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Abstract
Purpose of Review We provide an overview of the main processes occurring during the interactions between atmospheric
nitrogen and forest canopies, by bringing together what we have learned in recent decades, identifying knowledge gaps, and
how they can be addressed with future research thanks to new technologies and approaches.
Recent Findings There is mounting evidence that tree canopies retain a significant percentage of incoming atmospheric nitrogen,
a process involving not only foliage, but also branches, microbes, and epiphytes (and their associated micro-environments). A
number of studies have demonstrated that some of the retained nitrogen can be assimilated by foliage, but more studies are
needed to better quantify its contribution to plant metabolism and how these fluxes vary across different forest types. By merging
different approaches (e.g., next-generation sequence analyzes and stable isotopes, particularly oxygen isotope ratios) it is now
possible to unveil the highly diverse microbial communities hidden in forest canopies and their ability to process atmospheric
nitrogen through processes such as nitrification and nitrogen fixation. Future work should address the contribution of both foliar
nitrogen uptake and biological transformations within forest canopies to whole ecosystem nitrogen cycling budgets.
Summary Scientists have studied for decades the role of forest canopies in altering nitrogen derived from atmospheric inputs
before they reach the forest floor, showing that tree canopies are not just passive filters for precipitation water and dissolved
nutrients. We now have the technological capability to go beyond an understanding of tree canopy itself to better elucidate its role
as sink or source of nutrients, as well as the epiphytes and microbial communities hidden within them.

Keywords Nitrogen fluxes . Nitrogen deposition . Forest canopy . Stable isotopes . Phyllosphere . Epiphytes . Nitrogen
retention . Nitrogen assimilation . Nitrification . Nitrogen fixation . Soil canopy .Microbes

Introduction

Earth’s climate is significantly affected by the continuous ex-
change of water, carbon dioxide (CO2), and energy between
forests and the atmosphere. Tree canopies remove about 30%
of the atmospheric dioxide (CO2) emitted by anthropogenic
activities through photosynthesis. This removal contributes to
the terrestrial CO2 sink, which has doubled over the last

decade compared to the 1960s, from 1.3±0.4 Gigaton (Gt) C
year−1 to 3.4 ± 0.9 Gt C year−1 during 2009–2018 [1].
Through stomata on foliar surfaces, water moves from the soil
to the atmosphere during transpiration, a process intrinsically
associated with CO2 uptake and that plays a key role in hy-
drological cycling. It is estimated that about 40% of incident
precipitation around the globe is returned back to the atmo-
sphere through transpiration by forest canopies [2].
Transpiration through tree canopies can feedback to climate
by cooling the air through latent heat flux or through contri-
butions to cloud formation and reductions in incoming solar
radiation. However, forest canopies can also lead to warming
through their relatively low albedo and release of water vapor,
a potent greenhouse gas [3].

Water and carbon dioxide, however, are not the only com-
pounds that tree canopies exchange with the atmosphere.
Indeed, canopies are continuously exposed to chemical com-
pounds emitted into the atmosphere by natural and
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anthropogenic activities and deposited back to the biosphere
as wet and dry deposition (ref. chapter 2). Among them, ni-
trogen in atmospheric deposition has received a lot of atten-
tion over the last several decades because of its role in affect-
ing carbon, nitrogen, and water cycling. A positive relation-
ship exists between rates of nitrogen deposition and leaf
[4–6••] or canopy [7] photosynthesis, tree growth [8, 9], and
water-use efficiency [10–12], due to nitrogen availability
strongly affecting all of these processes. Elevated rates of
nitrogen deposition has been recognized as one of the drivers
contributing to enhanced forest carbon sequestration (and
hence a form of climate change mitigation), particularly for
nitrogen limited ecosystems in temperate and boreal biomes
[13–17]. Greater nitrogen content in tree canopies due to an
increase in atmospheric nitrogen input can also feedback to
climate by increasing albedo ( [18] - positive feedback) and
evapotranspiration ( [19] - negative feedback).

Increases in atmospheric nitrogen deposition can also
accelerate rates of nitrogen cycling, leading to a cascade
of effects [20] that eventually shifts the balance between
accumulation to nitrogen loss pathways, increases in eu-
trophication of nearby waterways, loss of diversity
[21–23], and nutrient imbalances, such as phosphorus
and cations [24]. The influence of tree canopies in nitro-
gen cycling has been often assessed in terms of litter pro-
duction and decomposition, the latter playing a crucial
role in soil biogeochemical processes [25]. Yet, tree
canopies—and the overlooked life hidden within them
(e.g., epiphytes and microbial communities)—can retain,
assimilate, and process atmospheric nitrogen, thus chang-
ing the quantity (in terms of fluxes) and quality (in terms
of nitrogen forms) of atmospheric nitrogen inputs eventu-
ally reaching the forest floor and soils beneath. However,
the mechanisms underlying these differences between
what goes into, through, and out of forest canopies are
still debated.

Here, we provide a comprehensive overview of how tree
canopies contribute to nitrogen cycling, by bringing together
knowledge scientists have learned over the last several de-
cades from a variety of research and methodological ap-
proaches (i.e., manipulation experiments vs. observations
along environmental gradients), and scales, going from the
whole ecosystem (e.g., quantification of forest nitrogen
fluxes) to canopies (e.g., investigation of foliar nitrogen up-
take) down to genes (with omic techniques, and gene-specific
quantitative PCR; qPCR). We begin by providing a general
introduction to atmospheric nitrogen deposition, focusing
mostly on inorganic nitrogen. We then describe what happens
when atmospheric nitrogen interacts with tree canopies and
the life hidden within them, elucidating three processes: reten-
tion, assimilation, and biological transformation (Fig. 1). Last,
we identify knowledge gaps and how they can be addressed
with future research.

Quantifying and Monitoring Atmospheric
Nitrogen Deposition

Concentrations of reactive inorganic nitrogen (N) compounds
in the atmosphere, i.e., reduced forms (NH3, NH4

+) and oxi-
dized forms (NO, NO2, NO3

-
, HNO3, and N2O), have in-

creased by 10-fold since 1860, from 15 to 156 Teragram
(Tg) N year-1 in the early 1990s and to 210 Tg N year-1.
Asia, North America, and Europe are hotspots for these atmo-
spheric nitrogen inputs [26, 27]. In particular, N2O emissions
have increased by more than 20% (from 270 parts per billion
(ppb) in 1750 to 331 ppb in 2018), which has positive feed-
backs to climate change since it is a greenhouse gas [28].
Intensive agriculture (including livestock) for food production
that has sustained human growth is responsible for about 85%
of global NH3 emissions [29] and for more than 70% of global
N2O emissions [28]. Galloway and Cowing [20] estimated
that only a limited amount of the applied fertilizer is recovered
in the produced food, and that 80 and 90% of the supplied
nitrogen in agricultural systems to grow plants for food pro-
duction or to feed livestock for meat production is either
recycled in the agroforestry systems or lost to the environment
(through NO3

- leaching, denitrification, or NH3 volatiliza-
tion). Emissions from power plants and road transport are
the main sources of the increase in oxidized nitrogen com-
pounds to the atmosphere [30]. Some components of reactive
nitrogen enter terrestrial and aquatic ecosystems as wet (dis-
solved in precipitation or fog) and dry (as gaseous processes
and particles) deposition.

Regional networks have been established worldwide, with
the aim of in-situ monitoring of air quality, including changes
in reactive nitrogen concentrations and fluxes. These include
the European Monitoring and Evaluation Program (EMEP),
the National Atmospheric Deposition Program (NADP), and
Clean Air Status and Trends Network (CASTNET) in the
USA (with the NADP/National Trends Network (NTN) ex-
tending to Canada, and Mexico), the Canadian Air and
Precipitation Monitoring Network (CAPMoN) in Canada,
the Nationwide Nitrogen Deposition Monitoring Network
(NNDMN) operated by China Agricultural University, and
the Acid Deposition monitoring network (EANET) in East
Asia. In Africa, monitoring of wet and dry deposition started
in the late 1990’s at 10 sites in the west and central parts of the
continent, within the IDAF (International Global Atmospheric
Chemistry (IGAC)/Deposition of Biogeochemically
Important Trace Species (DEBITS)/Africa), which is still ac-
tive at 3 sites [31••]. To gain a more detailed spatial under-
standing of trends in deposition and their effects on natural
ecosystems, intensive monitoring networks have been
established in forests across Europe, such as the
International Co-operative Program on Assessment and
Monitoring of Air Pollution Effects on Forests (ICP
Forests), which has been active since in 1995.
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Quantification of inorganic atmospheric nitrogen deposi-
tion fluxes is carried out by measuring NH4

+ and NO3
- con-

centrations in water collected in the open areas outside the
forest (i.e., wet only or bulk deposition) and beneath tree can-
opies (i.e., throughfall deposition, Fig. 2A), which are then
used in conjunction with measurements of precipitation vol-
ume to calculate fluxes. Collectors for bulk and wet deposition
are placed in an open space, outside the forest, so to collect the
total atmospheric nitrogen deposition (mostly as wet

deposition). However, some of the dry nitrogen compounds
can also be deposited in bulk collectors, unless wet-only col-
lectors are installed, which are equipped with a lid that closes
during dry periods and only open during precipitation events.
These approaches have allowed researchers to document how
wet nitrogen deposition has changed over the last decades
across Europe and North America [32, 33] and also to identify
hotspots such as areas where critical loads have been reached
in natural [34] or urban [35••, 36•] ecosystems.

Fig. 1. Overview of the main
processes underpinning the
interactions between tree
canopies and atmospheric
nitrogen deposition. Numbers
refer to processes we describe in
the text: 1- retention of nitrogen
deposition by tree canopies and
epiphytes; 2- foliar nitrogen
uptake; 3- leaching of dry
nitrogen deposition and dissolved
organic nitrogen; 4- microbial
nitrogen transformations (e.g.,
nitrogen fixation, nitrification).
Light blue and yellow circles
indicate wet and dry nitrogen
deposition, respectively.
Illustration describing process 1-
was modified from Gotsch et al.
(2017)

A) B)Fig. 2. Monitoring of nitrogen
deposition in forests by using
throughfall water collectors
(panel A) and ion exchange
resins, IER (panelB). Photo in the
panel A refers to an oak forest
within the ICP forest network in
Europe (i.e., Alice Holt forest in
the UK), while in the panel B we
show a close-up photo of the ion
exchange resin collector. Photos
were taken by Rossella Guerrieri
(panel A) and Pamela Templer
(panel B).
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Another approachwidely used in theUSA (see e.g., [37, 38] –
Fig. 2B) and recently in Europe [39••] and China [40], is to
incubate mixed ion (i.e. cation plus anion) exchange resins in
the field for several weeks at a time. Ion exchange resin (IER)
columns can be placed in open areas (outside the forest) to mea-
sure bulk deposition or beneath the canopy to measure
throughfall, which as in the case of classical water throughfall
collectors, provide estimates of wet plus dry deposition since
particulates settle on leaves and get washed into collectors when
there is precipitation ( [41] and reference therein). A number of
studies showed that quantification of nitrogen deposition fluxes
based on the IER method was comparable to that obtained from
traditional water collection [37, 39, 41]. The advantage of using
the IERmethod is that it allows for greater site replication since it
requires fewer sampling times compared to the traditional ap-
proach that requires weekly collections. However, it has been
shown that the IER approach could overestimate NH4-N depo-
sition, due to the release of NH4

+ from the amine compounds
from the anion exchange resin polymer, but it could underesti-
mate NH4-N deposition during heavy rain events. We recom-
mend that readers read relevant studies by Fenn and Poth [37],
García-Gomez et al. [39], and Fenn et al. [41] for more details on
the limitations of the IER approach, as well as recommendations
to improve quantification of inorganic nitrogen deposition with
this approach.

One limitation of the estimates from national networks is
that they do not provide a clear picture of total nitrogen depo-
sition on a given area, given the difficulties of quantifying
reactive dry nitrogen compounds in the atmosphere (and
hence their deposition), which has been shown to be an im-
portant proportion of total nitrogen deposition [42–45].
Compared to wet N deposition, quantifying dry N deposition
is still challenging due to the lack of intensive dry deposition
monitoring networks, the difficulties of measuring reactive
nitrogen compounds, and the challenge of including deposi-
tion processes inmodels [46]. A very simplistic approach used
to estimate dry nitrogen deposition is to calculate the differ-
ence in nitrogen fluxes between throughfall and bulk deposi-
tion [48•]. Because of their roughness and high turbulence,
tree canopies are efficient at absorbing or scavenging reactive
nitrogen from the atmosphere [49]. The deposited reactive
nitrogen is then washed off during a rain event so that water
collected in throughfall reflects both wet and dry reactive ni-
trogen. This approach, however, has a number of limitations,
which will be discussed later (cf. chapters 3 and 5).

A number of networks have been established to monitor
gaseous reactive nitrogen, with particular focus on
ammonia—see e.g., Ammonia Monitoring Network
(AMoN) in the USA (in addition to CASTNET, where gas
and particulate air concentrations of HNO3, NH4

+aerosol, and
NO3

− aerosol are included), the Ammonia Monitoring
Network in China (AMoN-China), and a number of initiatives
in the European Continent (Measuring Ammonia in Nature

network, MAN in the Netherlands or National Ammonia
Monitoring Network, NAMN in the UK, and the European
Monitoring and Evaluation Program, EMEP, across Europe).

Estimating dry nitrogen deposition is more complex than
what we described already for wet deposition and involves
measurements and modeling approaches. At the monitoring
sites where concentrations of gaseous nitrogen compounds are
measured (commonly with passive samplers, filter packs,
denuders [41, 47, 50]), dry deposition can be estimated by
using inferential modeling approach, which consider the de-
position velocities of a given compound in relation to the land-
use and the vegetation type, but also canopy conductance [46,
51]. Dry deposition can also be estimated by considering the
differences in ion concentrations between bulk vs. throughfall
water fluxes in the so-called canopy budget model ( [52], ref.
chapter 4). A number of studies from the early 2000s have
shown the great potential of micrometeorological approaches,
such as the eddy covariance technique (EC), to estimate reac-
tive nitrogen fluxes directly (e.g., [53, 54] for NH3, [55] for
NOy, [56] for total reactive nitrogen, [45] for a review of its
application in the USA). Its applicability, though, is chal-
lenged by the very sophisticated instruments required, as well
as the high reactivity of dry nitrogen compounds [56].

In-situ monitoring (either via sampling of gaseous concen-
trations or EC flux measurements) are often spaced apart and
are typically located in rural areas to gain regional understand-
ing of atmospheric deposition trends, but still they are limited
in number to capture other processes related to transport of dry
nitrogen forms [57]. The limited spatial coverage of ground-
based dry nitrogen deposition monitoring can be overcome by
considering inventory emissions (such as the Emissions
Database for Global Atmospheric Research, EDGAR, led by
the Joint Research Center in Europe [58]) and atmospheric
remote sensing. A number of satellite-based monitoring of
surface pollutants have been established (NASA Aura
Ozone Monitoring Instrument, ESA Tropospheric Ozone
Monitoring Instrument, TROPOMI - see [59] for a review,
[60]), representing an important advance to fill the data gap
for gaseous nitrogen compounds. Estimates of dry nitrogen
deposition at the regional or global scale (either considering
ground-based or inventory emissions and satellite-derived ni-
trogen concentrations) rely on modeling approaches, such as
chemical transport models, e.g., EMEP MSC-W [46, 57],
LOTUS-EUROS [61], and GEOS-CHEM (http://acmg.seas.
harvard.edu/geos/). We refer readers to the studies by
Theobald et al. [62] for a comparison among different
chemical transport models, and by Dentener et al. 2006 [63]
and Vet et al. 2014 [64] as example of estimates of
atmospheric nitrogen deposition based on an ensemble of
chemistry transport models. Since our goal in this chapter is
to provide an overview of the approaches at different scales to
estimate reactive nitrogen emissions and deposition, we refer
readers to Liu et al. [65•] for a review of recent advances about

118 Curr Forestry Rep (2021) 7:115–137

http://acmg.seas.harvard.edu/geos/
http://acmg.seas.harvard.edu/geos/


estimating surface reactive nitrogen concentration and
deposition using satellite-based methods and the main chal-
lenges associated with these approaches.

Although this literature review mostly focuses on inor-
ganic reactive N, it is important to point out that while
monitoring of inorganic nitrogen deposition has intensi-
fied over the past decades, this is not the case for organic
nitrogen deposition. Measuring concentrations or fluxes
of organic nitrogen in deposition is challenging as it is
commonly done through the difference between the total
nitrogen (i.e. organic + inorganic) and inorganic nitrogen
in deposition, which can be labor intensive and expensive
[66–68•]. The contribution of organic nitrogen forms has
been estimated to be on average between 30% and 50% of
the total nitrogen deposition based on nitrogen fluxes
measurements at 27 locations worldwide [69] or across
Europe [66, 67] - with the percentage as high as 70% in
the Mediterranean basin [70]. This result suggests that not
accounting for organic nitrogen deposition leads to an
underestimation of total nitrogen deposition and its con-
tribution to nitrogen cycling [26, 71].

Human activities have increased atmospheric nitrogen in-
puts to terrestrial ecosystems by 46 Tg N year-1 compared to
pre-industrial time [72], with recent global estimates ranging
between 90 [73] and 100 TgN year-1 [64, 71], with hotspots in
eastern Asia, Europe, eastern North America, and southern
Brazil [72]. Of the total N deposition, 70 Tg N year-1 are
deposited onto terrestrial surfaces [27], with about 18 Tg N
year-1 reaching forest ecosystems [72].

Results from long-term monitoring networks reported a
significant reduction in nitrogen (particularly the oxidized
forms) and sulfur deposition (e.g., [32, 45] in Europe and
North America; [33] based on measurements at the
European ICP Forests) over the last several decades. Rates
of total nitrogen deposition are generally elevated in urban
compared to nearby rural areas [74•]. However, decreases
over time were steeper for sulfur compared to nitrogen depo-
sition, particularly in the case of NH3 deposition [43, 48•]. A
recent study by Fenn and colleagues [75] highlighted that on-
road emissions of NH3 have increased in the USA due to the
introduction of vehicles equipped with new engine technolo-
gies, where aqueous urea is injected as a reductant for NOx

control, leading to the production of NH3 [76, 77]. Actions for
abatement of NH3 emissions and hence, deposition are more
difficult to put in place, given their link to food production
[78]. In contrast to North America and Europe, China has
experienced an overall increase in nitrogen deposition over
recent decades [79]. Moreover, global estimates from
satellite-based observations and modeling highlighted the in-
crease in nitrogen deposition in tropical regions [26, 63, 73],
due to the intensification of agriculture (and hence increasing
use of synthetic fertilizers) and biomass burning associated
with deforestation [80, 81].

Tree Canopies and Nitrogen Fluxes: What
Comes in From the Atmosphere does not
Always Reach Soils Beneath

Where does atmospheric nitrogen go when moving through
forest ecosystems and how does atmospheric nitrogen depo-
sition affect processes occurring within tree canopies? Three
approaches have been used to answer this question: nitrogen
manipulation experiments (either on seedlings or on mature
trees in forests), observations across sites within long-term
nitrogen monitoring networks, and individual observational
studies. We summarize all three below.

To follow the fate and activity of atmospherically de-
posited nitrogen to forest ecosystems, nitrogen is often
added in amounts and forms that mimic atmospheric de-
position, mostly as ammonium nitrate (NH4NO3; with la-
beled 15N fertilizer in some cases to track specific cohorts
of nitrogen throughout an ecosystem). Past studies, mostly
considering soil nitrogen fertilizations, showed that soil
and not trees retain most of the nitrogen that comes from
atmospheric deposition (e.g., Emmett et al. [82], present-
ing results from the manipulation experiments within
NITREX project across European temperate and boreal
forests; Nadelhoffer et al. [83], for results on the long-
term soil manipulation experiment at Harvard forest in
the USA; Gurmesa et al. [84], in a humid tropical forest
in China; Schlesinger [72] and Templer et al. [85] for two
analyses across many studies). Moreover, from soil fertil-
ization experiments researchers found that the simulated
increase in nitrogen deposition had a significant effect on
the biogeochemical processes, leading to soil acidifica-
tion, increases in NO3

- leaching and nutrient imbalances
[86–89], and shifts in bacterial [90] and/or fungal com-
munities [91].

Tree canopies are critical to our understanding of the
nitrogen cycle since they can modify the amount and form
of nitrogen entering the forest floor through retention,
transformation, and absorption by foliage, a process often
excluded in previous soil manipulation experiments.
Some past and more recently established studies have
mimicked the increase in nitrogen deposition using mist
applications directly to tree canopies in forests or at the
watershed scale (ref. Table 1) to investigate the effects of
increasing nitrogen deposition on nitrogen cycling at the
whole ecosystem scale. Among those experiments, how-
ever, only a few have specifically elucidated the interac-
tions between atmospheric nitrogen deposition and tree
canopies, whose results will be discussed in this chapter.
The first canopy nitrogen addition experiment we are
aware of was carried out on a young Sitka spruce planta-
tion at Deepsyke in Scotland (UK). The experiment in-
cluded nitrogen misting over tree canopies alone or in
combination with sulfur as single or double dose (48
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and 96 kg ha-1 year-1 for both nitrogen and sulfur) for 5–8
years so to simulate an increase in acid deposition (cf.
[92, 100]). Another remarkable manipulation experiment
was carried out at Howland in Maine (USA), where an
increase in nitrogen deposition over a mature spruce-fir
forest was simulated by water drop though a helicopter
for 5 years (Table 1). Both experiments showed that be-
tween 20–40% (at Deepsyke Forest [101, 102]) and up to
70% (at Howland Forest [93]) of the applied nitrogen
remained in tree canopies. A similar percentage of nitro-
gen canopy retention (30–50%) was reported in a recently
established (and still active) manipulation experiment in

an evergreen broad-leaved forest [6] and mixed deciduous
forest [103] in China at the two forest sites described in
Table 1. Different dynamics of canopy nitrogen exchange
were observed at Deepsyke Forest according to whether
the nitrogen addition also contained sulfur. In fact, the
absolute amount of nitrogen retained as NH4

+ and NO3
-

was similar regardless of the applied doses (i.e., 40% for
both), whereas tree canopies in the nitrogen addition treat-
ment retained more NH4

+ (i.e., 60%) than NO3
- (i.e., 8%)

[102]. The preferential higher retention of NH4
+ vs. NO3

-

by tree canopies was also found at Howland Forest.
Moreover, at Howland, by carrying out a 15N tracer

Table 1 Overview of the experimental sites where nitrogen applications
to forest canopies have been carried out.We also include experiments that
are no longer active and describe when experimental treatments also
include nitrogen applications to soil and the level of ambient
atmospheric nitrogen deposition (Ndep). CN and CNS indicates canopy
nitrogen and canopy nitrogen + sulfur aerial misting, respectively,

whereas SN indicates soil nitrogen applications. Numbers following
CN, CNS or SN indicate that different doses where applied, for a given
treatment. (*) Values was calculated as half of the dose applied, as Adams
et al. (2007) reported additions of N and S are approximately twice the
ambient nitrogen deposition in the adjacent watershed considered as
control

Name o the site
(Region, Country)

Forest type (dominant tree species) Forest age Ambient Ndep

(kg ha-1 year-1)
N dose applied
(kg ha-1 year-1)

Duration Reference

Deepsyke (Scotland,
UK)

Conifer forest (Picea sitchensis
(Bong.) Carr.)

30 8-10 CN: 48
CNS1: 48
CNS2: 96

1996-2003 Sheppard et al. 2004;
[92] Guerrieri et al.
2011 [10]

Howland forest (Maine,
USA)

Conifer forest (Picea rubens Sarg,
Tsuga canadensis (L.) Carr.)

~140 < 5 18 2001-2005 Gaige et al. 2007; Dail
et al. 2009 [93, 94]

Cansiglio (Veneto,
Italy)

Deciduous forest (Fagus
sylvatica L.)

~140 20 CN: 30
SN1: 30
SN2: 60

2015-present -

Cembra (Trentino Alto
Adige, Italy)

Deciduous forest (Fagus
sylvatica L.)

60 < 10 CN: 20 2018-present -

Monticolo (Trentino
Alto Adige, Italy)

Deciduous forest (Quercus
petrea L.)

67 6.6 CN: 20 2015-present Giammarchi et al. 2020
[95]

Jigongshan National
Natural Reserve

(Henan, China)

Mixed deciduous forest (Quercus
acutissima Carruth, Quercus
variabilis Bl., Liquidambar
formosana Hance)

45 19.6 CN1: 25
CN2: 50

2013-present Zhang et al. 2015 [96•]

Shimentai National
Natural Reserve

(Guangdong, China)

Broadleaved evergreen forest
(Cryptocarya concinna, Schima
superba, Machilus chinensis,
Castanea henryi (Skan) Rehd,
Engelhardtia roxburghiana)

50 34.1 SN1: 25
SN2: 50

2013-present Zhang et al. 2015 [96•]

Bear Brook (Eastern
Maine, USA)

Mixed deciduous forest with some
conifers at high elevation

50-80 8.4 CN: 25.2
CNS: 28.8

1989-2016 Fernandez et al. 2003
[97]

Fernow (West Virginia,
USA)

Mixed deciduous forest 34-95 17.5* CN: 35.5
CNS: 40.5

1989- Adams et al. 2007 [98]

Monts-Valin and
Simoncouche
(Quebec, Canada)

Conifer forest
(Picea mariana (Mill.) BSP)

80 0.7-1 CN: 2 2008-2016 De Barba et al. 2016
[99]

Prades (Cataluña,
Spain)

Evergreen forest (Quercus ilex L.) 80 15 CN: 60 2015-present -
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experiment (i.e., spraying trace amounts of enriched 15N-
NH4 and 15N-NO3 on subplots) researchers tracked the
fate of nitrogen, including foliage, wood, and bark.
Surprisingly, the highest 15N retention was observed in
branches and bark and not in foliage, as expected. This
result suggests that the high retention within the ecosys-
tem was more related to physico-chemical interactions
between atmospheric nitrogen and plant surfaces rather
direct uptake through foliage [94••]. However, another
important result from the manipulation experiment at
Howland forest was the rapid conversion of NH4

+ and
NO3

- into soluble organic nitrogen in tree canopies, which
led to an increase in below-canopy dissolved organic ni-
trogen fluxes [93]. This result was explained by the au-
thors as rapid assimilation of inorganic nitrogen by plants
and associated epiphytes, and consequent release as plant,
lichen, and microbial exudates, via physical damage to
foliage, or via insect mediated release [93]. An increase
in organic nitrogen fluxes below- canopies was also de-
tected at Deepsyke Forest but its contribution to total ni-
trogen fluxes was smaller compared to what was observed
at Howland forest, indicating a limited capacity to gener-
ate organic nitrogen within the canopy for this ecosystem
[104].

A comparison of tree-ring stable nitrogen isotopic com-
position (δ15N – ref. Appendix 1) (evaluated as difference
between nitrogen addition treatment and control—no 15N-
labeling was applied—Fig. 3, modified from Guerrieri
et al. [10]) between canopy and soil nitrogen fertilization
experiments showed a different pattern between the two
approaches considered in terms of ecosystem nitrogen dy-
namics. With increasing nitrogen dose applied to the soil,
the natural abundance δ15N values in tree rings became
more 15N-enriched compared with the control plots, indi-
cating an increase in the coupling of soil nitrogen avail-
ability and nitrogen loss pathways (e.g., [105]). The op-
posite patter was observed in the case of aerial misting
over tree canopies, with a decrease in tree ring natural
abundance δ15N values in the nitrogen addition treatment
compared to the control, suggesting a higher amount of
nitrogen retention in the ecosystem instead [10]. The sub-
stantially higher level of canopy (including branches and
bark) nitrogen retention in experiments where nitrogen is
added to the canopy compared to nitrogen fertilizers to
soils [85] shows that forest canopies can contribute sig-
nificantly to nitrogen immobilization by trees and micro-
bial communities within forest ecosystems and to reduc-
ing nitrogen loss pathways. These results also suggest that
soil fertilization experiments can overestimate the role of
nitrogen deposition in soil biogeochemical processes and
overlook the role of tree canopies in retaining atmospheric
nitrogen. However, the overall short duration of the ma-
nipulation experiments, the high nitrogen doses applied

(compared to the ambient nitrogen deposition), and the
difference in terms of forest structure (forest age and man-
agement) make it challenging to draw conclusions about
long-term responses of canopy vs. soil nitrogen processes
to simulated increase in nitrogen deposition.

Monitoring of the specific inorganic nitrogen chemical
species (i.e., NH4

+, NO3
-) in deposition and water collect-

ed underneath tree canopies as throughfall has shown that
nitrogen deposition is substantially altered in its path
through the canopy. Hence, comparisons of throughfall
to bulk nitrogen deposition can demonstrate whether can-
opies are net sinks or sources for nitrogen. Increases in
nitrogen fluxes in throughfall relative to bulk deposition
have been observed particularly at high nitrogen deposi-
tion sites, which were attributed to leaching and washing
of dry nitrogen deposition from the canopies by precipi-
tation [48•, 66, 106–109]. In this case, tree canopies can
still retain part of the atmospheric nitrogen, though this
process can be masked by the high wash-off of dry nitro-
gen deposition [110, 111]. On the other hand, lower ni-
trogen fluxes in throughfall than bulk deposition have also
been reported (in temperate, boreal and tropical forests),
and have been considered an indication of retention and
consumption by tree canopies and associated epiphytes [4,
110, 112–118] and of direct foliar uptake (e.g. [119, 120]
ref. chapter 4). Differences were reported between conifer
and deciduous forests in the percentage of canopy reten-
tion, with the former showing a higher interception of
inorganic nitrogen from precipitation compared to the lat-
ter [66, 121]. When focusing on canopy ‘preference’ in
terms of nitrogen forms (NH4

+, NO3
- and dissolved or-

ganic nitrogen), interesting differences were found. In
general, a higher efficiency by tree canopies in retaining
NH4

+ rather than NO3
- was reported [113, 117••, 122•].

However, some studies reported a stronger preferential
retention of NO3

- compared to NH4
+, particularly under

low nitrogen deposition (Fenn et al. [110] and reference
therein, particularly Table 4).

The magnitude of canopy nitrogen retention has been
associated with both forest nitrogen status and changes in
atmospheric nitrogen deposition, with higher retention at
low nitrogen availability and under low atmospheric ni-
trogen input (e.g., [123], [121] across EU, [117••] in
Canada). This observation is important, as it suggests
that—particularly for nitrogen deposition in the form of
NO3

-—canopy retention can significantly reduce the
amount of atmospheric NO3

- inputs to the soil (between
30 and 60% of the bulk deposition [66, 117••]) and limit
soil nitrogen loss pathways through leaching of NO3

- and
gas loss [124, 125]. Different attributes related to forest
structure and dynamics (e.g., diversity, phenology) seems
also to be relevant in explaining differences in canopy
nitrogen retention. A number of studies found that canopy
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retention was typically higher during the growing season
[121, 126, 127] and that it was associated with forest
diversity [121]. The latter is not surprising, particularly
if we consider diversity not only in terms of different tree
species but also their associated leaf and morphologies
traits (which can affect ability of canopies to ‘capture’
atmospheric deposition) and life they host (ref. chapter 6).

Several studies have shown that when water from pre-
cipitation cascades through the canopy—via throughfall
and stemflow—concentrations of dissolved organic matter
(see review by Van Stan and Stubbins, 2018 [128]) and
particulate organic matter (organic material ranging from
0.45 μm and 500 μm; see review by Ward et al. [129])
can be significantly altered. With particular reference to
nitrogen, monitoring dissolved and particulate organic ni-
trogen in bulk deposition and throughfall is not carried
out routinely as in the case of dissolved inorganic nitro-
gen. Hence, it is hard to provide an overall picture about
whether and in which direction organic nitrogen fluxes
change when passing through tree canopies. Results in
the literature vary from no changes [70, 130], to reduction
(in tropical and boreal forests [115] and reference there-
in), and to an increase in dissolved [48•, 70] and particu-
late [131] organic nitrogen fluxes in throughfall compared
to bulk deposition. Causes for the significant increase in
both dissolved and particulate organic nitrogen fluxes be-
neath tree canopies were related to leaching of canopy

herbivore frass [132] or microbial biomass [131, 133••],
pollen and bud burst [68•], or caterpillar [134] or fungi
[135] infestations. These results suggest that canopy phe-
nology can also control the inputs of organic nitrogen to
the soil. Moreover, a more intensive monitoring of organ-
ic nitrogen fluxes in forests could help in detecting insect
pests, which are becoming more frequent and severe with
climate change [66, 136].

Canopy Nitrogen Retention and Uptake: Why
Distinguishing Between the Two Matters

Canopy retention is often referred to as canopy uptake,
though the two processes are quite different. Nitrogen that
is retained in tree canopies—defined as ‘the atmospheric
N input to the canopy not reaching the forest soil’ [126]—
could be adsorbed by leaf and branch/bark surfaces and/or
associated microbes, but it does not necessarily mean that
it is assimilated by plants via their foliage. In this chapter
we specifically focus on the foliage nitrogen uptake path-
way. Atmospheric nitrogen inputs represent an additional
and readily available source of nitrogen that can be ac-
tively taken up by foliage and thus, be metabolized by
plants [4, 119, 137••, 138•, 139••, 140••, 141]. This path-
way can be particularly important for those ecosystems
relying on fog for water and nutrients it carries, e.g.,
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Fig. 3. Results of the meta-analysis presented in Guerrieri et al. (2011),
showing natural abundance δ15N values in tree rings (as difference
between nitrogen fertilization and control) vs. cumulated doses of
nitrogen (N) applied over the duration of the experiments, which is
indicated with numbers close to symbols. We updated the original
figure in Guerrieri et al. (2011) by including also natural abundance

δ15N values measured for red maple, red spruce, and hemlock at
Howland forest. Values are means with 95% confidence intervals and
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out. See Guerrieri et al. (2011) for more details on the meta analysis
and supplementary information for a description of wood core
collection and sample preparation at Howland forest.
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Sequoia sempervirens forests in California [137••] and
Arthraerua leubnitziae in the Namibia desert [142•], as
well as several tree species in wet tropical forest in the
Republic of Panama [143••].

How does nitrogen uptake through canopy work and
how can it be described? We remind readers of reviews
by Sparks [119], Krupa [144] – with focus on NH3, and
Hu et al. [145], which provide a comprehensive descrip-
tion of the foliar nitrogen uptake pathways and subse-
quent transport and metabolism (including associated
genes and enzymes). Briefly, there are two pathways for
NH3 to enter the leaves: through stomata and cuticles (
[119, 120] and reference therein). Stomatal uptake of NH3

depends on stomatal conductance and on the concentra-
tion gradient between atmosphere and substomatal cavi-
ties where NH3 is dissolved in the water film of the me-
sophyll cells to form NH4

+. Atmospheric NH3 can also
passively be deposited on leaf cuticles, where the pres-
ence of relative humidity can favor its solubility and con-
version to NH4

+, which can then be assimilated via cuticle
or be reemitted. Oxidized forms of nitrogen (NO and
NO2) enter foliage through stomata and dissolve in the
leaf apoplast to primarily form nitrous acid (HNO2) and
nitric acid (HNO3) that then dissociate to NO2

- and NO3
-

[119]. Though here we focus mostly on inorganic nitro-
gen, it is worth mentioning that foliar uptake of organic
nitrogen has also been reported [146, 147].

Nair et al. [139••] conducted a mesocosm manipulation
experiment with Sitka spruce saplings where, among other
treatments, a solution containing isotopically enriched
15NH4NO3 was sprayed on the soil and applied directly to
twigs and needles through a brush presoaked with treatment
solution. The input of nitrogen did not significantly add to the
ambient nitrogen deposition experienced by the saplings
(14.5 kg N ha-1 yr-1, Nair 2021, personal communication),
as only 54 g 15N ha-1 year-1 was added as tracer with the
experiment. The study showed that 60% of 15N applied to
the canopy was recovered in the aboveground components
of trees (needles, stem and branches), while only 21% was
recovered in aboveground biomass when 15N was applied to
the soils. In another experiment carried out by Adriaenssens
et al. [126], oak, birch, Scots pine, and beech saplings were
exposed to different amounts of labeled 15NH3. The authors
found greater 15NH3 uptake by birch, beech, and oak com-
pared to pine, which was attributed to the lower nitrogen re-
quirement by conifers in general, owing to high internal nitro-
gen recycling and longer retention time for needles [94••].
Moreover, results pointed to a reduction in 15NH3 uptake at
higher dose of nitrogen addition, which was attributed to pos-
sible attenuation by surface nitrifying bacteria (ref. chapter 6),
increasing temporal storage of NH3 or reemission of NH3. In
the manipulation experiments carried out at Howland Forest

(ref. chapter 2) differences were observed between species in
terms of nitrogen uptake in the subplots where labeled 15NH4

+

and 15NO3
- were sprayed over tree canopies. We already men-

tioned that contrary to the expectation, retention of the applied
nitrogen was observed in branches and bark (particularly in
the case of hemlock) rather than foliage. However, when
looking at the difference between 15N values measured in
foliage of trees treated with trace amounts of 15N-NH4

+ vs.
15N-NO3

-, results suggested a preferential uptake of 15NO3
-

compared 15NH4
+ in the case of hemlock, red spruce, and red

maple, whereas the opposite was found for white cedar and
white pine. In a manipulation experiment where hybrid poplar
seedlings were exposed to NO2 fumigation, Siegwolf et al.
[148] demonstrated the occurrence of foliar nitrogen uptake
and assimilation, the latter confirmed also by an increase in
nitrate reductase activity. Similar results were also reported in
a subtropical forest in Shimentai National Nature Reserve
(China, ref. Table 1), where 2 years of exposure to nitrogen
misting over tree canopies resulted in an increase in leaf nitro-
gen and enzymes associated with leaf nitrogen metabolism
(i.e., nitrate and nitrite reductase), though the latter result
was not consistent across the three dominant species [6,
149••].

Taken all together, results from these studies suggest
that there are differences among species in the primary
form of inorganic nitrogen taken up, and that nitrogen
uptake could be controlled by the level of nitrogen depo-
sition and by tree age. In this latter case it should be
mentioned that only in the case of Howland and
Shimentai forests adult trees were considered, whereas
most studies focus on saplings [120, 126, 139••], often
considering only a single pulse 15N tracer treatment
[141]. The primary study of saplings is not surprising,
given that manipulation experiments on small plants are
easier to manage and responses to experimental treatment
can be detected more quickly than under gradual increase
in ambient nitrogen deposition with taller statured mature
trees. However, as already highlighted, while manipula-
tion experiments have greatly contributed to our under-
standing of important processes, such as foliar nitrogen
uptake, their results can be biased by the short duration
of the experiment and results may be difficult to general-
ize beyond sites or species considered.

Natural abundance δ15N values in foliage and tree-
rings has been used extensively as a tool to assess the
assimilation by tree canopies of atmospheric nitrogen,
particularly near emission sources such as motorways or
industrial activity [150–153]. For example, Ammann et al.
[150] observed an increase in δ15N values measured in
spruce needles and soil moving from trees near the high-
way (exposed to pollution) to those 1 km away. The au-
thors attributed this variation in δ15N values to the
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decreasing influence of NO2 input from traffic. The limi-
tation of this approach, however, is that the isotopic sig-
nature of the atmospheric nitrogen sources is not always
known, or it relies on point measurements (both in space
and time), which makes difficult the interpretation of the
long-term isotopic signals detected in plants (see [153,
154] for more details). In situ assessment of foliar nitro-
gen uptake, particularly in the oxidized form, has recently
been assessed using dual (δ15N and δ18O, [155] for a
review) or triple (δ15N, δ18O and δ17O) isotope ap-
proaches. The simultaneous measurement of nitrogen
and oxygen isotopes of plant tissue NO3

- has been suc-
cessfully used to demonstrate foliar NO3

- uptake in
mosses [156] and herbaceous species [140••] and to as-
sess plant NO3

- sources and uptake for dominant plant
species in Alaskan tundra ecosystems [157••]. Bourgeois
et al. [140••] demonstrated not only the foliar uptake of
NO3

- in subalpine grassland species, but also seasonal
shifts in NO3

- uptake; the plants relied on roots for nitro-
gen uptake in spring after snowmelt, and on leaves in
summer, likely due to higher competition with soil mi-
crobes. More studies are needed to confirm whether these
seasonal dynamics also occurs with trees.

The canopy nitrogen uptake pathway is included in
mechanistic models, such as the canopy budget model
[52], which is used to estimate dry deposition. This model
is based on balancing ion exchange between canopies and
the solutions passing through them, so that the total de-
position beneath tree canopies (including throughfall, TF
and stemflow, SF) is given by: TF + SF = TD + CE = PD +
DD + CE, where TD and CE are total atmospheric depo-
sition (e.g., open field wet, PD + dry, DD, depositions)
and canopy exchange, respectively. The canopy exchange
(CE) in the interface between wet atmospheric deposition
and tree canopy surface is the main process governing the
uptake and release of the major ions. For a given ion, a
positive CE value indicates that tree canopies contribute
to TF +SF flux via leaching, while a negative CE value is
associated with canopy uptake. For inorganic nitrogen, the
assumption is that uptake of NH4

+ and/or H+ by tree can-
opies goes along with the release of base cations, such as
K+, Ca2+, and Mg2+. For NO3

- it is often assumed that
neither canopy leaching nor uptake occurs ([52] and ref-
erences therein), though recent developments of the can-
opy budget model include canopy NO3

- uptake as a pro-
portion of NH4

+ uptake [158]. It should be pointed out,
however, that the negative CE for NH4

+ or NO3
- might

indicate retention rather than uptake, as we do not know
whether nitrogen is actually assimilated by foliage.
Moreover, the model does not account for possible nitro-
gen transformations occurring in tree canopies by

epiphytes and/or microbes associated with foliage (as we
will see in the next chapter). Nevertheless, the approach
certainly contributes to improving quantification of total
nitrogen deposition reaching forest ecosystems, when di-
rect measurements of dry deposition are not available
[48•].

Biological Transformation in Tree Canopies:
Hints From Stable Isotopes of Nitrogen
and Oxygen

Tree canopies and epiphytes they host contribute signifi-
cantly to altering the nitrogen fluxes and type of nitrogen
compounds reaching the soil. Nitrogen retention and up-
take are the main mechanisms proposed to explain differ-
ences in nitrogen fluxes between bulk deposition and
throughfall (e.g., canopy budget model). Yet, looking at
differences between fluxes together with changes in iso-
topic composition of different nitrogen forms that enters
canopies from the atmosphere and those that pass to the
forest floor provide evidence of within-canopy biological
transformations. The measure of natural abundance stable
isotopes of nitrogen (15N/14N) and oxygen (17O/16O,
18O/16O) in forest water has proven to be a powerful tool
to characterize the sources of atmospheric nitrogen (
[159–161], and [162••] for a review) and to trace its trans-
formations when interacting with tree canopies [111,
163–166••]. We have a comprehensive theoretical under-
standing of isotopic fractionation during soil biogeochem-
ical processes and nitrogen transfer to plant [167]. Yet,
discriminating between nitrogen compounds derived from
atmospheric transformations occurring within tree cano-
pies and how they affect the isotopic signatures of N
compounds produced (e.g., those taken up and/or leached)
are less understood.

For instance, NH4
+ and NO3

- derived from dry nitrogen
deposition is in general more enriched in 15N (that is more
positive δ15N values) compared to those measured in bulk
precipitation [167]. However, a decrease in δ15N in NO3

- from
bulk deposition to throughfall was reported in a spruce forest
in Germany [168], a montane rainforest in Ecuador [169], and
Scots pine in the UK [165••], indicating isotopic fractionation
during nitrification of NH4

+ to NO3
- in the canopy foliage.

Indeed, nitrification of NH4
+ leads to the production of 15N-

depleted NO3
- and leaves behind more 15N enriched NH4

+

[167, 170].
More direct evidence of nitrification occurring in tree

canopies could derive from the dual isotope approach,
which includes measurement of both δ15N and δ18O in
NO3

-. This approach has been extensively applied to
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investigate soil biological transformations and to assess
the nitrogen saturation status of forested catchments by
looking at the changes in δ18O of NO3

- in bulk deposition
and streamwater [160, 171–173••]. A large difference be-
tween the isotopic signature of the atmospherically-
derived NO3

- (20 to 80 ‰ – ref. Appendix 1) and the
terrestrial NO3

- (particularly biological transformation,
such as nitrification) (−10 to +10 ‰, ref. [160] for a
review) can help distinguish between the two sources.
For instance, based on this approach, a number of studies
in the northeastern US [111, 171] found that NO3

- in
streamwater comes primarily from nitrification within
the catchment rather than directly from atmospheric depo-
sition. Yet, only a limited number of studies used the dual
isotope approach to assess the occurrence of canopy nitri-
fication ( [111, 165••, 174••]. Increases in NO3

- concen-
trations and reduction in both δ18O and δ15N in NO3

- in
f i l te red throughfal l water col lec ted underneath
Cryptomeria japonica was attributed to nitrification in
tree canopies [174••]. Similar results were reported by
Guerrieri et al. [165••] in a beech and Scots pine forests
exposed to >10 kg N ha-1 yr-1 in the UK, which was
further supported by the isotopic mass balance approach
combining the δ18O of the two different sources—
atmosphere (wet atmospheric NO3

-) and nitrification
(NO3

- washed off tree canopies and collected in
throughfall water). There are, however, limitations of the
dual isotope approach (at least when applied to NO3

- in
the soil). These include i) the fact that there is overlap in
isotopic composition among nitrate sources (e.g., nitrifi-
cation and atmospheric deposition) and ii) that the isoto-
pic signature of NO3

- is significantly altered by isotopic
fractionation during denitrification—a process that leads
to a high enrichment in 15N-NO3

- left behind during the
biological process and then available for plant uptake (
[160] and references therein, [167], and the earlier study
by Mariotti [175]). Moreover, there are uncertainties in
the estimates of atmospheric vs. biological NO3

- fractions
as obtained by the isotopic mass balance approach, mostly
associated with the δ18O produced during nitrification (we
refer readers to the discussion in Riha et al. [176] and
Guerrieri et al. [165••] for more details).

A more robust approach to partitioning sources of NO3
-

is based on measurements of both δ17O and δ18O in NO3
-,

which allows researchers to distinguish between atmo-
spheric and microbial (through nitrification) sources of
NO3

-. The approach was proposed by Michalski et al.
[177, 178••] and since then has been used in a number of
studies assessing the source of NO3

- in soil solution in
forests [179] or streamwater at the catchment level [176,
180, 181••]. Briefly, mass-dependent isotope fractionation

leads to a consistent relationship between δ17O and δ18O,
i.e., : δ17O ≈ 0.52 × δ18O, which follows the so-called mass
dependent fractionation line. However, mass independent
fractionation occurs during the formation of ozone and
leads to excess in 17O, which is then reflected in the δ17O
of the atmospheric NO3

-. This excess 17O is quantified by
Δ17O = δ17O − 0.52 × δ18O [177]. This means that in the
case of O3-derived NO3

-, δ17O values tends to deviate from
the mass dependent fractionation line, resulting in Δ17O >
0, while mass-dependent nitrification produces NO3

- with
Δ17O = 0 [178]. Combining this information with a mass
balance approach makes it possible to calculate the frac-
tions of NO3

- coming from the two different sources, i.e.,
atmospheric vs. terrestrial sources (particularly nitrification
of either NH4

+ from wet deposition, soil NH4
+pool, and/or

fertilizer applications [182, 183].
While the triple isotope approach (δ15N, δ17O and

δ18O in NO3
-) has been mostly applied to assess the con-

tribution of atmospheric vs. biological sources for NO3
- in

streamwater to elucidate nitrogen loss pathways associat-
ed with leaching [176, 183], very few studies have ap-
plied it to investigate the occurrence of canopy nitrogen
transformations. Guerrieri et al. [165••] measured multiple
isotopes in bulk precipitation and throughfall water (i.e.,
δ15N in NH4

+ and δ15N, δ18O and Δ17O in NO3
-) collect-

ed at two Scots pine and two beech forests at contrasting
levels of nitrogen deposition. Using this approach, the
authors found that forests under high nitrogen deposition
have a significant fraction of the nitrate in throughfall
derived from nitrification in tree canopies (higher for
beech (59%) compared to Scots pine (17%)), and less
from atmospheric nitrogen deposition. Nitrification in tree
canopies was also detected in a Mediterranean holm-oak
forest, though these exposed to lower nitrogen deposition
compared to the sites in the UK [166••]. If stable isotopes
(particularly Δ17O in NO3

-) provide indications on bio-
logical transformations occurring in tree canopies, can we
identify microbes responsible for them?

Phyllosphere Epiphytes and Their Role
in Processing Atmospheric Nitrogen
Within Canopies

Forest canopies represent an important habitat (i.e.,
phyllosphere) for epiphytes and endophytes, which include
lichens ( [184–186] for a review] and microbes, i.e., archaea,
bacteria, and fungi [187–190] for a review – Fig. 4].

The total extent of global phyllosphere habitat is
thought to represent 6.4 x 108 km2, which could harbor
1026 bacterial cells [190–192]. A strong association
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between leaf traits (such leaf mass per area, leaf thickness,
leaf area and leaf nutrient, and pigments associated to
photosynthesis) and bacterial [189••] and fungi [193••]
phyllosphere communities was reported. Despite epiphyt-
ic microbes representing an important component of tree
canopies [194, 195••], attention has been mostly directed
to their role as pathogens, while we still do not know
whether and how they affect nutrient cycling [187, 190].
Moreover, earlier studies were mostly based on the use of
laboratory cultures, making difficult to actually character-
ize which microbial communities live in forest canopies.
The advent of high throughput sequencing and recent
omic techniques offer a great opportunity to take a snap-
shot of the microbes living in the phyllosphere to charac-
terize community composition and to explore the func-
tional role of taxa within these communities.

Several studies have provided information on species
composition of microbial communities in the phyllosphere
(cf., [188, 189••, 196]). Leaves often share a similar bac-
terial composition regardless of the position within the
canopy [166••, 196], while leaf age and phenology (i.e.,
leaf development) and climate affect composition and di-
versity of the bacterial communities they host, though
most results refer to the canopy of herbaceous species.
More diverse bacterial communities in younger compared
with older leaves were observed ( [197, 198] on crop
plants; [199••] in urban forests), likely associated with
the decrease in nutrient availability from the host plant.
Experimental increase in temperature and atmospheric
CO2 enhanced richness and diversity of bacteria in
phyllosphere of Galium alba [200] and ‘Koshihikari’ rice
plants [201]. Similar results were also observed in the
case of phyllosphere of Quercus ilex trees subjected to
drought [202].

Compared to microbial communities living in the soil,
those in the phyllosphere experience more rapid (from
diurnal to seasonal) changes in environmental conditions,
including ultraviolet radiation, relative humidity, temper-
ature, carbon, and nutrients availability [195••, 203•].
While effects of biotic and abiotic stress on the microbial
communities have been discussed [187, 194], we are not
aware of any investigations conducted to determine
whether and how changes in nitrogen deposition affect
abundance of microbial taxa associated with nitrogen
transformations.

A proteomic approach allows researchers to detect en-
zymatic functions of bacteria in the phyllosphere, such as
enzymes able to convert methanol to obtain carbon and
assimilate NH4

+ via glutamine synthetase [188, 204••].
Biological nitrogen fixation (the process that converts at-
mospheric N2 to reactive nitrogen in the form of NH4

+) is
mostly attributed to symbiotic nitrogen fixers found in
root nodules. Yet, there is mounting evidence of the oc-
currence of nitrogen fixation in tree canopies of different
forest ecosystems, mediated by free-living archaea and
bacteria nitrogen fixers [205, 206] for a review] that are
associated with foliage or epiphytes (e.g., [207–210••] in
tropical forests, [211] in a Mediterranean forest, [212••,
213] in a temperate forests). Indeed, nitrogen fixation by
microbes associated with epiphytes has been shown to be
particularly relevant for old growth forests, characterized
by the significant abundance of epiphytes in their canopy,
such as in coastal temperate rain forests in British
Columbia [214]. A recent study in the Niwot Ridge in
the US [212••] showed N2-fixing acetic acid bacteria liv-
ing as endophytes on limber pine needles. Moreover – and
most importantly - the authors demonstrated that the fixed
nitrogen diffused inside the needles and entered plant me-
tabolism, as indicated by the increase in nitrogenase

A) B) C)

Fig. 4. Example of life diversity in tree canopies. View of the diversity of
epiphytes within the canopy of Ficus tuerckheimii as reported in Gotsh
et al. 2015 (panel A). Phyllosphere microbes in the lower surface of a
Quercus robur and a Fagus sylvatica leaves (panel B and C,

respectively). Image in the panel B was taken from Vacher et al.
(2016). Image in the panel C was obtained by epifluorescence
microscopy on DAPI-stained cells, showing bacteria (green dots) on
leaf surface, along the main veins (copyright Rossella Guerrieri)
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activity. Recent studies showed that almost 50% of the
nitrogen derived from nitrogen fixation was carried out
above- ground on tree trunks and within tree canopies of
tropical forests in French Guiana [209••] and in Brazil
[210••]. Interestingly, canopy nitrogen fixation seems to
increase with foliar phosphorous [208••, 210••] and is not
limited by drought conditions [210••, 211].

Nitrogen fixation, however, may not be the only biological
transformation occurring in tree canopies. A number of stud-
ies have provided evidence of nitrifying microbes harbored in
the phyllosphere. Indeed, nitrifying bacteria were found with-
in the apoplast of needles in a spruce forest in Germany sub-
jected to high nitrogen deposition [215, 216], or archeal
amoAOA genes related to nitrification were found on foliar
in a Cryptomeria japonica forest in Japan [174••]. Both ar-
chaeal and bacterial amoA genes were found on the
phyllopshere ofQuercus ilex in a Mediterranean forest, whose
activity in processing atmospheric nitrogen deposition
through nitrification within tree canopies was assessed by
using Δ17O in bulk deposition and throughfall, as described
in the previous chapter [166••]. The presence of NO2-N and
organic N-using fungi were observed on needles collected at
top and intermediate branches of black spruce trees in Canada
[116], which contributed also to significantly changing nitro-
gen fluxes at various canopy heights.

This information provides important evidence, yet site-spe-
cific, for the presence and activity of nitrogen-related mi-
crobes in the phyllosphere, but additional studies—either
along climate and nitrogen deposition gradients or for differ-
ent forest ecosystem types—are needed to better quantify
those processes at larger scales. Moreover, extending the char-
acterization of microbial communities to bulk deposition,
throughfall and stemflow water other than the phyllosphere,
would provide a deeper understanding of ecosystem nitrogen
dynamics associated with microbial dispersion (e.g., in rela-
tion to the origin of air masses, see [217•]), interception by tree
canopies and their release during a rainy event [218••], thus,
contributing to enriching themicrobial communities in the soil
[133••]. Intrusion of dust from the Sahara Desert (i.e. air
masses from northern Africa) has been shown to enrich the
air mass with nutrients and allochthonous microbial compo-
nents [208••], and changes both composition and diversity of
bacterial communities [166••, 217•, 219]. Bittar et al. [133••]
estimated a flux of 1.5 × 1016 microbial cells ha−1 year−1 to the
soil from throughfall in a subtropical oak-cedar forest in
Southeastern USA, which corresponded to a contribution of
organic carbon from the phyllosphere to the soil of 0.6–2.3 kg
ha−1 year−1. In a study carried out on a holm oak forest in
Spain precipitation water and the phyllosphere shared some
of the same bacterial taxa, which were not found in throughfall
water, suggesting that tree canopies may act as a filter not only

for atmospheric chemical compounds, but also for microbes
carried by precipitation [166••].

The canopy organic mat, which includes tree canopies and
associated epiphytes, invertebrates, and microbes, has been
acknowledged as ‘nutrient capital’ [220], particularly in trop-
ical moist forest ecosystems. Indeed, dead canopy organic
matter undergoes decomposition processes, which lead to
the formation of the so-called ‘crown humus’ [221], which
is commonly referred to as ‘arboreal soil’ [222] or ‘canopy
soil’ [220]. Canopy soil has been less studied compared to soil
in the forest floor, given the challenges associated with the
sampling, though several studies have pointed to its ecological
relevance [220, 222, 223••]. Indeed, canopy soil is a reposito-
ry of nutrients (including nitrogen) epiphytes and other living
organisms rely on, which either derives from decomposition
and mineralization of the dead organic matter or retention of
atmospheric deposition [222, 224, 225]. Mineralization and
nitrification in canopy soils of a tropical montane forest in
Ecuador were limited by nitrogen availability, suggesting that
increases in nitrogen deposition can enhance nutrient cycling
occurring in tree canopies [220]. Last, but not least, soils in
tree canopies and in the forest floor are interconnected thanks
to leaching of nutrients through throughfall and stemflow
[223••, 226], but also via invertebrate species [227–229]. As
suggested by Van Stan et al. [230••], throughfall can be seen
like a ‘hydrological highway’ connecting the atmosphere to
the soil, thus, allowing inorganic and organic nitrogen and
biological materials (derived from plants, epiphytes and/or
microbes) to be transferred to the soil.

Conclusions

Back in 1971, Hill [231] stated “It has often been observed
that we know much more about the sources, movement, and
effects of air pollutants than we do about their fate”. Since
then, significant progress have been made from different re-
search communities to elucidate the fate of air pollutants (in-
cluding reactive nitrogen) and the crucial role that tree cano-
pies play in altering nitrogen inputs from the atmosphere by
retaining, assimilating, and transforming nitrogen deposition
before it reaches the soil. The complexity of living organisms
and the role they play in nutrient cycling has been well studied
in forest soils [232]. We have just started to unveil the high
diversity in microbial life in tree canopies and we are still far
from understanding their roles in nitrogen cycling. How to
move forward? The following represents research areas we
suggest should be prioritized for next steps in this field, en-
couraging multidisciplinary approaches across different re-
search communities interested in – but not limited to – nitro-
gen cycling in forest ecosystems.
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& We suggest that researchers develop improved approaches
to obtain more robust estimates of total nitrogen deposi-
tion. Satellite observations and modeling approaches play
a crucial role in increasing the spatial coverage of atmo-
spheric reactive nitrogen concentrations and deposition
data, but there are several critical points that need to be
solved to improve estimates of both wet and dry deposi-
tion, which are both needed in order to estimate total de-
position (ref. [65•, 233] for an overview). For instance,
satellite-based estimates of NH3 deposition do not account
for bi-directional fluxes during the interaction between the
biosphere and atmosphere [234, 235]. Ground-based ob-
servations cannot be replaced entirely by remote sensing
data since canopy nitrogen processes (and their contribu-
tion to the ecosystem nitrogen cycling) have to be quanti-
fied. Moreover, weighting of the land-use classes within
grid cell used for processing satellite data may not be
representative of the vegetation type in the site of interest,
thus, leading to uncertainties in the deposition estimates
[56, 233].

& It is important to increase the monitoring of atmospher-
ic deposition in places that are under-represented in our
understanding of atmospheric nitrogen deposition, such
as in tropical regions or urban environments (the latter
being hotspots of atmospheric deposition [36•, 74•]).
We recommend greater use of ion exchange resin col-
lectors [37, 38]. Establishing an intensive monitoring
network in the tropics (and other under-represented re-
gion in the world) is paramount to achieving a better
understanding of the ecological consequences of in-
creasing nitrogen deposition on nitrogen cycling and
trade-offs between canopy and soil processes, as well
as forest carbon and water fluxes. Moreover, including
stable isotope analyses, particularly the use of Δ17O, in
addition to quantification of nitrogen fluxes would
greatly further our understanding of the impacts of at-
mospheric NO3

- deposition on forest ecosystems and
elucidating processes occurring during atmospheric-
forest canopy interactions.

& Though more challenging from logistic and economic
standpoints, we need to maintain current and establish
more canopy nitrogen manipulation experiments in differ-
ent forest ecosystems, particularly those where rates of
nitrogen deposition are predicted to increase over the next
several decades. Next-generation manipulation experi-
ments should also simulate the increase in dry nitrogen
deposition, particularly ammonia [236] or a reduction of
nitrate deposition (i.e., particularly wet deposition), and
explore the interactions between changes in nitrogen de-
position and extreme climate events. Moreover, in addi-
tion to the response of trees, new experiments should in-
clude measurements of microbes in both the phyllosphere
and rhizosphere.

& We recommend greater quantification of the relevance of
canopy nitrogen uptake and canopy production—via mi-
crobial nitrification and fixation or biological activity by
insects (e.g., insect frass) and trees themselves (i.e., e.g.,
pollen production, plant debris)—to better understand
whole ecosystem nitrogen cycling. Recent studies
highlighted the substantial contribution of asymbiotic ni-
trogen fixation in the phyllosphere [210••]. However, it
remains to be estimated how much of this process contrib-
utes to ecosystem-scale biological nitrogen fixation, par-
ticularly in relation to increases in nitrogen inputs from
anthropogenic activities, which could affect also tropical
regions—where most of the studies on nitrogen fixation
have been conducted so far [237]. We are far from under-
standing dynamics of nitrification in tree canopies—its
magnitude, how it is affected by climate and nitrogen de-
position and in which proportion it contributes to increase
NO3

- concentrations in soil solution. Providing robust es-
timates of canopy nitrogen uptake (and assimilation) and
accounting for biological transformations within tree can-
opies can greatly improve estimates of total nitrogen de-
position (e.g., through canopy budget model) and also
improve the contribution of nitrogen input (from biologi-
cal fixation and anthropogenic nitrogen deposition) to for-
est carbon sequestration, as represented in process-based
[238] and terrestrial-biosphere models [239].

& We need to enhance our understanding of tree canopy-soil
interactions. Tree canopies and soil are more interconnected
than we think, as what is happening in the canopy (in terms
of atmospheric nitrogen retention and uptake by foliage,
branches and life they harbor and biological transforma-
tions by microbes in the phyllosphere) has the potential to
affect soil microbial communities (via throughfall water
‘highway’ [230••]), and hence biogeochemical processes
throughout a forest ecosystem [240••]. The advent of
next-generation sequencing technologies [241] has in-
creased our ability to study microbial communities
(metagenomic) and their function (metatranscriptomic and
metaproteomic) directly in the environment they live. A
great example is the study by Delgado-Baquerizo et al.
[232] mapping soil bacterial communities for different veg-
etation systems worldwide using metagenomic analyses.
This recent development of new techniques is an exciting
opportunity for forest ecologists to go beyond the greening
of the canopies and their role in regulating carbon and water
exchanges with the atmosphere and to assess their contri-
bution to nutrient cycling. Thismeans taking amore holistic
approach, which explores i) the important contribution of
forest water as input not only for nutrients, but also mi-
crobes; ii) the metabolic and functional role of microbes
in the phyllosphere and their associations with their host
trees. Mapping phyllosphere and forest water microbial
communities, moreover, could represent an important
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addition to the very challenging earth microbiome project,
the global collaborative effort to characterize microbial life
on Earth (https://www.earthmicrobiome.org/publications/).
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Appendix

Stable isotope terminology and measurements

Natural abundance of stable isotope composition of plant or
nitrogen compounds in water samples are expressed as a ratio

relative to an internationally accepted reference standard
(Table 2), which is refered to as stable isotope composition
(delta notation, δ):

δxxE ¼ 1000� Rsample

Rstandard
−1

� �
ð1Þ

where E is the element of interest and “xx” is the mass of
the rarest (and heavier) isotope in the abundance ratio (e.g.,
15N, 18O or 17O in this review) and R is the abundance ratio of
the two isotopes of interest (e.g., 15N/14N, 18O/16O or 17O/16O
for this review). The isotope composition of a given sample is
indicated as δ15N, δ18O or δ17O, and it can be obtained
through mass spectrometer analyses – albeit sample prepara-
tion, which can differ depending on the sample type and the
isotopic composition of interest. Note that the absolute R of
the sample is very small (a few part per thousand). For this
reason the isotopic composition is expressed in ‘per mill’ no-
tation (‰) – which, hence, is not a unit.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes weremade. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Table 2 The element, their
isotopes and percent abundance,
isotope abundance measured and
international standard considered.
We also mention the sample types
where used in the examples
provided in chapters 4 and 5 of
the review and references the
readers can refer to for more
details regarding methdological
aspects (sample preparation and
measurements, which is particular
relevant in the case of water
samples).

Element Isotope Percent
abundance

Isotope
abundance

Standard Sample Reference

N 14N 99.63 15N/14N N2-atm Foliar and tree ring samples,
atmospheric nitrogen
deposition

[105,
160,
162••,
164]

15N 0.3663

O 16O 99.759 18O/16O
17O/16O

V-SMOW Foliar, nitrogen compounds in
bulk, throughfall deposition
and streamwater

[160,
162••,
177,
178••]

17O 0.037
18O 0.204

Note. N2-atm and V-SMOW indicates atmospheric N2 and Vienna-SMOW (the latter available from the IAEA.
Table was modified from Dawson T.E., Mambelli S., Plamboeck A.H., Templer P.H., Tu K.P. Stable isotopes in
plant ecology. Annu. Rev. Ecol. Syst. 2002; 33:507–59.
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