greater accura-
cies than using RGB only when detecting trees affected by 
pine wilt disease (with 9.9 to 15.67% increases in mean 
average precision) but produced similar results in dead 
tree detection. Hao et al. [59] adopted a similar approach 
to include both 2D spectral bands and 3D information 
derived by SfM from multispectral imagery. The result-
ing NDVI + CHM model produced the highest accuracy, 
with 7.02 to 12.57% increases in F1-score.

High-dimensional inputs also result when using data 
from multiple sources. In this case, dimensionality reduc-
tion and model architecture modification may suffer from 
two major issues: data misalignment and redundant learn-
ing. The former issue usually exists when two data sources 
are collected from different platforms or sensors, for exam-
ple, horizontal misalignments between lidar and aerial 
imagery. The latter issue is caused by irrelevant or noisy 
information from additional bands, which can disturb the 
learning process and eventually reduce the accuracy [60]. 
In contrast, Pleşoianu et al. [42] proposed an ensemble 
model that uses a voting strategy to handle multisource 
data (e.g. lidar and RGB). Their model consists of sev-
eral independent CNN models trained with raster products 
derived from both data sources. The final predictions are 
made by calculating the “votes” from those independent 
models, which avoids directly processing those bands 
through a single model. In comparison to the RGB mod-
els, they found the ensemble models provided respective 
improvements in detection accuracy of 3.33% and 7.09% 
in plantation and urban forest study sites.

In contrast to image analysis techniques, which are often 
more successful using lidar data, CNN models have been 
primarily developed for RGB imagery. However, multi-
spectral, lidar data fusion has also shown potential utility in 
ITDCD applications. When using these high-dimensional 
data sources, adopting an appropriate approach is important. 
Data dimensionality reduction is fast and simple to apply 
but requires a careful selection of the methods for band pre-
processing, training, and inference. The newly created data 
may also yield poor results when using an RGB pre-trained 
model and a small number of training samples [55]. In com-
parison, model modification has less information loss from 

a data perspective but can be technically challenging [61]. 
Despite requiring greater training effort, modified models 
generally benefit from using multispectral data, especially 
in areas where RGB models produced lower accuracies (e.g. 
diseased tree detection). This review identified only a single 
study [42] that used data from multiple data sources, and 
future research should use the approaches identified in this 
section.

Platforms and Resolutions

UAVs were the most common platform for data collection 
in this review (24 out of 35, with one study using both UAV 
and aerial images captured from manned aircraft). Compared 
with other platforms, UAVs usually fly at low altitudes, typi-
cally below 500 m above ground level, which leads to a 
smaller capture extent per flight but very high-resolution 
(VHR) images with ground sample distance (GSD) less than 
5 cm. In the reviewed studies, UAV images have a range 
of GSD between 0.35 and 16 cm and an average GSD of 
4.69 cm. For other aerial platforms including higher-altitude 
aeroplanes and helicopters, the GSDs range between 10 and 
30 cm, with an average GSD of 15 cm. Two studies that used 
images from satellite platforms have GSDs of 50 cm.

Since CNN models rely on features extracted from images 
for different tasks, low-resolution images may not contain 
sufficient detail of objects such as object boundaries and 
textures. Therefore, it is unsurprising that VHR images were 
the most common choice in the reviewed studies. Fromm 
et al. [62] compared three CNNs on images at four different 
GSDs (0.3 cm, 1.5 cm, 2.7 cm, and 6.3 cm) for conifer seed-
ling detection and found lower-resolution images decrease 
mean average precision by between 13 and 15%. When using 
0.3 cm images, larger seedlings also showed higher detection 
accuracies than smaller ones, which benefitted from more 
visible and distinctive features. Another study conducted by 
Ocer et al. [63] found a decrease in precision by 17% and 
F1-score by 9% for tree detections in an urban area after 
downscaling the testing image resolution from 4 to 6.5 cm. 
Zheng et al. [48•] detected oil palm trees from two study 
sites using imagery with GSDs of 10 cm and 8 cm, respec-
tively. The results showed that the F1-score was 11.13% 
lower in the site with 10 cm GSD imagery.

On the other hand, the advantages of high-resolution 
imagery may not be obvious when tree features are more 
distinguishable. Safonova et al. [56] found little impact of 
resolution changes on the detection of oil palm trees in a 
sparsely planted area. After decreasing GSDs from 3 to 
13 cm, the F1-score of crown delineation only dropped 
slightly, by 0.42% and 0.86% for the models with and with-
out data augmentation, respectively. The unique shape of the 
trees and their contrast with background in this environment 
may explain this lack of sensitivity to image resolution.
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In addition to VHR images from UAVs, several studies 
also proved the feasibility of using lower-resolution aerial 
imagery (10–30 cm) for ITDCD [30••, 38, 39, 64]. How-
ever, it is difficult to summarise the minimum GSD by forest 
type required to achieve a certain level of ITDCD accuracy 
because there is a lack of statistical description of crown 
characteristics (crown size distributions, colour histogram, 
shape, etc.) in most of the reviewed studies. Future studies 
could be conducted to explore the relationship between tree 
characteristics and imagery resolution to identify potential 
interactions.

In addition to image resolution, input image size is 
another factor that can affect the accuracy of CNN mod-
els for ITDCD. Due to limitations on computing memory, 
most studies split large remote sensing images, usually 
over 5000 × 5000 pixels, into smaller input images, usually 
between 64 × 64 pixels and 1280 × 1280 pixels, for train-
ing and inference. The sizes used reflect computer memory 
capacity as this provides CNN models with a wider field 
of view. From an inference perspective, an obvious advan-
tage of larger image tiles is allowing wider overlap between 
images when clipping image tiles, which increase the chance 
of capturing the complete crown. In addition, a larger image 
size may also be required when applying a trained ITDCD 
model on coarser resolution images as it will maintain the 
ratio of tree objects in the images and offset the impacts of 
resolution reduction [64].

On the other hand, large tile size can be detrimental when 
target objects are relatively small [65]. In the case of for-
est environments where there can be many small crowns, a 
medium-sized tile may offer better performance in terms of 
detection accuracy and computational efficiency. For exam-
ple, Culman et al. [39] tested three image sizes between 
64 × 64 pixels and 256 × 256 pixels for palm tree detection 
and found that 128 × 128 pixels produced the best result.

Forest Environments

The reviewed studies were conducted on plantation forests 
(15 articles), natural forests (9 articles), urban forests (6 
articles), and mixed forests (5 articles). In contrasting the 
studies on these differing forest types, the performance of 
CNN models was generally affected by three factors: stand 
density, crown characteristics, and background conditions. 
Under dense forest conditions, closely adjacent or overlap-
ping crowns made edge detection on individual trees more 
challenging, especially between those trees with similar 
canopy appearances. Dense stands also resulted in more 
overlapped and shaded crowns, which many CNN models 
struggled with [14••, 27, 41, 49, 51, 55, 66, 67].

With respect to crown characteristics, variations of size, 
shape, and colour can reduce model performance. This is 
usually caused by two factors. First, training samples failed 
to cover sufficient crown variation. For example, in urban 
areas, where species richness can reach hundreds of spe-
cies [68], it may be difficult to incorporate sufficient train-
ing samples to describe the variation in those species’ 
crowns [39, 69•]. Second, remote sensing imagery failed 
to provide sufficient information to distinguish variations 
in crown characteristics. Low spatial or spectral resolution 
imagery may result in a CNN model’s inability to identify 
small crowns or separate large variability within crown types 
[48•, 62–64].

The background, or surroundings, for trees is another fac-
tor that can influence the performance of CNN models for 
ITDCD. Some complex forest environments may contain 
tree-like objects in the background that are detected as false 
positives. These could include shrubs [29], weeds [57], other 
low-lying vegetation [30••, 48•, 63], or even non-vegetated 
features that share similar visual characteristics with trees, 
like streetlamps [70]. Heterogeneous backgrounds also 

Fig. 1   Error sources interpreted 
from the reviewed studies 
and grouped into three main 
categories
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increase variation in tree appearance, which results in more 
samples being required to effectively train the CNN [39].

Among the three major forest types (plantation, natu-
ral, and urban), 23 studies provided analysis of major error 
sources (Fig. 1). Plantation forests are managed sites and 
therefore tend to report fewer errors from background noise 
in contrast to crown characteristics and stand density. Crown 
characteristic errors in plantation forests are mostly caused 
by under-sampled variation, including smaller crowns and 
different growing conditions [28, 48•, 62], unique species 
[58], and unseen tree forms [50, 71]. Stand density errors are 
also commonly reported, including overlapping crowns [27, 
28, 55, 59, 66] and errors from shadows [48•].

Natural forests usually consist of closed canopy areas with 
dense stands and complex vertical structures, which result in 
similar stand density problems to plantation forests. The reported 
errors include overlapping crowns [14••, 51, 67] and shadows 
[49], as well as under-sampled crown variation [30••, 71].

Urban forests contain a considerable variety of tree forms, 
species, sizes, and groupings. Also, they have a greater vari-
ety of background features including many vegetation types 
and man-made features. Since most man-made features are 
visually distinguishable from trees, those features were not 
found to have major impacts on the accuracy of ITDCD 
with CNN. Instead, vegetation features such as shrubs [63] 
and grass [70] were found to cause errors in some studies. 
For urban forests, the outliers in crown size are more com-
monly reported issues. Zamboni et al. [69•] found large trees 
are likely to be split into separate crowns or only partially 
detected. Smaller trees were reported by Ocer et al. [63] and 
Xia et al. [70] as error sources, while Xi et al. [43] pointed 
out that both large and small trees caused detection errors.

Unlike traditional ITDCD approaches, which usually 
treat tree detection and classification as separate tasks [16, 
18], a CNN model can integrate both steps by extracting 
bounding boxes or crown masks for trees. From this point 
of view, the ITDCD models can be further grouped into 
three categories: “single class”, which detects crowns of a 
single species; “multiple classes”, which detects crowns for 
multiple species; and “general class”, which detects all trees 
in a study area without further classification. Extraction of 
general tree objects or tree crowns with multiple classes is 
more difficult than the detection of crowns of a single tree 
class. The former requires a model to be generalisable for 
detecting varied characteristics of crowns, while the latter 

requires the model to be able to distinguish certain classes 
of tree crowns from canopy areas. Both tasks require numer-
ous training samples in order to train the model for various 
situations [30••, 66, 72].

Extracted classes tend to be different across forest types 
(Table 2). Most plantation forests are managed monocultures, 
and therefore single-class detections are more commonly 
applied in these environments (8 out of 15). In comparison, 
deriving a single class of trees from other forest types is more 
challenging due to interference from surrounding trees and 
backgrounds. As a result, most natural forest or urban forest 
studies either choose a tree class that has a unique appearance 
(e.g. palm trees or diseased trees) or are undertaken in a small 
study area (less than 15 ha) with a homogenous environment, 
relative to the broader area. For general class detections, a 
need for numerous high-quality training samples was reported 
by studies from both urban [40, 63, 69•] and natural forests 
[14••, 30••]. Although the monoculture setting in plantation 
forests should make general detection less challenging, two 
studies [28, 58] concluded that including more variation in 
training samples would be crucial for further improvements 
in accuracy in these environments. Studies using multiclass 
detection were rare. In plantation, natural and urban forests, 
multiclass detection was only conducted to differentiate 
classes within a single species, for example, palm trees with 
different health conditions. The only study achieving species 
classification was by Pleşoianu et al. [42], who used CNN 
models for ITDCD of plum, apricot, and walnut trees from 
a horticultural plantation area and coniferous and deciduous 
trees from a natural forest area.

In summary, stand density, crown characteristics, and back-
grounds are three factors that affect the performance of CNN 
models under different forest types. Some proposed solutions 
such as adding more training samples, using higher-resolution 
images or data fusion may not be necessary for one forest type 
but crucial for another. Identified research gaps include inves-
tigating multispecies ITDCD, single species ITDCD (other 
than diseased trees) within complex forest environments, and 
the impact of the number of training samples and their quality 
on general class detection tasks.

CNN Models

As mentioned in the introduction, CNN-based crown detec-
tion and delineation refer, respectively, to object detection 

Table 2   Number of studies 
categorised by forest types and 
crown detection methods

Plantation Natural Urban Mixed

Single 9 [27, 29, 50, 55–57, 
62, 71, 73]

3 [38, 51, 74] 3 [43, 70, 75] 1 [39]

Multiple 2 [48•, 66] 3 [41, 49, 72] 1 [40] 1 [42]
General 4 [28, 47, 58, 59] 3 [14••, 30••, 67] 2 [63, 69•] 3 [64, 76, 77]
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and instance segmentation in computer vision. In general, 
CNN models for those tasks consist of two main compo-
nents, a “backbone” architecture that extracts features from 
input images and a “detector” that generates bounding boxes 
or per-instance masks for the objects (crowns). The follow-
ing sections review both components of CNN models and 
their applications in ITDCD studies.

Backbones

The backbone or feature extractor network is the key com-
ponent of a CNN model. After the successful applications of 
early CNN networks such as LeNet and AlexNet on image 
classification, later published networks started to be used 
as feature extractors (backbones) for object detection and 
instance segmentation. In these models, deep convolutional 
neural networks first extract object features at multiple lev-
els from input images and then feed the features into the 
detector where bounding boxes or masks of the objects are 
predicted. As a result, the backbone’s ability to represent 
and extract features directly affects the performance of the 
detector and therefore the accuracy of the model. Table 3 
summarises the highlights of various backbones.

ResNet was the most commonly used default back-
bone in the reviewed studies. Compared with previous 

backbones, ResNet improves feature extraction sig-
nificantly by introducing a deeper but more efficient 
network design. ResNet has gained widespread popu-
larity in various applications [84, 85]. However, the 
benefit of using deeper ResNet backbones for ITDCD 
tasks remains unclear. For example, Fromm et al. [62] 
reported an improvement of 15% in mean average pre-
cision when using ResNet-101 rather than ResNet-50 
for conifer seedling detection, while Weinstein et al. 
[30••] found that a deeper ResNet did not provide sig-
nificant improvements when used for general tree detec-
tion. Despite its popularity, ResNet has been reported 
to produce lower accuracies when compared with other 
backbones under the same CNN framework. For exam-
ple, ResNet yielded lower accuracies than Inception v2 
when using the same Faster-RCNN detector for crown 
detection from a vegetation index image [47]. The per-
formance of ResNet and Inception v2 backbones was 
similar for leaf-on detection of almond trees, but ResNet 
resulted in lower accuracy when applied to pine trees. In 
addition to ResNet, some other backbones have also been 
applied to ITDCD tasks, including EfficientNet [40, 49] 
and DarkNet [57, 74]. However, those backbones were 
designed to fit specific CNN detectors, which are nor-
mally not compatible with ResNet backbones. Therefore, 

Table 3   A summary of highlights for the various backbones in this review

Backbone Reference Highlights

VGG Simonyan, Zisserman [78] • Deeper network for more complex feature extraction (16 ~ 19 layers)
• Smaller filter and stride in convolutional layers with fewer parameters

Inception (GoogleLeNet) Szegedy et al. [79] • A stack of local networks named the inception module
• Each module has parallel convolutional filters and bottleneck filters, which 

reduce input detections and improve computational efficiency
• Deeper network with 12 times fewer parameter than AlexNet
• Later versions, Inception v2 and Inception v3, have further improvements and 

reach higher accuracies
DarkNet Redmon et al. [80] • Specifically designed for You Only Look Once (YOLO) detector

• Combines some features from Inception and VGG
• Later versions include DarkNet-19 and DarkNet-53, which have more efficient 

convolution layers and residual blocks for higher accuracy
ResNet He et al. [81] • Popular backbone that works well for a range of tasks including object detection 

and instance segmentation
• Significant increase in layer depth (50–152 layers)
• Residual block and skip connection designs allows efficient optimisation even 

with very deep networks
EfficientNet Tan, Le [82] • Scalable network design allows dynamic adjustments to structure using a neural 

architecture search technique
• More flexible and efficient when extracting features under different scenarios
• Some evidence for advantages in ITDCD tasks when compared with ResNet and 

Inception [40, 49]
FPN (feature pyramid network) Lin et al. [83] • A top-down, image pyramid network that can be used with other backbones for 

integrating multilevel features
• Combine low-level feature maps that are rich in location information with high-

level features that contain greater semantic information
• Predictions are made from the integrated feature maps at each up-sampling level
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comparisons between those models and ResNet were 
made only at the model level.

Pre‑Training

Training a CNN is computationally expensive and requires a 
large number of labelled samples [24••, 86]. These samples 
are usually created by manual annotation (labelling) of tree 
crowns or canopy cover using the remote sensing data as a 
reference (e.g. RGB, multispectral, lidar). In the training 
process, the backbone or entire CNN model needs to adjust 
the weights on every neuron across the network for predic-
tions of input samples [85]. To achieve accurate detections, 
the training samples must cover sufficient variation to allow 
the model to extract general features at different levels of 
the network (avoid underfitting) but without memorising the 
data (avoid overfitting) [87, 88].

For most object detection tasks, including ITDCD, acquir-
ing or training sufficient ground samples to train a model is 
not feasible or required. Instead, a common approach is to 
use backbones or models that have been pre-trained on very 
large, annotated datasets—often from a different domain. 
Those datasets usually contain a range of objects and can 
give a model the ability to learn to extract general low-level 
features common across domains such as colour gradients, 
textures, and shapes. When training for specific object detec-
tion, a pre-trained model often only needs to be adjusted 
(fine-tuned) with samples from the target domain to enable 
the detection of the target objects. This can greatly reduce 
the computing resources and training data required to train 
large models [28].

In this review, most studies used models pre-trained on 
two large datasets: common objects in context (COCO) and 
ImageNet. The COCO dataset contains 91 types of objects 
with segmented instances [44], while ImageNet consists of 
tens of millions of annotated images that are categorised by 
a hierarchical structure. The most commonly used ImageNet 
data is a subset created for the ImageNet large-scale visual 
recognition challenge (ILSVRC) which contains over 1.4 
million images across 1000 categories [89]. Here, we refer 

to that dataset as “ImageNet”. A detailed comparison of the 
two datasets is described in Table 4.

Most studies reported the benefits of applying COCO or 
ImageNet pre-trained models for ITDCD, while some stud-
ies further assessed the model with additional samples on 
different detectors. Chadwick et al. [28] compared Mask-
RCNN models (see Detectors section) pre-trained with two 
versions of the COCO dataset for crown delineation. They 
found that the expanded version with images of balloons 
increased the F1-score by 12% when trained on a full model 
(detector head and backbone simultaneously). The study fur-
ther argued that the model benefited from the similarities of 
geometry between tree and balloon objects. Fromm et al. 
[62] estimated the impacts of COCO pre-trained networks on 
three different detectors. When pre-training was applied, the 
deep backbone used in the two-stage detectors saw increases 
in accuracies, but the one-stage detector with a shallower 
backbone showed the opposite trend.

Moreover, Culman et al. [39] suggested that pre-trained 
models using general object images, such as COCO and Ima-
geNet, should not be applied directly to remote sensing data. 
They found that image samples taken from a birds-eye view 
are essential for improving the model’s accuracy. Instead 
of using a pre-trained model, Zheng et al. [48•] trained a 
modified CNN model with 363,877 manually collected palm 
trees. However, collecting sample sizes of that magnitude is 
not likely to be feasible in many instances. Thus, it is worth 
exploring the potential benefits of using large-scale remote 
sensing datasets as an alternative to COCO and ImageNet 
for model pre-training.

Detectors

CNN frameworks for object detection can generally be clas-
sified into two categories: two-stage detectors and one-stage 
detectors. Two-stage detectors consist of a region proposal 
module and an object detection/classification module. The 
regional proposal module first creates many possible bound-
ing boxes using image analysis techniques or convolutional 
neural networks. Then, the second module is used to extract 
features from the proposed bounding boxes for classification 
and bounding box refinement [90]. Commonly known two-
stage detectors include region-based convolutional neural 
network (RCNN) families and region-based fully convolu-
tional networks (R-FCN). In contrast, one-stage detectors 
integrate the tasks of object classification and localisation 
of the bounding box or mask into a global problem and pro-
duce detections in one-stage [85, 90]. When training a CNN 
model, the detector will be optimised alone or together with 
the backbone using a loss function. Commonly used one-
stage detectors include YOLO [80], RetinaNet [91], and 
single-shot detector (SSD) [92]. Table 5 summarises the 
highlights for detectors identified in this review.

Table 4   Summary of commonly used pre-train datasets

COCO ImageNet (ILSVRC)

Number of images 328,000 14,197,122
Instances 2.5 million N/A
Image resolution Varied Varied
Categories 80 (2014 dataset) and 

91(2015 dataset)
1,000

Training samples 82,783 + 165,482 1,281,167
Validation samples 40,504 + 81,208 50,000
Testing samples 40,775 + 81,434 100,000
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In general, two-stage detectors from the RCNN family 
were most popular, with eight studies using Faster-RCNN 
and RCNN for tree detection, and six studies using Mask-
RCNN for individual crown segmentation. The one-stage 
detector, RetinaNet, was used in six studies and was the 
second most popular model. When comparing two types 

of detectors, two-stage detectors are usually slower than 
one-stage detectors, largely because of the additional 
regional proposal network. The advantages of two-stage 
detectors were obvious when RCNN models were first 
introduced between 2014 and 2017, as the more complex 
network structure generally resulted in higher detection 

Table 5   Summary of detectors used in reviewed studies and their highlights (for studies that used multiple models, the best performing model 
was included)

Detector type Reference Highlights # of studies

One-stage 12
RetinaNet Lin et al. [90] • A novel loss function, named focal loss, that is less sensi-

tive to redundant bounding boxes (such as noise bounding 
boxes from the background)

• Uses FPN to enhance multilevel detections

6 [30••, 39, 64, 66, 75, 76]

EfficientDet Tan et al. [92] • More efficient backbone (EfficientNet)
• More efficient feature fusion network, named bi-

directional FPN (Bi-FPN). The network uses two-way 
connection for cross-level feature integration and a skip 
mechanism

• A significant reduction in parameters
• Shows advantages in both processing speed and detec-

tion accuracy compared with other popular CNN models 
including Mask-RCNN, RetinaNet, and YOLO v3

2 [40, 49]

YOLO V1:Redmon et al. [79]
V2:Redmon, Farhadi [93]
V3: Redmon, Farhadi [94]
V4: Bochkovskiy et al. [95]
PP-YOLO: Long et al. [96]

• A fast, one-stage detector that has developed into several 
versions

• Produces fewer background errors compared with two-
stage detectors as it can include more contextual informa-
tion by processing the image as a whole

• Very low computational cost and widely used for real-time 
object detections

• Several enhanced versions were developed to overcome 
the shortcomings of predecessors

1 [57]

DetectNet Tao et al. [97] • Uses Inception network as backbone
• Very fast single-stage detector
• Uses a regular grid and 3-dimensional label data to locate 

all objects in an image and therefore more efficient training 
and inference

1 [47]

YOLACT​ Bolya et al. [98] • One-stage instance segmentation model
• Faster than Mask-RCNN and can achieve real-time 

instance segmentation
• Lower accuracy than Mask-RCNN in computer vision 

competition

1 [55]

BlendMask Chen et al. [99] • One-stage instance segmentation model
• Outperforms Mask-RCNN in computer vision competi-

tions on processing speed and accuracy
• Improved merging process between low- and high-level 

features, which was not well-addressed in YOLACT​

1 [43]

Two-stage 14
RCNN Faster RCNN: Ren et al. [100]

Mask RCNN: He et al. [101]
• Original RCNN was developed by Girshick et al. [102] 

and then further improvements were made in subsequent 
versions

• Faster R-CNN and Mask-RCNN are very popular models 
for object detection and instance segmentation

• Apart from ResNet, more up-to-date backbones have been 
used in RCNN structures

14 [14••, 27–29, 38, 48•, 50, 51, 
56, 58, 59, 62, 63, 70]

Others Customised models (8) and anchor-free model (1) 8 [41, 42, 67, 71–74, 77] + 1 
[69•]

Total 35
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accuracy. However, more recently published research 
shows one-stage models have started to overtake two-
stage models in some computer vision tasks in recent 
years [93, 94].

This trend was also observed in ITDCD applications. 
For example, Dos Santos et al. [75] found that one-stage 
detectors, RetinaNet and YOLOv3, showed advantages over 
Faster-RCNN when detecting baru trees (Dipteryx alata) 
from very high-resolution images. The one-stage detec-
tors produced higher average precision than Faster-RCNN 
by 10.16% and 6.76% with, respectively, 6.3 and 2.5 times 
faster processing speeds. Ammar et  al. [40] compared 
EfficientDet with Faster-RCNN, YOLOv3, and YOLOv4. 
EfficientDet produced the highest average precision with 
increases ranging from 5.14 to 9.57% on palm tree detection 
and 3.38 to 34.03% on general tree detections. Huang et al. 
[49] undertook a similar comparison of these four models 
for the detection of pine trees infected with wilt disease. 
EfficientDet also produced the best results with increases in 
average precision from 1.34 to 3.07%. For individual crown 
delineation, some novel one-stage detectors have also been 
found. Mo et al. [55] used a lightweight one-stage detector, 
YOLACT for lychee (Litchi chinensis) tree crown delinea-
tion, and produced a mask AP of 95.44%. Another one-stage 
detector, BlendMask was compared with Mask-RCNN for 
delineation of ginkgo tree (Ginkgo biloba L.) crowns and 
showed an increase of 6.6% for AP.

In a study by Zamboni et al. [69•], an anchor-free CNN 
was used for ITDCD in an urban forest area. The study 
reported that the anchor-free detector outperformed both 
one-stage and two-stage models and produced the highest 
average precision (with 1.7–9% improvements). Compared 
with one- and two-stage detectors, which start object detec-
tion from a large number of pre-proposed regions (or anchor 
boxes), anchor-free models directly predict the key points 
(i.e. corner points of bounding box) or centres of the object. 
This simplified structure not only improves computational 
efficiency but also makes the model more adaptable to dif-
ferent object scales as there are no limitations from the 
proposed regions [95]. These advantages may explain the 
improvements as the study area contains crowns at varied 
scales and the size of training samples is relatively small.

It should also be noted that the performances of a model 
may not persist across different forest conditions. Emin et al. 
[51] compared Faster-RCNN, with three one-stage detectors, 
YOLOv3, YOLOv4, and SDD, for spruce (Picea schrenki-
ana) crown detection in areas with different tree densities. 
Despite a longer training time, Faster-RCNN outperformed 
the one-stage detectors, exhibiting a significant increase in 
overall accuracy from 13.94 to 39.27% across test areas, 
with greater improvements occurring in images with lower 
crown densities. Faster-RCNN showed comparable perfor-
mance with a one-stage detector, DetectNet, on individual 

tree detections from a leaf-on almond tree (Prunus dulcis) 
site, with less than a 5% difference in F1-score [47]. This gap 
became much larger when testing both detectors on another 
site with pine trees (Pinus greggii) that had a higher pro-
portion of overlapping crowns, with reductions in F1-score 
between 22 and 42%. There are two possible reasons for this 
difference. Firstly, those models used a unified parameter 
setting, which may suit one environment but degrade the 
performance in another environment. Secondly, one model 
may have a lower learning efficiency compared with the oth-
ers using the same training data.

Customised Structures

Instead of using models developed for computer vision 
tasks, several studies further modified model structure to fit 
ITDCD tasks. Most of those changes focused on resolving 
specific issues including reducing shadow impacts, enhanc-
ing small tree detection, and improving computational effi-
ciency. Zheng et al. [48•] proposed a customised method 
based on the Faster-RCNN structure for the detection of five 
oil palm statuses: healthy, dead, mismanaged, smallish, and 
yellowish. The changes included adding a refined pyramid to 
enhance small oil palm detection, adjusting anchor size and 
aspect ratio, and changing the loss function. These changes 
increased accuracies by a significant margin between 8.14 
and 21.32% compared with the original Faster-RCNN and 
five other CNN structures. Zhou et al. [71] developed a 
new model based on VGG and single-shot detector (SSD) 
by adding more efficient convolution layers and a feature 
enhancement pyramid, which produced better detections 
for small diseased pine trees (Pinus tabuliformis). Ye et al. 
[67] added a generative network on Fast-RCNN to create 
masks on shadow areas and enhance tree detections. The 
modified model showed an improvement of between 2.2 and 
5.7% compared with the original Fast-RCNN model when 
detecting trees from forests with three stand densities. Li 
et al. [74] modified YOLOv4; the resulting lightweight ver-
sion of it was able to run on an edge computing platform for 
initial image selection. The filtered images were then sent to 
a ground station for more accurate detection.

In addition to object detection and instance segmentation 
models, Tong et al. [73] used a semantic segmentation CNN 
model, U-Net, to first extract canopy areas and then apply 
a rule-based function for individual crown segmentation. 
However, the method was developed for a plantation area 
that contained very few overlapping crowns and is not appli-
cable for complex forest environments like those in urban 
areas. A similar approach was also used by Ferreira et al. 
[72], who combined a CNN semantic segmentation model 
with a morphological operation for the delineation of three 
palm species Attalea butyracea, Euterpe precatoria, and 
Iriartea deltoidea. Due to the unique shape of palms, this 



161Current Forestry Reports (2023) 9:149–170	

1 3

hybrid model also has limitations for tree detection in other 
forest environments.

Training Strategies and Techniques

Training Samples

Most studies collect training samples via hand annotation, 
where individual crowns are manually labelled using bound-
ing boxes or crown masks. The number of samples varied 
greatly between reviewed studies, ranging from 110 [75] 
to 363,877 [48•]. This makes it difficult to identify a mini-
mum sample number for general use in ITDCD tasks. Since 
CNN models are generally data hungry [96], increasing the 
number of samples can bring benefits to the training and 
accuracy. However, quality and sample balance are also 
important perspectives that should be considered to avoid 
overfitting and increase generalisability [97].

In addition to hand-annotated samples, several studies 
developed semi- or fully-automated methods to generate 
large numbers of synthetic training data. These methods 
have significantly increased the efficiency of model train-
ing and improved the generalisability of the models for tree 
object detection. Weinstein et al. [30••] proposed an unsu-
pervised method to automatically segment tree crown shapes 
from lidar point clouds. The RGB samples clipped by those 
shapes were then used to train a CNN model. Compared 
with hand-annotated data, their method produced a large 
number of samples (434,551 crowns) within a very short 
time. This method was also used in his later studies [64, 
76] to create training datasets containing over 9 million and 
30 million trees, respectively. Although the model was fur-
ther fine-tuned with small numbers of hand-annotated data 
(2,848 crowns), the initial weights were learned in a more 

efficient way. Other studies also created synthetic training 
images from a small number of hand-annotated data. Chiang 
et al. [38] created 5,000 tree samples using 300 hand-anno-
tated trees and 63 background images. Braga et al. [14••] 
created 19,656 synthetic images that contained 4 to 150 trees 
using 1506 hand-annotated trees. Pulido et al. [47] devel-
oped a morphological algorithm to simulate the shapes of 
tree crowns in a digital elevation canopy model. The study 
produced 12,500 synthetic images that contained 2 to 7 trees 
without creating any hand-annotated data. Some of those 
methods applied a copy-paste strategy when creating the 
samples. This strategy can be considered as a data augmen-
tation process using existing samples and is discussed in 
more detail in the following section.

Data Augmentation

Data augmentation is a method for expanding samples 
from a limited number of existing data [98]. The method is 
effective in avoiding overfitting problems by adding more 
variance to the sample data, which is usually achieved by 
performing operations such as geometry and colour space 
transformations, random erasing, and kernel filtering on the 
input images before feeding them into a model for training. 
Those operations can be divided into position augmentation 
and colour augmentation.

Nearly half of the reviewed studies (16 of 35) applied 
these data augmentation operations (Fig. 2). Position aug-
mentation that simulates variances of tree crown shape, 
scale, and orientation was used in 15 studies. In comparison, 
colour augmentation was only found in six studies, all in 
combination with position augmentation. A possible rea-
son is that colour augmentation simulates variance in the 

Fig. 2   Position and colour 
augmentation techniques used 
in reviewed studies
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images such as illumination conditions and spatial distor-
tions, which may not be necessary for interpreting images 
with consistent qualities. For position augmentation, flipping 
and rotation were the two most common techniques used 
in 13 and 12 studies respectively, followed by scaling and 
cropping, each used in four studies. For colour augmenta-
tion, brightness adjustment was most often applied (n = 6), 
followed by adjusting contrast (n = 3), saturation (n = 1), and 
image blurring (n = 1).

The impact of data augmentation on ITDCD accuracy 
is inconclusive in the literature reviewed. Gomez Selva-
raj et al. [66] claimed that basic data augmentation pro-
vided a positive impact on the model. Pleşoianu et al. 
[42] argued that applying data augmentation helped to 
reduce the risk of overfitting. Braga et al. [14••] tested 
several combinations and found the augmentation com-
posed of flipping, rotation, and saturation produced the 
highest accuracy using Mask-RCNN. On the other hand, 
Weinstein et al. [76] found that random flips and transla-
tions did not improve the model accuracy when trained 
with images generated from hand annotations and unsu-
pervised detections. Fromm et al. [62] found increases 
in accuracy on SSD and R-FCN detectors when apply-
ing flipping, cropping, and rotation, but no significant 
improvements were observed for the Faster-RCNN detec-
tor. The study pointed out that the contexts covered by 
training images would be important for identifying new 
images. Safonova et al. [56] found that simple augmenta-
tion operations decreased the Mask-RCNN accuracy since 
it produced new samples that were too similar to other 
objects. In summary, the impacts of image data augmenta-
tion are dependent on CNN models, technique combina-
tions, forest conditions, and data types.

In addition to augmenting the existing samples, three 
studies used techniques to generate synthetic tree samples. 
These methods are rule-based and designed by researchers’ 
subjective understanding of tree features. Compared with 
hand-annotated data, these manipulation methods have the 
potential to artificially create more variance in the sample 
data and therefore improve the generalisability of the CNN 
model. A detailed comparison of the methods is shown in 
Table 6. Chiang et al. [38] created synthetic training images 
using samples of dead tree crowns from RGB imagery. The 
hand-annotated crown samples were first processed by image 
augmentations and then randomly placed on the background 
of images that did not contain dead trees, a so-called “copy-
paste” technique. The method reported a relatively low accu-
racy with a 34% F1-score. Despite few false positives (com-
mission errors), many omission errors were observed. Braga 
et al. [14••] adopted a similar copy-paste strategy with RGB 
imagery. However, instead of placing trees randomly, they 
added several user-defined parameters to control the num-
ber and density of trees in the synthetic images. The study 
achieved good overall accuracy, with an F1-score of 86%, 
but still reported a major error source from unseen crown 
variation. A study conducted by Pulido et al. [47] used a 
different approach and dataset. They proposed an algorithm 
to simulate the conical shapes of tree crowns and created 
synthetic training images from a digital elevated vegetation 
model (DEVM), a representation that combines multispec-
tral images, digital surface models, and digital terrain mod-
els. The highest F1-score achieved by the CNN model was 
94%. However, since the approach requires multispectral and 
photogrammetric images to create the DEVM, applying the 
method in new areas would require the availability of the 
same data types and the derived DEVM layer.

Table 6   Details of studies using copy-paste synthetic sample methods

Study Key techniques used in the method Objective Hand -annotated 
samples

Synthetic images Accuracy 
(F1-score)

Chiang et al. [38] • Image augmentation: reshape, rotate, 
brightness adjustments

• No control on tree numbers and density

Dead tree, natural forest 300 5000 34%

Braga et al. [14••] • No image augmentation
• User defined parameters to decide num-

ber of trees and crown density

General tree detection, natural forest 1506 19,656 86%

Pulido et al. [47] • Morphological simulation algorithm 
to create conical crowns in the digital 
elevated vegetation model. The algo-
rithm used a set of randomly defined 
rules to simulate the morphology of tree 
crowns

General tree detection, plantation forest None 12,500 94%
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Conclusion and Future Perspectives

In this paper, CNN-based ITDCD studies were reviewed 
through six themes. Each theme provides a summary of 
major trends and discussions on the factors that shaped those 
trends. Despite the generally impressive results achieved by 
CNN models, some research gaps are identified below.

Data Fusion

The potential for multimodal data fusion has not been well-
explored. Combining RGB images with additional spectral 
or structural information could be useful in resolving errors 
caused by overlapping tree crowns, shadows, and back-
ground noise. The current methods for data fusion typically 
fall into two categories: low-level fusion (data dimension 
reduction, input layer modification) and high-level fusion 
(ensemble model). Both have their limitations; low-level 
fusion struggles with poorly aligned data, while high-level 
fusion processes each data source separately and impedes 
the optimisation of ITDCD as a global task. In compari-
son, middle-level fusion, or feature fusion, could offer more 
advantages by combining feature maps extracted at mid-
to-late stages from the CNN backbones. As the features 
extracted at mid-to-late stages from a backbone are less 
local, the model is less likely to be affected by misalignment 
issues [99]. The feature fusion also means the entire model 
can be optimised and jointly learn to maximise the use of 
information from multiple data sources [100].

Improving Data Efficiency

Sample scarcity is a major issue that restricts both further 
improvements in accuracy and wider application of CNN 
models to more complex ITDCD scenarios (e.g. cross-site 
detection on different tree species). Apart from collecting 
more data, several approaches could be investigated to fur-
ther improve data availability and efficiency.

Applying customised sampling strategies

Most reviewed studies selected samples in a random 
way and did not consider forest conditions. This random 
approach is suitable for plantation areas with homogene-
ous canopy conditions but may not be effective in com-
plex forests that contain more crown variation. Instead, 
sample selection should be based on unique character-
istics of the target context (forest setting) of interest. 
For example, increasing the number of shaded trees may 
help the model to recognise crowns under low illumina-
tion conditions, which are very common in natural and 
urban forests.

Dealing with an Imbalanced Dataset for Multiclass ITDCD

Balancing sample collection is an important factor to con-
sider for multiclass ITDCD. Imbalanced datasets could 
result from the uneven distribution of tree classes in the real 
world, for example, endangered species versus others. Since 
the model has seen more instances of oversampled classes, 
it may become overfitted [97]. In this review, this issue was 
only discussed in one study [48•], which modified the loss 
functions to make the model learn equally across an imbal-
anced number of samples. Future studies could explore the 
impacts of imbalanced samples and test other methods at 
the data level (e.g. batch balancing, synthetic approaches) or 
at the algorithm level [101] to improve multiclass ITDCD.

Expand Sample Datasets Using Augmentation 
and Synthetic Techniques

Expanding the training dataset from hand-annotated samples 
is another way to improve data efficiency. The current studies 
did this through two approaches, augmentation, and the copy-
paste synthetic sample approach. For image augmentation, 
further investigation is needed to analyse the effectiveness 
of different combinations of techniques. For the copy-paste 
approach, more controls could be applied to better simu-
late realistic forest conditions and scenes. An example of 
this could be adding shadow effects to create the illusion of 
overlapping crowns within groups of trees. Additionally, it is 
worth exploring the use of deep learning-based augmentation. 
This type of approach uses deep learning models to learn the 
distribution of features from real images and then uses that 
knowledge to generate new images. It has been demonstrated 
in a wide range of tasks as an effective way of improving data 
variability and reducing overfitting [87, 98, 102–105].

Model Selection

In the past few years, many CNN models have been devel-
oped for computer vision tasks. While many CNN models 
have improved both accuracy and computational efficiency, 
these improvements were developed using large datasets 
like ImageNet or COCO. In contrast, for tasks related to 
ITDCD, the training sample size is usually much smaller. 
Therefore, model selection should also consider learning 
efficiency, that is, which model can produce the best result 
with limited tree samples and computing resources. This 
is important because the sparsity of high-quality ITDCD 
training data might require a different strategy than simply 
selecting the state-of-art model from the latest literature or 
benchmarks.

From this point of view, choosing a deeper or more com-
plex backbone may not be the best option in some cases. A 
lighter, shallower network is easier to fine-tune and hence 
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more likely to benefit from training with a small number of 
samples [106]. Moreover, a lighter network requires fewer 
computing resources and can leverage larger image tiles 
and epochs. An epoch refers to a single pass in which the 
CNN model is trained on the full set of available training 
images. By using more images per epoch, the model is able 
to derive more complex representations and prevent overfit-
ting [107]. In addition to those factors, future research could 
also explore how feature extraction varies between model 
backbones. An intuitive method is to compare feature maps 
extracted from different stages of networks. When trained 
with the same number of samples, some backbones may pro-
duce better representations of tree objects and eventually 
achieve greater accuracy.

For detectors, some recently published models (e.g. 
BlendMask, EfficientDet, anchor-free detectors) have shown 
their potential utility for ITDCD tasks when compared with 
popular RCNN and RetinaNet models. Although many com-
parisons have been made, there is no single detector that 
outperforms the others across all conditions. These results 
indicate a wider evaluation of CNN models is needed to 
better understand how model characteristics (e.g. good at 
large-scale object detection) affect performance under dif-
ferent forest conditions.

Pre‑Training

Most reviewed studies used backbones pre-trained with 
computer vision datasets (COCO or ImageNet). However, 
CNN models may produce better results when initialised 
with remote sensing datasets or crown-shape-like datasets 
(e.g. balloons and plants). These datasets will allow a back-
bone to learn more about the extraction of tree features 
from an aerial view rather than general objects taken from 
oblique view angles. Some sampling approaches, such 
as crown synthetic models and an unsupervised method 
proposed by Weinstein et al. [30••], could also provide a 
large number of samples for initialisation with low labour 
efforts. Future studies should explore the impacts of those 
initialisation datasets.

Model Training

Although comparisons between model structures were con-
ducted in previous studies, little attention has been given to 
exploring the optimal parameter setting for each individual 
model. Unified parameter settings are usually applied when 
comparing models whose structures are fundamentally dif-
ferent. Selections of the unified parameter settings were 
also based on a random search approach, in which groups 
of parameters were subjectively chosen by the user and then 
compared using a small number of training samples. This 
comparison strategy may be able to answer which model 

produces the best result under a certain parameter setting. 
However, another question to investigate is whether one 
model can outperform another given the same level of effort 
put into parameter optimisation. Parameter search methods 
such as Bayesian optimisation, hyperband optimisation, or 
grid search could be applied to quantify parameter search 
efforts and assess a model’s performance [108•].

Assessment of Crown Detection and Delineation

The extent of tree crowns is an important parameter in for-
est management and is useful for estimations of tree growth 
efficiency and stand competition [109]. The bounding boxes 
extracted by CNN models would be a useful resource to meas-
ure crown spread if those boxes accurately aligned with the 
crown shape. However, most crown detection studies did not 
assess bounding boxes from this perspective. Although some 
studies used IoU to evaluate the extent of predicted bounding 
boxes, the quality of ground truth samples in those studies var-
ied. Annotations of individual crowns mostly focused on rep-
resenting the locations of crowns rather than providing clear 
crown extents. For example, the bounding boxes created by Dos 
Santos et al. [75] only cover the major area of a crown since the 
primary purpose of their study was to detect the existence of 
individual trees rather than individual crown extents.

In summary, CNN models have shown considerable 
potential in ITDCD tasks, especially when using only RGB 
images, on which traditional ITDCD approaches generally 
fail to produce promising results. In some comparisons, 
such differences can range between 11 [14••] and nearly 
30% [48•] in F1-score. Despite good results with only RGB 
data, it is still worth exploring the benefits of incorporat-
ing additional information (spectral, structural, and spatial) 
for ITDCD with CNN. A critical aspect of this exploration 
is selecting an appropriate approach for handling high-
dimensional data that preserves key crown features while 
avoiding redundant learning during training. Forest condi-
tions were found to affect CNN models in varied ways. For 
each specific condition, the requirements for delivering a 
desired ITDCD accuracy differed. Since deep learning-based 
object detection is still an emerging area, new models and 
approaches are continuously proposed and tested for ITDCD 
tasks. As a result, it is unfair to state that one type of model, 
either one-stage or two-stage, would universally outperform 
the others. However, as ITDCD focuses on a specific type 
of object, trees, large CNN models that are designed for 
comprehensive object detection may not always be required. 
Instead, a smaller CNN model that has higher learning effi-
ciency with a limited number of tree samples may be prefer-
able. More detailed analysis of how CNNs extract tree fea-
tures (e.g. analysing feature and activation maps) would help 
to interpret trained models and guide future model selection 
for ITDCD tasks.
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Appendix

Fig. 3   Selection process 
of reviewed articles using 
PRISMA (Preferred Reporting 
Items for Systematic Reviews 
and Meta-Analyses) framework. 
The chart structure was created 
by Moher et al. (2009)
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Figure 3

Table 7   Data source of reviewed articles

Journal Count of journal

Remote Sensing 11 [14••, 28, 30••, 39, 42, 47, 55, 57, 58, 62, 68]
ISPRS Journal of Photogrammetry and Remote Sensing 3 [48•, 59, 66]
IEEE Access 2 [38, 75]
Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 2 [49, 67]
Computers and Electronics in Agriculture 2 [29, 43]
Others 15 [27, 40, 41, 50, 51, 56, 63, 64, 69•, 70–74, 76]
Agronomy
Engineering Applications of Artificial Intelligence
Ecological Informatics
Forest Ecology and Management
Frontiers in Environmental Science
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Journal of Forestry Research
Journal of Sensors
Journal of Spatial Science;Linye Kexue/Scientia Silvae Sinicae
Methods in Ecology and Evolution
Remote Sensing Letters
Sensors
Sensors (Switzerland)
Sustainability (Switzerland)
Grand total 35

Table 8   Data synthesis items and descriptions

Data synthesis items Description

ITDCD task Individual tree detection (bounding box) or individual tree crown delineation 
(crown polygon)

Extracted tree class(es) Tree class(es) extracted by CNN model. The classes could be tree species or 
tree categories (e.g. trees with different health conditions)

Dataset Forest type Natural forest, plantation forest, urban forest, mixed forest (multiple forest 
types)

Extent of study area Area used for training, classification, and validation (ha). For studies with 
multiple sites, a sum of areas was calculated

Platform UAV, satellite, or other aerial platforms
Data type Remote sensing data types used by CNNs, including RGB, multispectral, and 

lidar data
Data specifications Ground sample distance (GSD) for raster remote sensing data. For lidar data, 

GSD of derived raster surface was used. For studies that did not provide 
GSD, an estimate resolution was calculated based on camera specifications 
and flight heights

Training CNN framework CNN framework(s) used in a study
Backbone Backbone(s) used by CNN framework(s)
Pre-training Whether the backbone(s) was pre-trained and what dataset was used
Samples (train/test/validation) The sample numbers and ratio between training, test, and validation
Training specs Summary of configurations and techniques used in the training process

Accuracy assessment and output Metrics Accuracy metrics used for result assessment
Result Summary of accuracies and key results from a study
Conclusion Summary of key points of conclusions from a study
Limitation Summary of key points of limitations from a study and identify the potential 

opportunities for future research

Tables 7 and 8
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