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Abstract A developing bioeconomy and the need for alter-
nate sources of energy are promoting a more intensive pro-
curement and use of forest biomass. While it is a fact that
increased biomass harvesting generates greater nutrient losses
from forest ecosystems relative to stem-only harvesting, the
use of nutrient budget approaches as a decision support tool in
managing forests under intensive biomass removal is uncom-
mon. This lack of use can be explained by several factors
including: large uncertainties in predicting certain fluxes, the
poor representation of nutrient dynamics following harvest in
nutrient cycling models, the lack of representation of biolog-
ical feedback, the lack of appropriate validation, and finally
the lack of maps of specific soil properties that would be
required to predict nutrient budgets over forest landscapes.
This review documents the impact of intensive biomass ex-
traction on nutrient cycling and discusses the gaps in knowl-
edge and the uncertainties associated with nutrient budgets. It
identifies research and development issues that need to be
resolved for making forest nutrient budgets more reliable
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and more useful to address the questions regarding the envi-
ronmental sustainability of intensive biomass harvesting.
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Introduction

During the last few decades, the demand for biomass feed-
stocks for bioenergy production has increased sharply; forest
biomass' not used by conventional wood product industries
(e.g. sawtimber, pulp, fibreboard), such as logging residues
(branches, tree tops), small trees or trees with defects, or
non-commercial species is recognized as an important feed-
stock source [2, 3]. Also, coarse roots and stumps are in some
regions considered as biomass feedstocks. A concern arising
from the increased procurement of forest biomass is the po-
tentially detrimental impacts that this additional harvest may
have on soil productivity [4¢]. Extracting more biomass from a
given site increases nutrient losses out of the forest ecosystem.
In addition, the biomass feedstock sources harvested for
bioenergy production are generally richer in nutrients than
wood fibre extracted for conventional wood products (i.e. tree
boles) (Fig. 1). Consequently, as forest biomass is harvested
more intensively, the nutrient export from the ecosystem per

! In the following text, the term “biomass” will be used in reference to the
biomass that is harvested in addition to the conventional harvest of boles.
The Intergovernmental Panel on Climate Change uses this term in a much
broader sense: “Organic material both aboveground and belowground,
and both living and dead, e.g. trees, crops, grasses, tree litter, roots etc.
Biomass includes the pool definition for above-and below-ground
biomass” [1]. In forestry, the term is context dependent as un-used tree
species, woody parts with a smaller diameter than what is considered
commercial, as well as other tree parts such as stumps vary in definition
depending on forest type, uses and regulations.
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Fig. 1 Harvest residues taken out
of the forest and piled at the
roadside. Harvest residues are
often composed of branches and
foliage. They may also include
dead trees, small trees and trees
with defects as well as stumps

amount of biomass harvested also increases. An important
question is therefore whether a given ecosystem can support
this additional nutrient export.

A theoretical nutrient budget is defined as the algebraic
balance between nutrient inputs and outputs of an ecosystem,
integrated over a specified time period [5]: a forest manage-
ment strategy that would yield a balanced nutrient budget
(nutrient outputs < inputs) would be considered as sustainable
from the standpoint of soil fertility. An enhancement of har-
vest intensity where tree tops, branches and stumps are re-
moved in addition to tree boles could shift the nutrient balance
to a deficit [6°, 7, 8]. Harvest intensification coupled with
acidic atmospheric deposition has promoted interest in the
use of nutrient budgets to evaluate the sustainability of forest
management practices [9—11].

Maintaining a nutrient balance is foundational to sustain-
able forestry, and there is an abundance of studies using nu-
trient budgets in the scientific literature. However, best man-
agement practices (BMPs), regulations and guidelines for sus-
tainable forest biomass procurement rarely rely strictly on nu-
trient budgets [12—15]. Rather, decision-making is most often
based on empirically derived indicators of site sensitivity/
suitability to intensive biomass removal, such as soil proper-
ties indicative of sites that may be of concern, for example,
sites with wet or thin soils, steep slopes or low organic matter
content [16, 17¢].

Should nutrient budgets be more widely used to guide for-
est management activities involving biomass harvesting? In
the following discussion, we will cover the implications of
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intensive biomass harvesting for site nutrient budgets, the ca-
veats and knowledge gaps that may need to be addressed to
make the nutrient budget approach more appropriate and use-
ful to guide forest management. Most reviewed studies came
from boreal and temperate biomes; however, the general con-
clusions should apply to other regions as well.

Analysis

What is the increase in extracted nutrients as a result
of intensive biomass harvesting?

Nutrient concentrations vary with tree species and tree parts.
Biomass composed of small stems or branches or foliage will
show greater nutrient concentrations than that of boles or of
stumps. The analysis of the extensive database compiled in
Paré et al. [18] indicated that the greatest variability in nutrient
concentrations of tree tissue rested between genera, whereas
considering species did not further improve the precision of
the estimates.

Typical operations of logging residue recovery after clear-
cut in the boreal and temperate biomes remove about 50 % of
the original amount of logging residues present on site; how-
ever, it was found to vary from 4 to 89 % with the highest
values found in Nordic countries due to better adapted equip-
ment and trained workforce [19]. Figure 2 illustrates the aver-
age increase in nutrient export (relative to stem-only harvest-
ing) when 50 % of branches and foliage are removed in addi-
tion to tree boles for softwood and hardwood stands in
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Fig. 2 Increased nutrient losses in harvested products (% increase from
the harvest of boles and bark) caused by biomass harvesting considering
that half of the branches are harvested (BR (0.5)) or half of the branches
and half of the foliage are harvested (Br+F (0.5)). A 50 % residue harvest
intensity is used as it is the mean value found in a data compilation from
the boreal and temperate regions [19]. Values are averages for deciduous
and coniferous commercial tree species in Canada as derived from Paré
et al. [18] assuming a basal area of 20 m? ha ! for softwoods and 25 for
hardwoods

Canada. When only branches are harvested (e.g. if logging
residues are left to dry on site for one season, which
allows foliage to shed and remain on site), the increase
in loss of elements is around 30 % compared with the
harvest for boles only, with phosphorus (P) losses being
slightly higher at 40 %. When foliage is removed as
well, the losses greatly increase. This is especially ap-
parent for P and nitrogen (N) in softwood stands: har-
vesting half of the branch and foliage residues would
more than double the extraction of N and P as com-
pared with stem-only harvesting. A review of the impact
of whole-tree harvesting studies [17¢] indicated that re-
duced soil P availability following whole-tree harvesting
compared with stem-only harvesting had been observed
in a high proportion of studies. Impacts on soil N were
less apparent; most significant reductions following res-
idue removal were found only in the organic soil layers.

Can nutrient inputs compensate for nutrient losses?

Investigating nutrient balance is not a simple task as there is no
universal standardized methodology for estimating nutrient
inputs to the system. Sources of inputs vary according to ele-
ments: N comes mainly from the atmosphere, whereas P and
base cations (i.e. calcium (Ca), magnesium (Mg), potassium
(K)) are generally mainly supplied by mineral weathering.
Most nutrient budgets suppose a steady state in nutrient input
rates, 1.e. static mass balances where nutrient fluxes are inte-
grated over a specified time and are therefore constant over
that period [5]. Issues with this assumption are discussed in
the following paragraphs.

Nitrogen

Nitrogen (N) is the nutrient that most often limits forest
productivity [20, 21] as fertilization trials have revealed
in the boreal and temperate regions [22, 23]. N inputs
stimulate growth in a majority of forest ecosystems
[24]. Tt is therefore of crucial relevance to determine
its balance in nutrient budgets. Atmospheric wet/dry de-
positions and biotic/abiotic fixation are the main sources
of N inputs to the forest ecosystems [20]. Several stud-
ies have indicated that in some regions, for example,
southern Sweden or northeastern North America, N at-
mospheric depositions are generally sufficient to com-
pensate for harvest-induced N losses even when includ-
ing removal of harvest residues (Fig. 3) [25, 26, 27°].
However, in other regions, for example, northern
Sweden, Finland or western North America, atmospheric
N depositions would not be sufficient [25, 28-31].
Furthermore, N inputs from precipitation have dropped
significantly over the last few decades in several regions
of Europe and northeastern North America.

For its part, nitrogen fixation is often a neglected compo-
nent of nutrient budgets. Apart from N-fixing plants, N fixa-
tion by free-living organisms is ubiquitous but spatial and
temporal variability of the rates of this process is poorly doc-
umented. Because N fixation is an energy-consuming process,
N-fixing organisms perform better in an environment where N
is limited. This situation creates feedback in the N cycle that
may be responsible for homeostasis in N availability [32], in
which greater N availability reduces N fixation.

The large reservoir of soil organic nitrogen, most of
which is contained in organic or organo-mineral com-
pounds that are recalcitrant to heterotrophic decomposition,
constitutes another source of N because mycorrhizal fungi
(fungi living in a symbiotic interaction with plant roots),
especially ecto-mycorrhizac (EM), can mine this reservoir
[33]. Although such a reservoir is finite, it is large in
comparison with ecosystem losses in harvested products
(i.e. typically 10 to 20 times the amount in harvested
wood products including biomass [26, 27¢]). Feedback
mechanisms between N and P plant demand and acquisi-
tion have been documented. For example, EM species
with a high capacity to mine organic matter for N usually
decline when availability of inorganic N increases [34]. N
fertilization or elevated N atmospheric deposition usually
result in slow EM growth since the plant carbon allocation
will be diverted away from belowground and will be used
instead to incorporate inorganic N into amino acids to
enhance aboveground shoot growth [35]. Conversely, it
has been shown that deficiency of N and/or P enhances
belowground carbon allocation and EM growth [36].
While acquisition of N is energy consuming and would
involve a transfer of carbon and energy from the plant to
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Fig. 3 Stock removed per harvest (dark column) compared with
atmospheric deposition (/light column). Stock removed as in Fig. 2:
average softwood (SW, 20 m? ha ! basal area) and hardwood (HW,
25 m? ha ' basal area) stands from Canada extracted from Paré et al.
[18]. 1 refers to bole+ bark; 2 refers to stem, bark +50 % of branches

its root symbionts, this process may nevertheless reduce
the impact of increased N export through biomass removal
on N availability in forest systems.

These examples suggest that feedback loops exist within
forest ecosystems and influence nutrient cycling: geochemical
N inputs through N fixation and biogeochemical inputs
through organic N mining can be enhanced by N deficiency.
Greater nutrient inputs, as a result of nutrient deficiency in-
duced by greater nutrient export in wood products could, at
least partly, cancel an expected nutrient budget deficit such as
illustrated in Fig. 4. However, these processes have yet to be
taken into consideration in nutrient cycling models and bud-
gets; a better quantification of these mechanisms is therefore
needed. Also, if these mechanisms come into effect, while
they may help to maintain plant nutrition, they would trigger
an additional allocation of resources belowground, potentially
to the detriment of forest productivity. Again, this has not been
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(NE-US) and values from Hazlett et al. [26] for northern Ontario (Ont)

quantified. Johnson, Turner [37] also report cases of ‘occult’
N inputs into forest ecosystems, i.e. where apparent net incre-
ments of ecosystem N exceed known N inputs; authors attri-
bute these occult N sources to poorly assessed/quantified in-
puts from dry deposition, non-symbiotic N fixation, and
weathering of N from sedimentary rocks, highlighting the
need for a better understanding of N processes and cycling.

Cations and phosphorus

Contrary to N, atmospheric inputs of base cations (Ca, Mg, K)
and P are generally small relative to losses in harvested prod-
ucts (Fig. 3) [26, 27¢]. Mineral weathering plays an important
role in their supply and is therefore an important input to their
budget. Although several methods can be used to provide
estimates of mineral weathering, they are fraught with uncer-
tainties [38, 39] and a comparison of different methods shows
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Fig. 4 Simplified conceptual model of nutrient cycling. Red
arrows represent direct impact of increased biomass harvesting
(more export, less inputs to the soil following harvesting).
Green arrows represent potential feedback in nutrient cycling
where greater inputs are stimulated by nutrient deficiencies (see
text for details). These additional inputs could at least in part
compensate for greater losses and are generally not accounted
for in nutrient budgets. The orange box and arrow indicate

that there can be large variability in weathering estimates. For
example, Klaminder et al. [40] and Lucas et al. [41] found that
variability in estimates, calculated for forested catchments in
Sweden, was too high to determine whether harvest residue
removal would shift the catchment nutrient budget to a deficit.
A similar conclusion was reached by Johnson et al. [42] in
Ireland where the high uncertainties did not make it possible to
distinguish the impact of harvest residue removal from con-
ventional stem-only harvesting on the cation balance. In both
studies, the increased nutrient export caused by residue re-
moval was considerably smaller than the uncertainties associ-
ated with estimates of mineral weathering rates, preventing the
use of the nutrient budget for decision-making.

Two other issues further cast doubt on estimates of mineral
weathering fluxes. Most methods are calibrated at the water-
shed scale and estimate mineral weathering rates over long
time periods. Rates of soil mineral weathering are mostly de-
rived from approaches that consider the soil as a homoge-
neous matrix in which weathering is a constant flux over time
(driven by soil solution equilibrium reactions in the process-
based approaches), and are calibrated at the watershed scale
[43]. They do not consider the fine-scale mining of weathering
processes nor the fact that mineral weathering could be, to
some extent, demand-driven. This debate is a controversial
subject that is discussed in [44] and [45]. Conversely, a grow-
ing body of literature suggests that EM as well as arbuscular
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critical elements for the maintenance of soil fertility that are
often neglected in nutrient budget approaches (rapid vegetation
recovery following harvesting as well as the maintenance of
good soil conditions, for example, by avoiding erosion or
compaction contributes to maintaining nutrient pools and
cycling). CEC cation exchange capacity, provided by fine
particles and organic matter

mycorrhizal (AM) fungi [46] together with associated bacteria
have the capacity to mine mineral surfaces for nutrients and
that this capacity is enhanced by nutrient limitation; in that
case, mineral weathering should be presented as a dynamic
process. Plants have been found to invest more energy in their
fungal symbionts under nutrient limitation, and the fungal
transport of photosynthate-derived carbon towards patches
of nutrient-rich mineral grains has been observed [47]. Rock
dissolution and tunnelling of mineral grains, notably of apa-
tite, a Ca- and P-containing mineral, have been found to occur
under both ectomycorrhizae and arbuscular mycorrhizae
[48-50]. Fungal-mediated weathering of K- and Mg-bearing
minerals such as biotite has also been observed [51-53]. This
suggests positive feedback between plant nutrient require-
ments and mineral weathering rates. The importance of such
a demand-driven process would considerably change the out-
come of nutrient budgets. For example, Vadeboncoeur et al.
[27¢] reported that the amount of P removed in harvested
products of New England forest stands on granitic bedrock
was estimated at 20 kg ha™'. The soil supply in extractable P
was estimated at values that varied between 38 and
194 kg ha'; the P content found in apatite in the B soil hori-
zon was estimated to range from 61 to 850 P kg ha ' whereas
the top 25 cm of the C horizon (in which mineral weathering is
assumed to be minimal) was estimated to contain 0 to
2500 kg ha ' P (a zero value is found for shallow soils with
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no C or no apatite). If these mineral P resources are considered
to be potentially available to plant nutrition, this could lead to
positive P budgets for forest stands for several harvest rota-
tions, depending on the abundance of such minerals in the
soil.

As shown above, positive feedback has been documented
between plant demand in N and P, and the mining of soil
organic N and mineral apatite for P and Ca (Fig. 4) both at
the fine scale [47] as well as the ecosystem scale. For example,
Yanai et al. [54] observed more Ca in exchangeable form in
young fast-growing and nutrient-demanding stands than in old
stands, while a steady-state nutrient weathering rate (as as-
sumed in nutrient budgets) should have caused the opposite
trend. Also, Bélanger et al. [55] observed greater exchange-
able Ca in soils of fast-growing tree provenances than in slow-
growing ones. It is unclear whether deficiencies in other ele-
ments, such as K or Mg, would also trigger greater weathering
at the mineral-root interface. Ericsson [36] documented im-
paired carbon loading into the phloem when Mg is in short
supply: this could lead to negative feedback between plant
nutrient demand and plant capacity to acquire nutrients, which
would mean that the capacity of the forest ecosystem to re-
verse a Mg deficiency could be difficult and that fertilization
could be required.

Dynamics of harvest residues in the soil-plant system:
more than a simple balance sheet

Dynamics of nutrient cycling

Another aspect often neglected in nutrient budgets is the avail-
ability and cycling of nutrients contained in harvest residues.
It is often assumed that all nutrients stocked in harvest residues
and released upon decomposition and mineralization of resi-
dues will contribute to soil-available nutrient reserves and to
plant nutrition. However, recovery rates (in terms of the
amount of nutrients available in the soil-plant system, relative
to the original amount contained in harvest residues) were
found to be generally high for Ca and Mg (above 40 %), but
low for K (0-15 %) [56], an element that easily leaches out of
the soil profile as reported in Thiffault et al. [17¢]. Another
study [57] suggested that very acidic mineral soil layers,
whose cation exchange sites are saturated with exchangeable
aluminum (Al), would have a very limited capacity to capture
and conserve base cations released from decomposing harvest
residues: exchangeable Al is difficult to displace from ex-
change sites notably due to its high valence. On the other
hand, soil layers with low concentrations of exchangeable
Al, such as organic layers, can more easily acquire and con-
serve released base cations.

Therefore, field studies following up on the fate of nutrients
from harvest residues over time are suggesting that contrary to
what is expected in static nutrient budgets, the capacity of the
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soil-plant system to retain nutrients that are released upon the
decomposition and mineralization of harvest residues is not
100 % and largely depends on the nutrient, soil and vegetation
conditions. This therefore implies that nutrient budgets of a
forest system are more complex than a simple geochemical
accounting of nutrient gains and losses. The capacity of the
soil-plant system to retain and cycle nutrients may have a great
influence on the actual benefits of maintaining residues on the
site, perhaps more so than the actual amounts of nutrients leav-
ing the system in harvested products. Figure 5 shows the theo-
retical pattern of nutrient immobilization in a growing stand.
Immobilization is maximal at canopy closure, after which nu-
trient recycling in the tree and in the soil-tree systems becomes
more efficient [58¢]. Following harvesting, there is generally a
flush of nutrients (the Assart effect [59]) due to a greater input
of litter, a lower plant uptake and often a faster decomposition/
mineralization of the litter and forest floor. This flush may, or
may not, be in synchronicity with plant and soil immobilization
rates, depending on the nutrient (Fig. 5). For example, the rapid
flush of K leached out of harvest residues may quickly leave the
system without accumulation in soil or plant pools (e.g. [60])
while the slower release of N [61] may provide better synchro-
nicity and retention within the plant-soil system. The fact that
residues are often not evenly distributed on the harvest area
[62], but often concentrated in skidding roads or in piles across
the cutblock, might also influence the capacity of the plant-soil
system to efficiently recover their nutrient content.

Static nutrient budgets therefore fail to encompass the spe-
cific dynamics of debris decomposition. Moreover, in terms of
dynamics, Smolander et al. [63] documented how the release
of terpenes and phenolic compounds from harvest residues
may stimulate soil C and N cycling by providing a source of
C to microbial populations. An increase in enzymatic activi-
ties involved in N, C and P transformations has also been
linked to the amount of harvest residues retained on site [64].

In summary, the beneficial effect of maintaining slash for
plant nutrition may be overestimated by nutrient budgets if
they assumed that all nutrients retained in slash are contribut-
ing to the soil-available pool and if they ignore biological
feedback mechanisms. As pointed out by Zetterberg et al.
[65¢], large nutrient depletions predicted by nutrient budgets
have almost systematically failed to be observed in empirical,
field-based studies. However, introducing these processes in
modelling may be challenging.

Non-nutrient-related effects of harvest residues

Despite these findings related to nutrient cycling, several stud-
ies have shown that the effect of harvest residues on tree pro-
ductivity in the first years following harvest was mostly relat-
ed to the physical effects of residues on the soil environment,
and not to nutritional changes. For example, at a very early
stage of stand development, the presence of residues on site
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may increase light and water availability for tree seedlings
because of the inhibition of competing vegetation cover
[66-70]. Soil water availability may also be affected through
the sheltering effect of residues that limits evaporation but
intercepts precipitation [69] especially when residues are not
mixed into the soil by site preparation. Apart from competing
vegetation and soil water, logging residues can affect planting
microsites by decreasing soil temperature [70-72]; on sites
with already short growing seasons, this can hamper seedling
physiology and growth. Proe, Dutch [73] suggested that the
impacts of residues on microclimate and competition control
should be visible shortly after planting; when a stand ap-
proaches crown closure (e.g. 812 years after planting in the
boreal climate), effects of removal of logging residues on soil
and tree nutrition could become more apparent [74]. However,
10 years after harvest and stand establishment, Smolander
et al. [75] found little correlation between the response to
harvest residues of soil (chemical and biological) properties
and tree growth. The authors suggested that some non-nutrient
factor brought about by the residues, such as changes in soil
physical conditions, was still driving the response of trees to
residue retention, even 10 years after stand establishment.
These results underline the fact that the actual response of
the forest ecosystem to the presence/absence of residues may
only be loosely related to the retention/export of nutrients
caused by harvesting methods: forest biogeochemical cycling
and tree productivity appear to be driven by more complex
factors and interactions than simple nutrient inputs-outputs at
least in the short-term window provided by experimentation
(which admittedly has yet to cover a complete rotation).
Nutrient outflow could still become the main driver of ecosys-
tem functioning after one or several rotations. It is also inter-
esting to note that removal of harvest residues at thinning has
been found to have negative impacts on subsequent growth of
the remaining trees [76]; the important retention of forest

synchronicity curve may be more typical of N or P, elements that are
released after considerable processing by heterotrophic microbial
communities

cover during thinning probably lessens any microclimatic ef-
fects that the maintenance of residues often have in clear-cuts,
and nutrient availability might be the overriding driver of tree
growth at the stage of the rotation when thinning occurs.
Nevertheless, it would be important to correctly interpret the
impact of biomass harvesting by taking into consideration
non-nutritional effects on nutrient budget studies.

Conclusion

Critical loads of acidity, which are budgets with inputs and
outputs of acidity, have been successful at linking up science
and policymaking for the control of atmospheric pollution and
their potential deleterious effects on water and forest ecosys-
tems. The reasons for this success are the fact that input-output
calculations are intuitive and relatively easy to understand,
they are easy to calculate, and the results from calculations
could be readily translated into policies such as air pollution
abatement strategies [77]. Therefore, because increased bio-
mass harvesting causes greater nutrient loss, a nutrient balance
approach to determine conditions (site type and intensity of
removal) where such practices would be environmentally sus-
tainable or detrimental appears logical; it might be an interest-
ing preliminary step in interfacing scientific assessment of
sustainability of forest practices with policymaking. The con-
cept of ecological rotation is a good summary of this idea [5].
Moreover, nutrient budgets make it possible to predict nutrient
balance at the end of one or several rotations, whereas most
field studies on biomass harvesting in the boreal and temper-
ate biomes have been in place for only a few decades and
therefore only cover short- to medium-term effects [65¢].
However, the nutrient budget approach has several important
limitations as discussed here. In particular, it is prone to large
uncertainties for several nutrient fluxes, it generally ignores
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ecosystem feedback mechanisms that are very common in
natural forest systems, and it ignores key drivers of geochem-
ical and biogeochemical cycling and tree productivity.
Nutrient budgets may be more readily adapted to conditions
of intensively managed short-rotation plantations that are clos-
er to agricultural systems, in which nutrient inputs/outputs and
cycling are somewhat simpler to assess. For example, nutrient
budgets have provided a useful methodological template for
nutrient management in coppice forests [78]. However, nutri-
ent budgets appear to be inadequate for capturing the com-
plexity of most forest systems, especially long-rotation sys-
tems such as found in the boreal and temperate biomes.
Furthermore, the nutrient budget approach has undergone
very little validation.

Validation is a prerequisite to the use of models to guide
ecosystem management. Interestingly, one example of empir-
ical field validation of predictions made by theoretical nutrient
budgets has shown that contrary to budget predictions from
Johnson et al. [79], leaching losses and uptake by regenerating
vegetation did not deplete soil-exchangeable Ca pools within
15 years of harvesting of boles, branches and tree tops of
mixed oak stands [80]. Here, it may be pertinent to quote
Aber [81] from his well-known note entitled “Why don’t we
believe the models?”: “Perhaps the greatest dis-service ecolo-
gists can provide comes from allowing... unvalidated models
to be used to predict the results of policy actions. It is equiva-
lent to basing policy decisions on data we know to be seriously
flawed. It also fosters the false impression that we know more
than we do about the systems we study, which is then often in
contradiction to what the experimental data suggest”.

Given the large uncertainties of the nutrient budget ap-
proach, and the fact that it fundamentally lacks the dynamic
aspects of soil-plant interactions, it appears prudent to build
confidence with the empirical evidence related to biomass har-
vesting provided by sound experimental designs such as the
North American Long-Term Soil Productivity (LTSP) project
[66] and to promote the widespread use of monitoring [82, 83]
as well as a better integration of models with observations as
they become available. Nevertheless, as part of a scientific ap-
proach that includes modelling, empirical validation with field
studies and further improvement of model assumptions, nutri-
ent budget models remain a useful tool to identify knowns and
unknowns in the biogeochemistry of forest ecosystems.
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