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Abstract
Purpose of the Review The concept of tree-related microhabitats (TreMs) is an approach to assess and manage multi-taxon
species richness in forest ecosystems. Owing to their provision of special habitat features, TreMs are of special interest as a
surrogate biodiversity indicator. In particular, in retention forestry, TreMs have gained attention over the past decade as a
selection criterion for retained structural elements such as habitat trees. This review seeks to (a) address the suitability of
TreMs as biodiversity indicator in the context of retention forestry, (b) summarize drivers of TreM occurrence and the status
quo of the implementation of TreM-based retention concepts in forest management, and (c) discuss current and future challenges
to the use of TreMs as biodiversity indicator.
Recent Findings The TreM concept originated in Europe where it is now increasingly implemented. Most studies of the quantity,
quality, and diversity of TreMs are focused on tree species from this region, although it is increasingly applied in other contexts.
In addition to tree species, tree dimensions and live status have been identified as the main drivers of TreM occurrence. Onemajor
remaining research challenge is to verify relationships between the occurrence and abundance of forest-dwelling species from
different taxonomic groups and TreMs to improve the evidence basis of this concept and thus increase its integration in forest
conservation approaches.
Summary TreMs are not the “silver bullet” indicator to quantify biodiversity of forest dwelling species, but they provide an
important tool for forest managers to guide the selection of habitat trees for the conservation of the associated biodiversity.

Keywords Retention forestry . Habitat trees . Sustainability indicator . Drivers of tree-relatedmicrohabitats

Introduction

Initial studies of tree-related microhabitats (TreMs) were con-
ducted with individual typologies and definitions to capture
the variation of microhabitats and to classify them according

to different habitat functions [1–3]. Nowadays, the most com-
mon definition for a tree-related microhabitat (TreM) is “a
distinct, well delineated structure occurring on living or stand-
ing dead trees that constitutes a particular and essential sub-
strate or life site for species or species communities during at
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least a part of their life cycle to develop, feed, shelter or breed”
[4••]. This definition was established during the course of an
expert working group led by the European Forest Institute
(EFI), which resulted in first recommendations for the appli-
cation of a standardized TreM concept [5]. The hierarchical
TreM typology for temperate and Mediterranean forests that
was published by Larrieu et al. [4••] distinguishes 15 groups
of TreMs in the following seven forms:

& Cavities: woodpecker breeding cavities, rot holes, concav-
ities, insect galleries, and bore holes

& Tree injuries and exposed wood: exposed sapwood and/or
exposed heartwood;

& Crown deadwood in different forms
& Excrescences: twig tangles (witches broom), cankers, and

burrs
& Fruiting bodies of saproxylic fungi and slime molds: pe-

rennial and ephemeral fungi fruiting bodies
& Epiphytic, epixylic, and parasitic structures: epiphytic

crypto- and phanerogams, nests of vertebrates and inver-
tebrates, micro-soil (i.e. resulting from decay of lichens,
mosses or leaf litter in either thick, old bark, or on hori-
zontal limbs and forks for instance)

& Fresh exudates such as sap run and heavy resinosis

As reflected in the definition, the underlying concept is that
TreMs represent a habitat component of different forest-
dwelling species and thus they may indicate their potential
presence. A variety of species from different taxonomic
groups have been linked to the different TreMs used in the
hierarchical typology. These include invertebrates such as in-
sects, arachnids, and gastropods as well as vertebrates such as
birds, rodents, bats, and carnivores [4••].

Most information on TreMs stems from literature that orig-
inated in the context of retention forestry [6, 7]. Retention
forestry belongs to a set of integrative biodiversity conserva-
tion strategies [8] and focuses on the provisioning of particu-
lar, biodiversity-relevant, often old-growth structures that are
otherwise lacking or reduced in forests managed for wood
production [9, 10]. These structures are supposed to provide
a life-boating function for the associated species or act as
stepping stones between larger retention patches, forest re-
serves, or primary forest remnants and thus increase the con-
nectivity in managed forests [11, 12] and even the full habitat
for a viable population for very specific taxonomic groups.
Apart from coarse woody debris, living and standing dead
trees have been central to most of these retention concepts
within Europe and elsewhere [13, 14]. These elements are
mostly referred to as habitat trees (or veteran, senescent, or
wildlife trees). Habitat trees are broadly defined as large, old,
living, or dead microhabitat-bearing trees that are or could
become more important to biodiversity than the average tree
in a managed forest [15]. The idea of habitat tree conservation

has a long tradition in temperate European forests [16], but in
earlier times, it was not as systematically applied as is the case
now under integrative approaches in forest management such
as retention forestry [13••]. TreMs are of special interest in
continuous-cover forestry, where they are used as criteria to
select habitat trees for retention [13, 17].While TreMs have so
far been used mostly in this context, they can equally well be
used in other types of forest management as well as the man-
agement of urban parks and street trees [18]. In addition, they
are useful for communication of biodiversity focused forest
management approaches [19]. Against this background, this
review seeks to:

& Address the function of TreMs as biodiversity indicators
in the context of integrative forest management ap-
proaches such as retention forestry

& Synthesize drivers of TreM occurrence and the status quo of
implementations of TreM concepts in forest management

& Discuss current and future challenges of TreMs as biodi-
versity indicators

The Potential of TreMs as Biodiversity
Indicators

There is a large and growing body of literature on different
types of indicators of forest biodiversity [20–26]. Various at-
tempts have been made to develop indicators of forest biodi-
versity for large gradients of spatial and temporal scales. These
range from the use of single keystone or flagship species to
faunal [27] or structural surrogates (e.g., deadwood [22, 28]).
An indicator is a measure of a quantity or a phenomenon that is
easier to assess than its target (viz., the indicandum). The use of
an indicator should also bring more information than the raw
measure of the indicandum only. The validation of biodiversity
(or environmental) indicators in ecological studies strongly fo-
cuses on the correlation between the indicator and its
indicandum: for a given indicator to be validated, the correla-
tion with its indicandum should be strong and significant [29].
However, the thresholds for a correlation to be considered
“strong” for this purpose are rarely defined, while statistical
significance mostly depends on the sample size analyzed.
Therefore, it seems that this validation process should rely on
a wider set of criteria, as commonly applied in political and
human sciences [30]. From the broader point of view of social
sciences, and particularly of political sciences, indicators are
frontier objects that allow communication between science,
policy, and society, and the assessment of their usefulness
should be based onmanymore criteria than only the correlation
with the indicandum [31•]. While correlation and causality rely
on ecological theory, mostly on different conceptual ap-
proaches of the relationship between species and their habitat
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(e.g., niche theory, habitat amount and heterogeneity hypothe-
ses [32]), broader views of indicator usefulness include social
acceptance, policy relevance, and comprehensibility (see
Table 1 in [30] for an overview).

The Organization for Economic Co-operation and
Development (OECD), which has a long history of develop-
ing and using environmental indicators for reporting purposes,
suggests that “indicators should be assessed/evaluated accord-
ing to their (i) policy relevance, (ii) analytical soundness, and
(iii) measurability. The […] ideal indicator for measuring
progress should be […] policy-relevant and meaningful, bio-
diversity relevant, scientifically sound, accepted by a broad
public, lend itself to affordable monitoring and modelling,
and be sensitive enough to detect changes in systems within
timeframes and on scales relevant to decision-making” [31•].
Indicators are similarly defined in the criteria and indicator
processes that have been initiated to support sustainable forest
management around the globe since the United Nations
Conference on Environment and Development (UNCED) of
Rio 1992 (e.g. [33]). In this regard, one might ask whether
TreMs, when used as biodiversity indicator, meet these
criteria proposed by the OECD [31•]. Among others, the
Pressure-State-Response (PSR) framework used by the
OECD has received some attention in forest and biodiversity
science to address various types of questions [21, 34, 35]. The
PSR framework has been developed to provide information to
respective users in a causal way by differentiating between
causes (pressure) of changes in biodiversity, effects on biodi-
versity (state) caused by the specific pressure, and societal
responses to assess and remedy the human impacts on nature
[35]. As mentioned above, there are other frameworks than the
PSR that use biodiversity indicators for sustainability assess-
ments. However the PSR framework exemplifies the rele-
vance of TreMs as indicators of the state of forest biodiversity.
In the context of integrative nature conservation practices such
as retention forestry, TreMs could be used as meaningful
structural indicators for the state of biodiversity at the stand
scale. In this context, one major pressure on biodiversity in
forests may be expressed as the proportion of forest biomass
productivity that is appropriated (harvested) for human con-
sumption [36, 37]. The harvesting of forest biomass is associ-
ated with the direct loss of habitats and the removal of energy
and nutrients to develop extensive food chains/networks,
which halts the development of old-growth habitat. Related
to this pressure, TreMs could indicate the state of the diversity
of forest dwelling species by describing the status quo of the
provisioning of suitable habitats in managed and unmanaged
forests [17, 38–40]. TreMs could be used to quantify the bio-
diversity at a structural, indirect level [41, 42]. It has been
shown that TreMs are sensitive to the above pressure with
lower abundance and diversity in managed than in medium-
or long-term unmanaged forests. TreMs could be a useful and
convenient indicator because their assessment, like that of

dead wood, could be readily integrated into many types of
terrestrial forest inventories, ranging in scale from the owner-
ship to the national level (e.g., [28, 43]). For example, in forest
inventories that already quantify the number of habitat trees, it
would be a logical next step to quantify TreMs (e.g., [13••]).
Since there is, owing to the very high costs that would be
involved, no routine inventory of a wide range of forest-
dwelling species across the forest landscape, the indirect indi-
cation of potential habitat could provide this information effi-
ciently across forest types, ownerships, etc. A related societal
response to this pressure and an undesired state in the provi-
sion of habitats could be indicated by the proportion of forest-
land that is in strict reserves or managed with a retention
forestry approach, which is already required in different certi-
fication systems [13, 44]. Retention forestry aiming at main-
taining forest organisms, structures, and connectivity to sup-
port biodiversity and ecosystem functioning beyond harvest-
ing interventions would be closely related to the above pres-
sure and state indicators. Following an adaptive management
concept, TreMs could then offer a way to quantify habitats
provided by retention forestry and thus assess the success of
the retention forestry approach.

In addition to the mentioned PSR framework, in an earlier
meta-analysis on types of biodiversity indicators, TreMs were
classified as “temporal and other structural indicators” which
are especially relevant at the stand scale [20]. Temporal indi-
cators refer to indicators that are able to quantify shifts in the
state of the biodiversity in a specific ecosystem over time.
With regard to international sustainable forest management
processes such as Forest Europe, TreMs could potentially be
used as an indicator for the criterion biodiversity, where cur-
rently “Deadwood” and “Naturalness”, among others, already
serve as quantitative indicators [45]. To be used as biodiver-
sity indicator in these international processes that promote
sustainable forest management, TreMs would have to be rou-
tinely quantified in national forest inventories of the partici-
pating countries.

In contrast to quantifying the occurrence or abundance of
single or multiple species, which are difficult and/or expensive
to assess at the stand scale, TreMs offer an applicable indicator
of biodiversity at the stand scale. In the context of measurabil-
ity, cost is an important property, which is relatively low com-
pared with more labor and time-consuming inventories of a
wide range of different species that are additionally often
bound to specific times (e.g., breeding/non-breeding season)
of the year. This does not necessarily hold true for all species
groups, but certainly regarding the multi-taxon level informa-
tion that TreM inventories provide. TreM inventories can be
carried out throughout every season, although leafless and
snow-free periods are preferred. This could especially be rel-
evant, when TreM inventories are included in already existing
forest inventories. This applicability is an important aspect for
a forest biodiversity indicator. An illustration of the lack of
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Table 1 Examples of the use of tree-related microhabitats (TreMs) as
selection criteria for retention elements in managed forests as stated in
management concepts of publicly owned forests at regional and national

levels in four countries of Central Europe as well as certification schemes
for Germany

1GER = Germany; BB = Federal state (FS) Brandenburg; BW = FS Baden-Württemberg; BA = FS Bavaria, HE = FS Hesse; MV = FS Mecklenburg-
Vorpommern; LS = FS Lower Saxony; NW = FS North Rhine-Westphalia; RP = FS Rhineland-Palatinate; SH = FS Schleswig-Holstein; SL = FS
Saarland; SN = FS Saxony; ST = FS Saxony-Anhalt; TH = FS Thuringia; 2 CH = Switzerland; GR = Canton Graubünden; 3 PEFC = Program for the
Endorsement of Forest Certification Schemes; FSC = Forest stewardship council; 4 AT =Austria; ÖBF =Austrian national forest service; 5 FR = France;
ONF = French national forest service. For specific references to the mentioned guidelines see SI
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measurability of other indicators at the stand scale are certain
insect indicator species, which often have much finer require-
ments on spatial scales [46, 47] compared, for instance, with
indicator species of birds [23] that require usually larger sam-
pling areas. Therefore, inventories of TreMs, and more gener-
ally structural attributes, offer an interesting complementary
alternative.

Determinants of Tree-Related Microhabitat
Occurrence

TreMs, in varying forms and definitions, have been investi-
gated in forests for more than a decade, and we now have an
increasingly sound knowledge basis that can be synthesized
[1, 3, 18, 48]. The underlying importance of analyzing driving
factors of TreM occurrence was pointed out in the definition
by the OECD, which states that indicators should be scientif-
ically sound and sufficiently sensitive to detect changes be-
tween systems at relevant scales [31•]. Therefore, understand-
ing drivers of this potential biodiversity indicator delivers the
basis to assess its usefulness and to identify contexts in which
TreMs could be a valuable tool. The research on TreMs has
had a strong regional focus in Central-Europe and the
Mediterranean, notably the typology of TreMs [1, 3, 17, 39,
48–50]. Therefore, most of the studies are related to TreMs on
tree species that occur in these regions, mostly European
beech (Fagus sylvatica L.), silver fir (Abies alba Mill.),
Norway Spruce (Picea abies L.), as well as different
European oak species (Quercus spp.) [1–3, 17, 49, 51].
There are fewer studies on tree species such as Douglas fir
(Pseudotsuga menziesii (Mirb.) Franco) or Oriental beech
(Fagus orientalis Lipsky (Fo)) from outside Europe [52–56].
All these studies have in common that tree species is a deter-
mining factor of TreM abundance and richness. Commonly
broadleaf trees or forest types that include shares of broad-
leaves provide more TreMs than coniferous ones [17, 49].

A second important determinant of TreM occurrence is tree
dimension. In this regard, diameter at breast height (DBH) has
proven to be a strong and significant driver of TreM
occurrence in all studies that considered this common
mensurational variable [e.g., 15,34,39]. In general, large trees
support a greater abundance and richness of TreMs across all
tree species [51, 52, 57, 58]. It is not fully understood whether
tree species or dimension is more decisive, but both are usually
the two most important drivers of TreM occurrence. It should
be noted that there are, to the best of our knowledge, so far just
one modeling study [59] and one study based on observational
data [60] which have made the effort to analyze the relationship
between tree age and TreMs. Other studies understood tree
dimension as an indirect measure of tree age [17•], although
this relationship between diameter and age can be extremely
variable, in particular in uneven-aged forests (e.g., [61]). Tree

dimension is also related to the crown position class of trees,
typically declining from dominant, to co-dominant, intermedi-
ate, and suppressed trees. This crown position class might have
some effect on TreMs as well, since trees of different crown
classes have undergone divergent developments and are ex-
posed to different processes with relevance to TreM formation;
e.g., wind breakage of large limbs might be greater in trees in
the top canopy layer [62]. There have been only a few studies
that have considered crown class, but it seems that mostly large,
dominant trees in the upper canopy layer provide more TreMs
than suppressed ones [58]. The relatively recent establishment
of the TreM concept as well as the time required for trees to
form TreMs did not allow the establishment of reliable time
series based on longitudinal observations of their development
on the same trees at this stage.

The third major determinant of TreMs is the live status of
trees [49, 51, 58]. In most cases, standing dead trees or snags
provide more TreMs than living trees of comparable dimen-
sions [49, 57]. For instance, the TreM groups of woodpecker
feeding holes as well as saproxylic fungi have been found
more frequently on snags [49, 51].

Lastly, the frequently assessed influence of forest manage-
ment has been considered a crucial determinant for the occur-
rence of TreMs [17, 39, 53, 57]. However, the relationship of
management types and TreM richness is not trivial to scruti-
nize. The management influence varies with the silvicultural
systems applied, as harvesting might on the one side remove
habitat trees and on the other side damage trees and thus trig-
ger the developments of new TreMs such as exposed heart
wood or broken limbs. In central Europe, for instance, contin-
uous cover forestry, and more particularly close-to-nature for-
est management, is often practiced [63, 64]. In this approach a
selection of habitat trees with a focus on small structures such
as TreMs throughout the whole landscape is feasible at small
spatial scales, whereas in even-aged forestry with larger man-
agement units, this is likely more difficult [13, 65]. Owing to
the different retention approaches in forest management, such
as simply maintaining certain basal areas or volumes as prac-
ticed in other parts of the world, for instance, in Canada [53•],
clear patterns of TreMs in response to management are diffi-
cult to establish. In remnants of clearcuts, TreMs were almost
absent, whereas shelterwood treatments maintained TreM
numbers similar to uncut control plots in mixed hardwoods
[53•]. In Europe, in contrast, there were no differences in
TreMs between uneven-aged and even-aged stands of the
same forest type [17•], whereas other factors such as the time
since last harvest and the difference in number of snags be-
tween managed and unmanaged stands were more important
[57]. In addition, there is so far little information from old-
growth or primary forests to facilitate comparisons with
managed forests. However two studies have provided first
reference numbers of TreMs for primary forests of European
beech and Oriental beech [38, 52].
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Implementation of Tree-Related
Microhabitats as Biodiversity Indicators

The relevance of TreMs as biodiversity indicators is
underpinned by the fact that the TreM concept has been widely
adopted in integrative conservation concepts in temperate for-
ests of central Europe. For example, a number of institutions,
federal states, as well as certification schemes (PEFC, FSC) in
Germany, Austria, Switzerland, and France use TreMs as se-
lection criteria for habitat trees (Table 1; [66]), although they
often are referred to with other terms. When compiling infor-
mation for Table 1, we did not attempt to provide a full cover-
age of locally implemented concepts, but included recommen-
dations that were implemented at least at a regional level
(Table 1). In addition to guidelines implemented at regional
levels (e.g., federal states in Germany), national certification
standards suggest the use of TreMs for the selection of retention
elements (Table 1). The integrative conservation concepts listed
here evolved from the need for a systematic and precautionary
consideration of legally protected habitats in forest manage-
ment, which include large vertebrate nests or woodpecker cav-
ities [67, 68]. These concepts might as well include microhab-
itats that are essential for other organisms (mainly invertebrates)
[4••]. Most recommendations are valid for state forests, and in
some cases other public forests, but do not necessarily apply to
private forests. These concepts often focus on TreM groups or
single TreMs as guidance for forest managers to indicate trees
that have a higher than average natural value and may be set-
aside for retention purposes (Table 1). If a certain tree bears a
TreM that is recognized as a (legally) protected microhabitat, it
has to be retained as habitat tree. TreM-bearing trees can be set
aside individually [65] or in the form of small retention patches,
so called habitat tree groups or set-aside islands. Besides wood-
pecker cavities, rot holes, and large vertebrate nests, which are a
mandatory selection criteria in all of the mentioned guidelines,
injuries exposing sap- or heartwood as well as fruiting bodies of
saproxylic fungi are frequently considered as TreMs as well, to
qualify individuals as habitat trees (Table 1). Crown deadwood
and excrescences, such as burrs and canker or exudates, are
rarely listed as criteria for selecting habitat trees. However,
more recently approved or updated management guidelines
consider a broader range or the full spectrum of the current
TreM typology (e.g., in the German state of Baden-
Württemberg or the Swiss canton Graubünden; Table 1). In
addition to the presence of TreMs, trees are commonly selected
for retention based on exceptional dimensions or bizarre shapes
(Table SI 1). Also tree species is often an important selection
criterion when the aim is to conserve rare tree species or those
with high species-specific dependent biodiversity [40]. Most
commonly, the retention concepts are applied in older forest
stands entering the harvesting phase and aim at maintaining
five to ten habitat trees per hectare. Formerly used, partly anec-
dotic, descriptors to identify habitat trees referring to “ancient

trees,” “senescent trees,” or “veteran trees” are becoming more
commonly objectively described with the help of the TreM
typology.

Current and Future Challenges
of Tree-Related Microhabitats as Biodiversity
Indicators

From an ecological point of view of, the validation of TreMs
as biodiversity indicators crucially relies on the improvement
of our understanding of their link with actual species diversity
and abundance. While numerous studies (listed in [4, 69])
have empirically established the dependence of some species
and groups to certain microhabitat types, they usually do so
without a quantification of the link, frequently lacking evi-
dence for the actual strength of the relationship. In addition,
most of the correlations between the occurrence of certain
species, species richness, or diversity andmicrohabitat metrics
recently observed remain relatively noisy and are moderately
associated [41, 42, 48, 70]. Such relationships with overall
richness or specific types of TreMs based on observational
studies at the stand (plot) level have been reported so far for
birds, bats, and to a lesser extent (saproxylic) insects [41, 42].
The noise in these relationships is partially caused by the fact
that forest-dwelling species included do not directly rely on
any of the inventoried TreMs for their habitat requirements or
the habitat range does not match the spatial scale at which
TreMs have been inventoried. For example, some studies have
ignored TreMs on dead wood [17, 52]. This could have a
significant impact on the result as not all species rely exclu-
sively on TreMs borne by living trees and more TreMs occur
on snags compared with living trees [57]. Still, such relatively
low levels of correlation are not uncommon to other popular
structural biodiversity indicators such as deadwood [22].
Other variations in biodiversity that structural indicators can
typically not capture is the spatial and temporal context that
strongly influences species richness of the associated taxa; this
includes site conditions such as climate or distance to source
populations as well as management history [12, 64].

These results of the correlations between TreMs and spe-
cies either concern indices based on microhabitat lists (such as
microhabitat diversity [41••]) or individual microhabitats
(e.g., conks of fungi and cavities [70]), but they all have in
common observational methods at the stand (plot) scale that
do not target specific TreMs. Such methods have the advan-
tage of covering a large range of TreM types and taxonomic
groups and, in the latter case, are reputed to correctly assess
the stand or plot-related richness at community level (e.g.,
window traps for beetles [71], point counts for birds [23]).
However, the cumulative effects of detection errors for both
TreMs [72] and the associated taxonomic groups, and more
generally the difficulties to approximate true abundance
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levels, may partly explain the noise in correlations, next to the
spatial-temporal factors. In addition, sampling species diver-
sity at a plot level may overlook species specific to certain
TreMs, especially smaller invertebrates or rare species [73].
Such sampling methods are also limited for assessing robust
causal and functional links between specific microhabitats and
species richness of the assessed taxonomic groups, but are a
crucial step in the validation of TreMs as an indicator of over-
all species richness.

Some ways to improve TreM inventories have been suggested
[4, 72, 74], for instance conducting inventories with standardized
recording protocols and teams ofmore than one observer, yet their
efficiency has not been tested rigorously. To monitor or prevent
observer bias, repeated measurements or comparative studies of
TreMs with standardized protocols and the same teams would be
necessary [72]. Other approaches have focused on the use of
remote sensing techniques to identify TreMs either at the tree-
level directly [74, 75] or to predict the occurrence of trees bearing
TreMs from stand characteristics [76•] both from terrestrial laser
scanning as well as airborne inventories. However, to detect the
full range of TreMs from these inventories or to predict the loca-
tion of habitat trees accurately for forest management remains a
future challenge.

Similarly, a first step towards the improvement of standardized
sampling of taxonomic groups would be to combine different
sampling methods targeting taxa directly at the microhabitat level
rather than relying on correlational studies. For example, some
studies correlating microhabitat indices with saproxylic beetle di-
versity used only interception traps [71, 77]. A broader view of the
saproxylic insect community as well as better estimates of abun-
dance in direct relation to TreMs could be obtained through the
combined use of different sampling methods such as pitfall traps,
interception traps, and malaise tents at the entrance of cavities, for
instance [e.g., 70]. Another approach would be targeted sampling
of specific species or their DNA in relation in specific types of
TreMs (e.g., [78]). For particular groups of vertebrates, the com-
bination of automatic acoustic methods, camera traps, and classi-
cal point counts may lead to better community estimates [79].
Finally, relatively new approaches involving genetic methods as
environmental DNA metabarcoding and bulk sample
metabarcoding have been shown to provide an overview of spe-
cies using specific TreMs (e.g., [80]).

Another way to improve knowledge on microhabitat-
dwelling species and specifically infer causal (functional) links
would be to build controlled experimental designs involving ar-
tificial microhabitats. Most examples in the literature involve
artificial cavities for birds [81, 82], but also for beetles [83], as
well as other “easily” created microhabitats such as dendrotelms
(water-filled holes [84]). Such experimental approaches provide
a high level of evidence for species-TreM relationships, but their
set-up is limited to TreMs that can be artificially created. In
addition, an experimental approach involving a controlled set
of TreMs is far more difficult than observational studies—if even

possible—to set up, because the way TreMs are created is highly
variable and not necessarily reproducible. In this sense, comple-
mentary approaches using both observational and experimental
methods appear to be most promising. This works is ideally
shared within large, international networks involving forest man-
agers and ecologists working at different scales andwith different
perspectives [85].

Ways to Validate Tree-Related Microhabitats
as Biodiversity Indicators beyond Species
Inventories

Ecological sciences consider the correlation between indi-
cator and indicandum as the main criterion of validation
[30, 86]. The use of TreMs as biodiversity indicators is no
exception to this rule, and while so far relatively weak
statistical correlations with different taxonomic groups
have been documented, TreMs have been widely accepted
by forest managers and the wider public as a tool to pro-
mote and assess integrative, conservation-minded forest
management (see Table 1, [4, 5]). In addition, TreMs allow
and accelerate communication between different stake-
holders with various backgrounds [87•] which is important
to reduce forest degradation as pointed out for deadwood
[88] . In this sense, the interest of TreMs as a communica-
tion and education tool to forest biodiversity conservation
is considerable and should be taken into account when
assessing their usefulness as biodiversity indicator. This
is in line with the criteria stated by the OECD that ideal
biodiversity indicators should also be policy-relevant and
accepted by the broad public [31•]. However, care must be
taken that these aspects do not become more important
than the relationship between indicator and indicandum.
The remaining challenge is therefore to combine the evi-
dence on ecological functions of TreMs with policy and
management utility to fully assess the role of TreMs as
biodiversity indicators.

Conclusions

TreMs are not the “silver bullet” indicator to quantify and
predict species richness. Nevertheless, through their relation-
ships with species frommany taxonomic groups [41, 42], they
have the potential to indicate habitat quality for a large section
of forest-dwelling species, often better than other established
indicators such as single focal species or red-list species [24,
27]. Combined with other types of direct or indirect (e.g.,
structural) biodiversity indicators, standard TreM inventories
have the potential to capture a large proportion of forest
biodiversity.
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TreM inventories are tailored at the stand scale, making
them relevant and readily implemented in forest management.
In addition, TreMs are broadly recognizable and intelligible to
the broad public, and constitute tangible tools for communi-
cation of conservation efforts in forests. Therefore, TreMs
already provide an applied and implemented approach for
forest managers for the conservation of forest biodiversity
through the retention of habitat trees. Further studies, especial-
ly outside Europe, are now needed to assess their indicative
power and conservation relevance.
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