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Abstract Good forest management requires comprehensive
and reliable inventory data spanning large areas. Forest man-
agement has increasingly relied on remote sensing, specifical-
ly light detection and ranging (LiDAR). However, due to the
high costs associated with data collection and processing,
wall-to-wall LiDAR data is rarely obtained for forests. In con-
trast, multispectral imagery from optical sensors often covers
large extents but they fail to capture detail below the forest
canopy and do not directly measure structural attributes. To
take advantage of the complementary benefits of different
sensors, active LiDAR and passive optical sensors have been
combined and applied to problem-solving in a forestry context
for over a decade. A review of the literature shows that fusion
of different sensors has resulted in superior performance rela-
tive to individual sensors for classifying and delineating forest
areas (up to 20 % accuracy improvement), identifying species
(up to 21 % accuracy improvement), and estimating forest
volume and biomass (up to 55 % accuracy improvement). In
contrast, sensor fusion achieved only minor improvements for
tree or forest height estimation (1–7 % accuracy improve-
ment); this is likely because LiDAR alone is already so effec-
tive. This review was unable to draw conclusions on the per-
formance of sensor fusion for forest age and productivity as-
sessment due to the limited number of studies. The lack of

results in these areas presents an opportunity for future re-
search. The literature clearly demonstrates the utility of inte-
grating LiDAR and optical data for many aspects of forest
description. Perhaps the greatest challenge moving forward
will be to operationalise the research such that forestry com-
panies and governments can take advantage of the benefits of
data fusion.

Keywords Forest description . Forest mensuration . Aerial
laser scanning . Optical sensor . Remote sensing . Sensor
fusion

Introduction

Forests provide timber and non-timber products, habitats for a
diverse range of flora and fauna, as well as social benefits such
as shelter, food and employment. Managing forests to opti-
mise one or more of these benefits is challenging as they are
dynamic and undergo continual change from both natural and
human-induced afforestation and deforestation [1]. Effective
forest management requires comprehensive forest data for a
range of temporal and spatial scales. However, obtaining full
descriptive data from ground-based approaches is often unfea-
sible [2]. Remote sensing, including aerial photography, sat-
ellite imagery, and light detection and ranging (LiDAR), has
increasingly been used as a means of cost-effectively captur-
ing forest data [2, 3].

Aerial photography is the most widely used remote-sensing
technique in forest management [4]. Image characteristics
such as shape, pattern and texture are used to delineate forest
stand boundaries [5], estimate tree height and crown diameter
[6] and identify species [7]. Kovats [8] demonstrated that tree
height can be measured using high-resolution stereoscopic
aerial photos with photogrammetric techniques to measure
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the lengths of shadows projected onto the ground. Likewise,
Dandois and Ellis [9] accurately measured tree height on aerial
photos using a computer vision technique. However, these
techniques have not been applied operationally as they are
dependent on a number of factors including presence of open
flat ground and specified sun elevation and angle.
Furthermore, subjective interpretation often results in incon-
sistent degrees of precision and accuracy [10].

Apart from aerial photography, research has increasingly
employed satellite imagery in forest assessment. Satellite
multi- and hyperspectral sensors capture the electromagnetic
radiation emitted by the sun and reflected by the earth’s sur-
face [11]. Spectral and contextual attributes derived from sat-
ellite sensors can be modelled against empirically derived bio-
physical features of the forest, such as stand basal area, height
and crown closure [12, 13], stand density [14], leaf area index
(LAI) [15–17] and forest volume and biomass [18–20].
Development of textural analysis such as the grey-level co-
occurrence matrix (GLCM) has also allowed the use of addi-
tional information from optical sensors to assess forest stand
variables such as height, basal area and stand density [21].
Recently, high-resolution satellite imagery (sub-metre) has
been used tomeasure forest structural variables at a finer scale,
which makes possible automated detection of individual trees
via crown delineation, and modelling individual tree crown
size, height, diameter, volume, age class and species compo-
sition [3, 21–23].

Advantages of optical sensors include large coverage of
forest area, easy access and low cost [24••]; consequently, data
from optical sensors are useful for large-scale forest assess-
ment and monitoring [25]. The key limitation of passive opti-
cal sensors is that they cannot capture detail below the forest
canopy and hence cannot directly measure vegetation struc-
ture [26].

LiDAR, an active sensor, has been increasingly used in
forest assessment. LiDAR directly measures canopy height,
which is a commonly used attribute to describe forest structure
[27]. Allometric relationships between tree height and diame-
ter at breast height (DBH) have been derived for various tree
species [28–30], and these two variables are commonly used
to derive volume [31]. LiDAR-measured heights, together
with other LiDAR-derived metrics (e.g. penetration metrics),
are important for modelling other structural attributes, such as
canopy cover [32], stem density [33], basal area [34], biomass
[35, 36], volume [37] and LAI [38].

LiDAR is demonstrably superior to passive optical sensors
for assessing forest structural variables, especially canopy
height [39, 40]. Discrete return airborne LiDAR systems
now collect stand-level and regional wall-to-wall forest struc-
ture attributes (tree height, stand volume and basal area) in the
national inventory programmes of Finland, Norway and
Sweden [36, 41]. Despite these examples, the high cost of
LiDAR acquisition and lack of processing expertise generally

preclude wall-to-wall LiDAR surveys for operational use [4,
42].

In order to overcome the limitations of individual sensors
and optimise the advantages of different types of sensors,
discrete return LiDAR and optical sensors have been integrat-
ed to provide more comprehensive and accurate characterisa-
tion of forest structure and dynamics [27]. The intention is to
keep the acquisition cost low [43] while using the relationship
between LiDAR and optical data to better describe a larger
extent of the forest resource [44]. Combined use of optical
images and LiDAR in forestry utilises both the spectral infor-
mation in optical imagery and the 3-D information in LiDAR.
Therefore, when combining LiDAR and optical spectral sen-
sors, additional information from both sensors is integrated
and more accurate results are expected.

Since optical sensors and discrete return LiDAR have been
extensively studied and applied in forestry, a number of re-
views on their individual use have been conducted [2, 3,
45–48, 49••, 50, 51]. However, no comprehensive review of
the fusion of discrete return LiDAR with optical sensors has
been conducted despite more than a decade having passed
since the first integrated study of discrete return LiDAR and
Landsat ETM+ [24••]. We address this gap in the literature by
reviewing research into the combined use of discrete return
LiDAR and optical sensors across a broad range of applica-
tions in forestry, specifically with respect to forest delineation
and classification, and estimating forest age, species and forest
structural variables. This review is limited to sensor fusion
studies where multi-sensors are used simultaneously to assess
forest attributes.

Fusion of LiDAR and Optical Sensors

Forest Delineation and Classification

Forest classification and forest boundary delineation are im-
portant in both natural and planted forest management in
assessing forest types and areas, as understanding forest area
and location is fundamental for a broad field of applications
and users [52]. Aerial photography is most commonly used to
determine forest area throughmanual interpretation. However,
forest stand delineation based on manual interpretation of ae-
rial photos can be highly subjective and time-consuming.
Forest cover type classification can be achieved by automated
image classification by assigning forest cover types and esti-
mating forest variables based on the spectral, textural and
auxiliary information in the image. This produces a more ob-
jective delineation and reduces time and associated costs [53].

LiDAR data adds a new source of information for forest
classification and delineation through direct estimation of for-
est canopy size and height. Incorporating LiDAR into optical
sensor mapping utilises both spectral and structural
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information to achieve a more accurate forest classification.
Nordkvist et al. [54] integrated low-density discrete return
airborne LiDAR-derived height metrics with SPOT 5 HRG
spectral information for vegetation classification in Sweden
and achieved 16.1 % improvement in classification accuracy
compared to using SPOTonly. The study also compared max-
imum likelihood and object-based decision tree classification
approaches and found the best accuracy was achieved by de-
cision tree classification. Sasaki et al. [55•] achieved a minor
improvement in overall land cover classification accuracy (95
to 97.5 %) by an object-based classification approach integrat-
ing inputs from high-resolution spectral images captured by
digital camera with LiDAR-derived metrics including height,
ratio, pulse and intensity parameters. Additionally, Bork and
Su [56] used a maximum likelihood approach to classify eight
vegetation classes. Using only airborne LiDAR inputs
achieved lower accuracy than using only a digital multispec-
tral image; however, the fusion of LiDAR and multispectral
imagery increased classification accuracy by 15–20 %. A
more recent study explored the benefits of incorporating a
digital elevation model (DEM) and digital surface model
(DSM) derived from LiDAR into tropical forest mapping
using SPOT 5 HRG imagery. This approach enhanced image
segmentation and successfully differentiated six vegetation
classes, producing an overall forest classification accuracy of
91 % [57•].

The combination of aerial photography and LiDAR has
also commonly been used for forest delineation. Wang et al.
[58] developed an approach to automatically delineate forest
boundaries using both aerial photography and a LiDAR-
derived canopy height model (CHM) for the National Forest
Inventory of Switzerland. The approach involved two pro-
cesses: (1) detecting forests using a moving window over
the CHM and delineating forest boundaries by analysing the
CHM-derived curvature value, vegetation index and (2) using
textural values of segmented image objects. Although there
are no statistical improvements calculated, the visual results
relative to manual digitisation looked very promising.
Haywood and Stone [59] developed an automated approach
that transforms aerial photos and LiDARCHM into vectorised
forest stand boundaries (65% overall accuracy). The study did
not explicitly show an improvement using sensor fusion, but it
demonstrated the possibility of operationalising the fusion of
optical sensor and LiDAR in natural forests stand delineation.

A summary of recent studies using integrated LiDAR and
optical sensors is shown in Table 1. All of these studies have
either shown an improvement (up to 20 %) in forest classifi-
cation results compared to using a single sensor or made it
possible to discriminate further forest classes that otherwise
could not be identified by single sensors. All studies reviewed
in this section used discrete return LiDAR and other optical
sensors. LiDAR data has been acquired at point densities
ranging from 0.54 to 11.3 points/m2, with all but one study

reporting point density lower than 2 points/m2. It appears that
low-density LiDAR is sufficient to classify forest types and
delineate forest boundaries when integrated with optical sen-
sors, as only the interpolated LiDAR surfaces are used as
inputs.

When a fusion approach is used, the common approach to
classify forest types and delineate forest boundaries is image
classification based on inputs derived from both LiDAR and
optical sensors. Machala and Zejdova [60] listed 26
customised arithmetic features derived from discrete return
LiDAR and multispectral sensor data that are useful inputs
for classifying forest covers. The inputs are commonly
rasterised and applied with automated image classification
analysis. There is a clear trend towards the use of object-
based image analysis (OBIA) rather than pixel-based classifi-
cation like the maximum likelihood approach. Pixel-based
image classification that ignores spatial association among
pixels, tends to be sensitive to spectral variations; hence, it is
likely to result in a relatively high level of misclassification
[61]. OBIA overcomes the issues by carrying out classifica-
tion on segmented objects that are similar to real land cover
features in size and shape [62]. The approach allows consid-
eration of multiple image elements and scales such as texture,
shape and context, as opposed to pixel-based classification
that solely relies on the pixel values. Overall, OBIA has been
proven to produce more accurate classification results com-
pared to a pixel-based approach with single sensor analysis
[63]. This may explain why OBIA is favoured in forest clas-
sification and delineation with integrated sensors. The statis-
tics to evaluate the performance of forest type classification
include classification accuracymatrices or confusionmatrices,
which compare the classified classes against reference classi-
fication and generate a series of statistics such as overall clas-
sification accuracy, producer’s and user’s accuracy and kappa
coefficient [64].

Forest Species

Accurate characterisation of species is important in forest
management, resource planning and monitoring. Remote
sensing technologies have been widely used for forest species
classification [22, 65]. The recent development of laser scan-
ning also offers the possibility of automatically identifying
individual trees and obtaining height and canopy measure-
ments from them [66–68], hence providing the possibility of
classifying individual tree species [69].

More accurate species classification is expected from the
fusion of LiDAR and other sensors due to the synergy of both
structural and spectral data. Holmgren et al. [69] used airborne
LiDAR-derived height, canopy and intensity parameters to
delineate individual tree crowns and calculate tree crown
heights and areas then identified tree species for delineated
tree crowns using a maximum likelihood approach by
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integrating LiDAR data with features from high-resolution
digital mapping camera (DMC) digital images. The overall
species classification accuracy was 96 %, which was an im-
provement from using LiDAR (91 %) and digital imagery
(88 %) individually. Ke et al. [70] evaluated the combined
spectral and textural layers from QuickBird imagery and to-
pography, canopy height and intensity from low-density
LiDAR (0.16 points/m2) for forest species classification, using
object-based segmentation and machine-learning decision
trees. The highest classification accuracy (kappa=91.6 %)
was achieved using both spectral and LiDAR-derived metrics
with accuracies that were 20 % greater than those that used
individual sensors. Sasaki et al. [55•] classified 16 tree species
with high density (11.3 points/m2) airborne discrete return
LiDAR and multispectral imagery. Although the object-
based decision tree classification produced low overall accu-
racy (31.5 %), a 17 % improvement was made with inputs
from both sensors. Some species such as pine and poplar
gained significant improvement (32 and 56 %, respectively)
with sensor fusion compared with using digital images only. A

more recent study used very high-resolution WorldView-2
images and discrete return airborne LiDAR for object-based
species classification in a temperate rainforest in Australia. It
utilised the spectral features and GLCM textures from the
images and a LiDAR-derived CHM and associated statistics
to conduct an object-based decision tree classification on a
mixture of natural and plantation forest species. The accuracy
for LiDAR-only and image-only species classification was 61
and 70 %, respectively, whereas combined sensors improved
species classification to 82 % [71•].

Hyperspectral sensors have also been integrated with
LiDAR in forest species classification. Several studies have
indicated fusion between hyperspectral and LiDAR data en-
hances forest species differentiation. Dalponte et al. [72] test-
ed leave-one-out covariance (LOOC), support vector ma-
chines (SVM) and k-nearest neighbour (k-NN) classifiers for
forest species classification using hyperspectral bands and a
LiDAR-derived CHM. The best classification accuracy was
found using SVM. In total, 23 tree species classes were suc-
cessfully identified with the technique, with some classes over

Table 1 Recent studies of forest classification and delineation using integrated LiDAR and optical sensors

Forest species/
type

Remote-sensing data
used

Metrics derived Estimated
parameters

Approach Accuracy/error Reference

Mixed tropical
forest reserves

Discrete return airborne
LiDAR (2 points/m2),
aerial photo (AP) and
SPOT5 HRG

LiDAR-derived
DEM and DSM,
spectral bands
from AP and SPOT

Forest type
classification

Image segmentation
and multi-level
decision-tree
classification

Overall classification
accuracy, 91 %

[57•]

Wetland forests
including
pine,
spruce and
birch

Discrete return airborne
LiDAR (1.6
points/m2) and
SPOT5 HRG

SPOT spectral bands,
LiDAR-derived
height, canopy returns

Vegetation
classification

Supervised maximum
likelihood and
decision tree
classification

Overall accuracy
SPOT only,
55.8 %; combined
SPOT and LiDAR,
71.9 %

[54]

Mixed forest
dominated
by oak

Discrete return small-
footprint airborne
LiDAR
(11.3 points/m2) and
simultaneously
collected NIR digital
image (0.18 m)

Spectral bands and
NDVI from digital
image; LiDAR-
derived DEM,
CHM and intensity

Land cover
classification
and species
classification

Image segmentation
and object-based
decision tree
classification

Overall accuracy
digital image only,
95 %; combined
with LiDAR,
97.5 %

[55•]

Natural
eucalyptus
forest

AP and discrete return
airborne LiDAR
(0.96 points/m2)

Textural and spectral
information from
aerial photo,
LiDAR-derived CHM

Forest stand
delineation

Automated imagery
segmentation

Overall accuracy
of 65 %

[59]

All forests in
Switzerland
(National
Forest
Inventory)

AP and discrete return
small-footprint
airborne LiDAR

AP-derived vegetation
indices (VI),
textural information
and LiDAR-derived
CHM

Forest detection
and
delineation

Decision tree using
CHM, curvature
feature and VI

Visual results only [58]

Mixed
vegetation
in rangeland
including
aspen forest

Discrete return airborne
LiDAR (0.54
points/m2) and
simultaneously
collected digital
image (0.5 m)

LiDAR height and DEM,
RGB, digital image
intensity and hue

Vegetation type
classified

Supervised maximum
likelihood
classification
and decision tree

Overall classification
accuracy for
LiDAR and image
only is 64.8 and
74.6 %,
respectively;
integrated
approach, 91 %

[56]
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90 % accurate. The overall kappa accuracy using combined
sensors was 89.2 %, which was slightly higher than using
individual sensors (hyperspectral only: 87.9 %, LiDAR only:
89%). Jones et al. [73] applied similar datasets and techniques
to classify more than ten forest species classes. They found
most species classes gained accuracy improvement with fu-
sion of hyperspectral and LiDAR inputs (ranging from 0.3 to
19 %) although the overall accuracy improvement was only
minor (1.2 %).

The way that sensor fusion has been performed is that high-
resolution optical imagery defines forest stand boundaries and
provides spectral separation between different forest species.
The addition of LiDAR-derived topographic and height and
intensity information further reduces within-class spectral var-
iations caused by topography and enhances variations be-
tween species classes as different tree species tend to have
different heights [70]. Recent studies integrating LiDAR with
other sensors to estimate forest species are shown in Table 2.
These studies show that sensor fusion has improved the accu-
racy of species identification and classification by up to 21 %.
It is worth noting that species classification from sensor fusion

approaches has yielded high variation in accuracies, ranging
from 48.4 to 96 % as a result of large variations in species
composition in these studies. Discrete return airborne LiDAR
was the most common sensor type and the range of point
densities was large, spanning 0.16–50 points/m2. The point
density of LiDAR acquisitions for species classification was
generally higher than for forest area delineation. As with forest
area classification, object-based decision tree classification is
predominantly used in species classification with LiDAR and
multispectral sensors.

Hyperspectral sensors capture finer details in the spectral
signature (i.e. narrower spectral bands) than multispectral sen-
sors, which allow more detailed differentiation between sim-
ilar forest types [72]. Generally, hyperspectral sensors alone
have shown promising capability in species classification
probably due to high spectral resolution. This explains why
only minor improvements in species classification accuracy
were observed when LiDAR was added (Table 2). Despite
high species classification accuracy using only hyperspectral
imagery (relative to multispectral imagery), there is no evi-
dence to suggest that fusion of LiDAR and hyperspectral

Table 2 Recent studies of forest species identification using integrated LiDAR and optical sensors

Forest species/
type

Remote sensing data
used

Metrics derived Estimated
parameters

Approach Accuracy/error Reference

Cool temperate
rain forest

Discrete return
airborne LiDAR
and WorldView-2

Spectral and textural
information from
WorldView-2;
LiDAR-derived
CHM and DEM

Forest species
classification

Object-based
classification
using decision trees

Overall accuracy
WorldView-2, 70.4 %;
LiDAR, 61.39 %;
combined sensors,
82.35 %

[71•]

Mixed forest
dominated
by oak

Discrete return
airborne LiDAR
(11.3 points/m2)
and simultaneously
collected digital
image (0.18 m)

Spectral bands and
NDVI from digital
image; LiDAR-
derived DEM,
CHM and intensity

Land cover
classification
and species
classification

Image segmentation
and object-based
classification
using decision trees

Overall accuracy digital
image only, 31.5 %;
combined sensors,
48.4 %

[55•]

Mixed deciduous
forest: maple,
beech, pine
and spruce

QuickBird and discrete
return airborne
LiDAR (0.16
points/m2)

QuickBird spectral
bands; DEM,
terrain layers,
CHM and intensity
from LiDAR

Forest species
classification

Object-based
classification using
machine learning
decision trees

Overall accuracy from
QuickBird only,
63 %, combined
sensors, 83 %

[70]

Mixed species
forest
dominated by
Douglas fir

Transect hyperspectral
(2 m resolution)
and discrete return
airborne LiDAR
(0.4 points/m2)

LiDAR CHM and
canopy volume;
selected
hyperspectral
channels

Forest species
classification

Support vector
machine
classification

Overall accuracy using
only hyperspectral,
72.3 %; combined
sensors, 73.5 %

[73]

Mixed spruce,
pine
and deciduous
species

Discrete return
airborne LiDAR
(50 points/m2)
and DMC (0.6 m)

Height, canopy,
pulse and intensity
variables from
LiDAR; spectral
bands from DMC

Individual
tree species
identification

Maximum likelihood
classification of
derived individual
tree crown

Overall classification
accuracy for DMC
only, 88 %, LiDAR
only, 91 %; and
combined sensors,
96 %

[69]

Mixed oak
species
(>20 species)

Hyperspectral (1 m
resolution) and
discrete return
airborne LiDAR
(5.6 points/m2)

LiDAR DEM and
intensity; selected
hyperspectral
channels

Area of species
composition

SVM, LOOC
and k-NN

Highest kappa accuracy
from hyperspectral
only, 87.9 %; LiDAR
only, 89 %, combined
sensors, 89.2 %

[72]
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sensors classifies species more accurately than fusion of
LiDAR and multispectral sensors. The processing of
hyperspectral data can add complexity as they contain a vast
array of spectral bands, so a feature selection process is re-
quired to eliminate any redundant bands [72]. Rather than
conventional classification approaches, non-parametric classi-
fiers, especially SVM has been used when classifying
hyperspectral data. SVM is a linear binary classifier that as-
signs a given test sample from one of the possible labels [74].
The application of SVM has improved classification accuracy,
analysis time and stability with hyperspectral data [73].

Tree Height

Canopy height is considered the key attribute for understanding
the vertical structure of forests and is a crucial parameter for
modelling forest growth. LiDAR is the best remote-sensing
method available for tree height measurement [75]. It has been
suggested that the use of LiDAR and other sensors can poten-
tially be a substitute for field measured canopy heights [43].

Spectral reflectance in the form of either raw band value or
band ratios (e.g. NDVI) is the primary input from satellite
imagery when integrated with LiDAR data to estimate height.
Combining LiDAR-derived heights with very high-resolution
(VHR) imagery and aerial photos provides the means to more
accurately segment individual trees hence to estimate forest
attributes at the individual tree level [76•]. McCombs et al.
[77] combined small-foot print LiDAR and high-resolution
digital multispectral imagery captured by Spectral Visions to
identify individual stems and estimate plot mean height in two
planted pine forests. A focal search function was used to iden-
tify the location of individual trees based on LiDAR-derived
tree height and NIR reflectance from an image. Tree identifi-
cation accuracy increased by 7.6 % for high-density plots and
18.8 % for low-density plots using combined sensors.
However, no improvement in height was reported using the
combined approach. Suárez et al. [78] used high-resolution
aerial photography and LiDAR-derived tree canopy model
(TCM) to segment individual Sitka spruce trees in order to
derive individual tree height. The study found the method
successfully estimated individual tree height, especially for
larger trees (R2=0.86). The study only used the combined
sensor approach; hence, no comparison with a single sensor
was reported. Popescu and Wynne [79] utilised multispectral
ATLAS imagery to stratify forest types using maximum like-
lihood classification, which facilitated the identification of
single trees and the estimation of their heights with LiDAR.
Single trees were identified using a variable window tech-
nique with local maximum focal filtering over both LiDAR
and ATLAS features. Minor improvement on height estima-
tion with sensor fusion was observed (R2 increased by 1 % for
pines and up to 3 % for deciduous). A canopy fuel study also
observed a minor improvement in canopy height estimation

using metrics derived from both LiDAR and DMC imagery
compared to LiDAR alone (R2 of 0.957 and 0.935, respective-
ly). The study also examined the canopy base height which is
the lowest green foliage and found a 6 % improvement with
the sensor fusion [80].

The fusion of LiDAR and optical sensors has been used in
both identifying or delineating individual trees and estimating
single tree height. There are a variety of statistical algorithms
adopted to predict tree height based on metrics derived from
LiDAR and optical sensors. All the height estimation studies
we reviewed (Table 3) applied a linear or multiple regression
equation solved using ordinary least squares (OLS). Model
performances were evaluated by the coefficient of determina-
tion (R2) and root mean square error (RMSE).

Table 3 shows that LiDAR has already proven very accurate
in canopy height estimation. Fusion with other optical sensors
added little improvement in height estimation accuracy (1–7 %).
One study even reported a slight negative influence on height
estimation with sensor fusion compared to using LiDAR alone
[77]. A benefit of sensor fusion for tree height estimation is that it
supports tree delineation, which is difficult to achievewith small-
footprint or lower point density LiDAR alone. All studies in
Table 3 acquired low- to medium-density LiDAR, ranging from
1 to 4 points/m2. The point densities here are lower and have less
variation than point densities reported in studies focused on area
delineation and species classification. The high R2 values are
evidence that despite the lower point density, tree and canopy
height can be estimated with high accuracy.

Forest Volume and Biomass

Height and diameter measurements are highly correlated with
forest volume and aboveground biomass in deciduous, conifer-
ous and tropical forests [46]. Volume provides an understand-
ing of forest productivity and structure. Forest biomass allows
the estimation of the carbon content in forests, which is impor-
tant for understanding carbon stock changes associated with
deforestation, forest degradation and afforestation. Carbon
reporting is required to fulfil obligations to international agree-
ments such as the United Nations Framework Convention on
Climate Change (UNFCCC) [81]. Additionally, accurate esti-
mation of biomass in forested areas is essential for developing
sustainable climate-friendly strategies [82]. Forest volume and
biomass can be directly measured in the field through destruc-
tive sampling, but usually, they are estimated based on mea-
sured variables such as diameter and height. Remote sensing
has been widely applied to estimate forest volume and biomass
due to extensive coverage and cost efficiency [50].

Fusion of LiDAR and optical sensors has been studied for
estimating forest volume and biomass at the individual tree
level [83] or plot level [84] and achieves more accurate esti-
mation than single sensors. An early study used small-
footprint airborne LiDAR and multispectral ATLAS imagery
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to explore the possibility of estimating forest volume and bio-
mass in mixed-species forests. Popescu et al. [85] used spec-
tral information and a LiDAR-derived CHM to delineate in-
dividual tree crowns and estimated tree height, basal area,
volume and biomass at the plot level using linear regression
models. Promising results were achieved for coniferous for-
ests, with R2 of 0.83 for volume and 0.82 for biomass. Though
it was not quantified, the authors commented that an improve-
ment in estimation accuracy was achieved with sensor fusion
compared to LiDAR alone. Tonolli et al. [84] estimated tree
stem volume at plot level with integration of low-density dis-
crete return airborne LiDAR and multispectral IRS data.
Height metrics and canopy variables extracted from LiDAR,
together with spectral bands and band ratios extracted from
IRS were correlated with the tree volume calculated from field
inventory data. The combined sensor approach consistently
produced higher R2 and lower RMSE across all species com-
pared to using either sensor alone. Wallerman and Holmgren

[86] predicted forest height, stem density and mean volume
using a canonical correlation approach with inputs derived
from both LiDAR and SPOT 5 HRG. Using the combined
sensors achieved a more accurate mean stand volume estima-
tion compared with using LiDAR only, resulting in a 2–4 %
lower RMSE. Estornell et al. [87] used stepwise regression to
find the best fit between LiDAR and spectral data from digital
images against field measurements, they observed a signifi-
cant improvement in modelling vegetation volume and bio-
mass when both LiDAR and digital images were used, withR2

increasing by 12 % for volume and 29 % for biomass com-
pared to LiDAR-only models.

Most studies that we reviewed related to volume and/or
biomass estimation using linear or multiple regression models
to correlate LiDAR and optical sensor derived metrics with
field measurements. However, OLS regression assumes that
the explanatory variables are free of measurement errors,
which is not realistic in remote sensing data inputs [88]. So,

Table 3 Recent studies of forest height estimation using integrated LiDAR and optical sensors

Forest species/
type

Remote-sensing data
used

Metrics derived Estimated
parameters

Approach Results Reference

Conifer forest
dominated by
ponderosa pine,
Douglas fir,
grand fir and
lodgepole pine

Discrete return
airborne LiDAR
(>4 points/m2)
and
simultaneously
collected digital
image (0.6 m)

LiDAR height
variables and
intensity;
digital
imagery
spectral bands
and NDVI

Canopy fuel
attributes:
canopy
height (CH),
canopy base
height
(CBH)

Multiple regression
modelling

CH R2 LiDAR only, 0.935;
image only, 0.415 and
combined sensors, 0.957

CBH R2 LiDAR only, 0.783;
image only, 0.309 and
combined sensors, 0.843

[80]

Sitka spruce forest Discrete return
airborne LiDAR
(3–4 points/m2)
and aerial photo
(0.25 m)

LiDAR CHM,
aerial photo
bands

Individual tree
height

Segmentation of image
to delineate
individual trees

Combined sensors: R2=0.69–
0.86

[78]

Mixed deciduous
and coniferous

Discrete return
airborne LiDAR
(2 points/m2) and
ATLAS image

LiDAR CHM,
classified
imagery-
derived crown
form

Individual tree
height

Forest type
classification by
ATLAS, variable
window size filtering
for tree identification,
regression modelling

Pine: height best LiDAR only
R2=0.96, combined sensor
R2=0.97

Deciduous: height best LiDAR
only R2=0.76, combined
sensor R2=0.79

[79]

15-year-old
loblolly pine
plantation

Discrete return
airborne LiDAR
(1–1.5 points/m2)
and digital
imagery (0.6 m)

CHM and
intensity from
LiDAR; NIR
band from
digital
imagery

Individual tree
identifica-
tion and
mean height

Identify and count trees
with a focal window
passing over, derive
individual tree height
based on LiDAR

Low density (3 m spacing): tree
identification accuracy image
only R2 0.924; LiDAR only,
0.873; combined sensors,
0.948. LiDAR
underestimated mean height
by 0.38 m, combined sensor
underestimatedmen height by
0.50 m

[77]

High density (2.4 m spacing):
tree identification accuracy
image only R2 0.786; LiDAR
only, 0.647; combined
sensors, 0.835. LiDAR
underestimated mean height
by 0.15 m, combined sensor
underestimatedmen height by
0.42 m
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there has been increasing use of non-parametric modelling
approaches to model forest volume with integrated LiDAR
and spectral inputs. For example, Packalen and Maltamo
[89] applied k most similar neighbour (k-MSN) imputation
to predict species-specific volume at the stand level from air-
borne LiDAR-derived height metrics and aerial photograph-
derived spectral and textural features. They found that the
basal area and volume estimation using inputs from both sen-
sors were accurate (RMSE=8.63 and 10.36 %, respectively),
although deciduous species showed higher errors than conif-
erous species (up to 34 % higher RMSE). Cartus et al. [90]
used a random forest (RF) regression tree algorithm to predict
stand-level canopy height and growing stock volume (GSV)
over a large plantation area, using metrics derived from low-
density discrete return LiDAR, RADAR sensor (ALOS PALS
A) and Landsat ETM+. The fusion of RADAR and Landsat
produced a minor improvement (6%) in GSVestimation com-
pared with using LiDAR. Although the study did not combine
LiDAR with Landsat, it demonstrated a well-described meth-
odology of using RF to model forests attributes with different
sensor inputs.

Overall, optical sensors alone have not shown good perfor-
mance in assessing forest volume and biomass; recent studies
have demonstrated more significant improvement (up to
55 %) in modelling forest volume and biomass with the addi-
tion of LiDAR (Table 4). In terms of the measuring model
performance, R2 and RMSE are commonly used. Some stud-
ies also measure the bias of models [91]. A wide range of R2

values was reported for data fusion approaches to estimating
both biomass and volume. Biomass estimates ranged from
R2=0.33 to 0.82, while volume estimates ranged from R2=
0.39 to 0.87. In both cases, the lowest R2 values were associ-
ated with estimates for deciduous forests. It appears that the
biomass and volume for deciduous forests are more challeng-
ing to predict even with integration of LiDAR and optical
sensors. This is an area where the development of species-
specific techniques could significantly improve results.
Furthermore, most studies reviewed in this section used low-
to medium-density discrete return airborne LiDAR. Higher-
density LiDAR data or other forms of LiDAR acquisition,
such as full waveform or terrestrial LiDAR, could potentially
enhance the volume and biomass estimation particularly for
deciduous forests due to analysis at a finer scale.

Forest Age and Productivity

Too few studies prevent firm conclusions from being drawn
about the utility of sensor fusion for forest age and productiv-
ity estimation. Nevertheless, a summary of existing studies is
presented. Forest age is highly correlated with growth and is a
key attribute in forest information systems [92]. Stand age is
an important variable but it may not always be available, such
as for extensive national forest inventories [93] and uneven-

aged natural forests [94]. Stand age data could be collected by
field inventory and ring count analysis, but this is labour-
intensive and lacks consistency among different cruising
crews [95, 96]. Therefore, alternative approaches are desirable
and remote-sensing techniques have been useful in estimating
forest age. Research has shown that forest age is correlated
with spectral reflectance of satellite imagery [97], especially
the near infrared band and its derived vegetation indices [98].
Remote-sensing data is also capable of estimating age or age
classes based on the differences in tree size, density, understo-
ry and canopy developments [99].

Because tree height is a strong predictor of forest age and
active sensors directly measure height, studies have incorpo-
rated active sensors into forest age estimation to improve ac-
curacy. Vega and St-Onge [100] developed a method of clas-
sifying unknown forest age based on existing age-height cor-
relations and a time-series of CHMs derived from both aerial
photography and LiDAR. CHMs were reconstructed for a
period of 58 years based on historic AP-derived CHMs and
a recent LiDAR-derived CHM. The RMSE of the estimated
forest age was 7 years.

Forest site productivity refers to the potential tree height or
aboveground wood volume for a particular forest site [101].
Understanding patterns in forest productivity is critical to for-
est resource management and influences tree species selec-
tion, design of optimal silvicultural regimes and forecasting
timber yields [102]. Site productivity is often expressed as site
index (SI), which is calculated as a function of the height of
dominant or co-dominant trees at a reference age [101, 103].
SI is a widely accepted quantification of productivity, as stand
height or current height growth seems to correlate well with
stand volume growth [101]. Also, compared to comprehen-
sive assessments of forest site condition, SI is a simple vari-
able that is relatively easy and inexpensive to measure and is
generally not affected by management practices [104].
However, in order to estimate SI, stand age must be known.

The information on tree height at various ages used for
building SI is normally derived from measurements of trees
from sample plots [105]. However, field measurements some-
times cannot capture the spatial variation of forest productivity
due to limited scale [100]. Improvements in availability of
remotely sensed data such as LiDAR have yielded opportuni-
ties for estimating site productivity at increasingly finer scales.
Studies have successfully utilised LiDAR to estimate domi-
nant tree height and evaluate SI and site type for boreal forest
in Finland [106], radiata pine in Australia [107] and eucalyp-
tus plantations in Brazil [108] with given forest age.
Alternatively, it is also possible to determine SI from single-
tree-based LiDAR to extract tree height at the individual tree
level so that site index can be predicted at stand level. For
example, Gatziolis [109] overlaid field-delineated individual
tree crowns on a LiDAR point cloud to estimate dominant tree
height; together with stand age information collected from the
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field, the SI at plot level was estimated. Chen and Zhu [104]
used LiDAR-derived heights for individual trees in combina-
tion with stand age to predict stand level SI for radiata pine
plantations in Australia.

Although LiDAR can accurately estimate tree heights and
hence SI, the use of a LiDAR sensor alone to estimate produc-
tivity can be limiting, especially if forests lack stand age infor-
mation. So far, very few studies have used integrated sensors to
evaluate site productivity. Lefsky et al. [110] derived stand age
by classifying a multi-temporal sequence of Landsat MSS and
TM images and extracted stand height and aboveground net
primary production of wood (NPP AW) from field measure-
ments and LiDAR transects. In this study NPP AW, which is
calculated as the average increment in biomass over a time
period, was used as the indicator for forest productivity. A
study mentioned earlier by Vega and St-Onge [100] used aerial
photos obtained between 1945 and 2003 and recent LiDAR
data to reconstruct CHMs over 58 years to estimate SI for jack
pine over an extended region; stand SI was estimated with an
average RMSE of 2.41 m. The approach developed produced
continuous SI and age maps in a spatially explicit way.

To date, too few integrated sensory studies have estimated
forest age and/or productivity to prove or disprove the utility of
the approach. Most age estimation research today is focussed
on using a single sensor or using time-series analysis of remote
sensing data [94, 97, 98, 110]. Both productivity studies [100,
110] used optical sensors to gain stand age information in
order to evaluate forest productivity, yet neither was consid-
ered a sensor fusion approach as the inputs from both LiDAR
and optical sensors were not used simultaneously. As a conse-
quence of the lack of previous studies, we are unable to draw
conclusions of whether sensor fusion can improve forest age
or productivity estimation, but promise has been shown.

Conclusion

The studies reviewed in this paper confirmed that fusion of
primarily airborne LiDAR and optical sensors can improve
many aspects of forest description. In particular, sensor fusion
significantly improved delineation of forest areas (by up to
20 %), identification of species (by up to 21 %), and estimation
of forest volume and biomass (by up to 55%). As LiDAR alone
has proven very effective in measuring canopy height, im-
provements in height estimation due to sensor fusion have been
relatively small (between 1 and 7 %). The improvement of
integrating LiDAR and optical sensors for forest age and pro-
ductivity assessment cannot be fully evaluated due to the lim-
ited number of studies, yet they provide future research direc-
tions for sensor fusion application. Some studies also showed
estimating forest height [79] and volume [89] of deciduous
forests can be more challenging than coniferous forests possi-
bly due to more complex forest structure and seasonal changes.

The approaches applied for classifying forest type and spe-
cies, estimating forest structural variables with inputs from
LiDAR and spectral data are relatively standardised.
However, forest delineation appears to lack a common ap-
proach to evaluate performance. It was noted that some studies
tend to compare the automated stand delineation results with
manual interpretation [58, 59], yet in reality manual results are
not always available. Mustonen et al. [53] assessed the varia-
tion in mean height, diameter and volume within delineated
stands as a basis for evaluating results, which may be an ap-
propriate approach for future studies. Moreover, modelling
approaches for predicting forest height and volume commonly
used linear or multiple regression analysis or non-parametric
approaches such as kNN and random forest. None of these
works for all situations; therefore, considerations should be
given to selecting the most appropriate modelling approach.
Brosofske et al. [91] provided a thorough review onmodelling
approaches for estimating forest variables, which serves as a
reference for selecting regression models.

While fusion appears to be effective in a research environ-
ment, a challenge will be to operationalise the research such
that forestry companies and governments can implement data
fusion for improved forest management. Research on imple-
mentation will have to consider how to include data fusion
into a standard forest mapping environment and also how to
fully utilise the advantages of sensor fusion without incurring
substantial extra costs. Additionally, the studies reviewed are
primarily discrete return airborne LiDAR, which has been
well developed and widely studied. Fusion of optical sensors
with other forms of LiDAR such as fullwave form and terres-
trial scanners is worth exploring in deriving an enhanced for-
est description.

Compliance with Ethics Guidelines

Conflict of Interest The authors of this paper declare that they have no
conflicts of interest.

Human and Animal Rights and Informed Consent This article con-
tains no studies with human or animal subjects performed by the author.

References

Papers of particular interest, published recently, have been
highlighted as:
• Of importance
•• Of major importance

1. Food and Agriculture Organization. State of the world’s forests
2014. Rome: FAO; 2014.

2. Boyd DS, Danson FM. Satellite remote sensing of forest re-
sources: three decades of research development. Prog Phys
Geogr. 2005;29(1):1–26. doi:10.1191/0309133305pp432ra.

Curr Forestry Rep (2015) 1:206–219 215

http://dx.doi.org/10.1191/0309133305pp432ra


3. Roberts JW, Tesfamichael S, Gebreslasie M, van Aardt J, Ahmed
FB. Forest structural assessment using remote sensing technolo-
gies: an overview of the current state of the art. South Hemisphere
For J. 2007;69(3):183–203. doi:10.2989/shfj.2007.69.3.8.358.

4. Morgenroth J, Visser R. Uptake and barriers to the use of
geospatial technologies in forest management. N Z J For Sci.
2013;43(1):16.

5. Wang Z, Boesch R. Color- and texture-based image segmentation
for improved forest delineation. IEEE Trans Geosci Remote Sens.
2007;45(10):3055–62. doi:10.1109/TGRS.2007.896283.

6. Tuominen S, Pekkarinen A. Performance of different spectral and
textural aerial photograph features in multi-source forest invento-
ry. Remote Sens Environ. 2005;94(2):256–68. doi:10.1016/j.rse.
2004.10.001.

7. Haara A, Haarala M. Tree species classification using semi-
automatic delineation of trees on aerial images. Scand J For Res.
2002;17(6):556–65. doi:10.1080/02827580260417215.

8. Kovats M. A large-scale aerial photographic technique for mea-
suring tree heights on long-term forest installations. Photogramm
Eng Remote Sens. 1997;63(6):741–7.

9. Dandois JP, Ellis EC. High spatial resolution three-dimensional
mapping of vegetation spectral dynamics using computer vision.
Remote Sens Environ. 2013;136:259–76. doi:10.1016/j.rse.2013.
04.005.

10. Holmgren P, Thuresson T, Holm S. Estimating forest characteris-
tics in scanned aerial photographs with respect to requirements for
economic forest management planning. Scand J For Res.
1997;12(2):189–99. doi:10.1080/02827589709355400.

11. Campbell JB, Wynne RH. Introduction to remote sensing. New
York: The Guilford Press; 2011.

12. Maselli F, Chirici G, Bottai L, Corona P, Marchetti M. Estimation
of Mediterranean forest attributes by the application of kNN pro-
cedures to multitemporal Landsat ETM+ images. Int J Remote
Sens. 2005;26(17):3781–96. doi:10.1080/01431160500166433.

13. Wolter PT, Townsend PA, Sturtevant BR. Estimation of forest
structural parameters using 5 and 10 meter SPOT-5 satellite data.
Remote Sens Environ. 2009;113(9):2019–36. doi:10.1016/j.rse.
2009.05.009.

14. Ingram JC, Dawson TP, Whittaker RJ. Mapping tropical forest
structure in southeastern Madagascar using remote sensing and
artificial neural networks. Remote Sens Environ. 2005;94(4):
491–507. doi:10.1016/j.rse.2004.12.001.

15. Cohen WB, Maiersperger TK, Gower ST, Turner DP. An im-
proved strategy for regression of biophysical variables and
Landsat ETM+ data. Remote Sens Environ. 2003;84(4):561–71.
doi:10.1016/S0034-4257(02)00173-6.

16. Eklundh L, Harrie L, Kuusk A. Investigating relationships be-
tween Landsat ETM+ sensor data and leaf area index in a boreal
conifer forest. Remote Sens Environ. 2001;78(3):239–51. doi:10.
1016/S0034-4257(01)00222-X.

17. Jensen RR, Binford MW. Measurement and comparison of leaf
area index estimators derived from satellite remote-sensing tech-
niques. Int J Remote Sens. 2004;25(20):4251–65. doi:10.1080/
01431160410001680400.

18. Franco-Lopez H, Ek AR, Bauer ME. Estimation and mapping of
forest stand density, volume, and cover type using the k-nearest
neighbors method. Remote Sens Environ. 2001;77(3):251–74.
doi:10.1016/s0034-4257(01)00209-7.

19. Hall RJ, Skakun RS, Arsenault EJ, Case BS. Modeling forest
stand structure attributes using Landsat ETM+ data: application
to mapping of aboveground biomass and stand volume. For Ecol
Manag. 2006;225(1-3):378–90. doi:10.1016/j.foreco.2006.01.
014.

20. Zheng D, Rademacher J, Chen J, Crow T, Bresee M, le Moine J.
Estimating aboveground biomass using Landsat 7 ETM+ data
across a managed landscape in northern Wisconsin, USA.

Remote Sens Environ. 2004;93(3):402–11. doi:10.1016/j.rse.
2004.08.008.

21. Kayitakire F, Hamel C, Defourny P. Retrieving forest structure
variables based on image texture analysis and IKONOS-2 imag-
ery. Remote Sens Environ. 2006;102(3-4):390–401. doi:10.1016/
j.rse.2006.02.022.

22. Immitzer M, Atzberger C, Koukal T. Tree species classification
with random forest using very high spatial resolution 8-band
Worldview-2 satellite data. Remote Sens. 2012;4(9):2661–93.
doi:10.3390/rs4092661.

23. Shamsoddini A, Trinder JC, Turner R. Pine plantation structure
mapping using WorldView-2 multispectral image. Int J Remote
Sens. 2013;34(11):3986–4007. doi:10.1080/01431161.2013.
772308.

24.•• HudakAT, LefskyMA, CohenWB,BerterretcheM. Integration of
LiDAR and Landsat ETM plus data for estimating and mapping
forest canopy height. Remote Sens Environ. 2002;82(2-3):397–
416. doi:10.1016/s0034-4257(02)00056-1. One of the first
studies using fusion of LiDAR and optical sensor to estimate
forest variable.

25. Wulder MA, Seemann D. Forest inventory height update through
the integration of LiDAR data with segmented Landsat imagery.
Can J Remote Sens. 2003;29(5):536–43.

26. Hyde P, Dubayah R, Walker W, Blair JB, Hofton M, Hunsaker C.
Mapping forest structure for wildlife habitat analysis using multi-
sensor (LiDAR, SAR/InSAR, ETM plus, QuickBird) synergy.
Remote Sens Environ. 2006;102(1-2):63–73. doi:10.1016/j.rse.
2006.01.021.

27. Hudak AT, Evans JS, Smith AMS. LiDAR utility for natural re-
source managers. Remote Sens. 2009;1(4):934–51. doi:10.3390/
rs1040934.

28. Peper PJ, McPherson EG, Mori SM. Equations for predicting
diameter, height, crown width, and leaf area of San Joaquin valley
street trees. J Arboric. 2001;27(6):306–17.

29. Gill SJ, Biging GS, Murphy EC. Modeling conifer tree crown
radius and estimating canopy cover. For Ecol Manag.
2000;126(3):405–16. doi:10.1016/S0378-1127(99)00113-9.

30. Bi H, Fox JC, Li Y, Lei Y, Pang Y. Evaluation of nonlinear equa-
tions for predicting diameter from tree height. Can J For Res-
Revue Canadienne De Recherche Forestiere. 2012;42(4):789–
806. doi:10.1139/x2012-019.

31. Zianis D, Seura SM. Biomass and stem volume equations for tree
species in Europe. Finnish Society of Forest Science, Finnish
Forest Research Institute. 2005.

32. McIntosh ACS, Gray AN, Garman SL. Estimating canopy cover
from standard forest inventory measurements in Western Oregon.
For Sci. 2012;58(2):154–67. doi:10.5849/forsci.09-127.

33. Naesset E, Bjerknes K. Estimating tree heights and number of
stems in young forest stands using airborne laser scanner data.
Remote Sen Environ. 2001;78(3):328–40.

34. Packalen P, Maltamo M. Estimation of species-specific diameter
distributions using airborne laser scanning and aerial photographs.
Can J For Res-Revue Canadienne De Recherche Forestiere.
2008;38(7):1750–60. doi:10.1139/x08-037.

35. d’Oliveira MVN, Reutebuch SE, McGaughey RJ, Andersen HE.
Estimating forest biomass and identifying low-intensity logging
areas using airborne scanning LiDAR in Antimary State Forest,
Acre State, Western Brazilian Amazon. Remote Sens Environ.
2012;124:479–91. doi:10.1016/j.rse.2012.05.014.

36. Naesset E. Airborne laser scanning as a method in operational
forest inventory: status of accuracy assessments accomplished in
Scandinavia. Scand J For Res. 2007;22(5):433–42. doi:10.1080/
02827580701672147.

37. Hall SA, Burke IC, Box DO, Kaufmann MR, Stoker JM.
Estimating stand structure using discrete-return LiDAR: an exam-
ple from low density, fire prone ponderosa pine forests. For Ecol

216 Curr Forestry Rep (2015) 1:206–219

http://dx.doi.org/10.2989/shfj.2007.69.3.8.358
http://dx.doi.org/10.1109/TGRS.2007.896283
http://dx.doi.org/10.1016/j.rse.2004.10.001
http://dx.doi.org/10.1016/j.rse.2004.10.001
http://dx.doi.org/10.1080/02827580260417215
http://dx.doi.org/10.1016/j.rse.2013.04.005
http://dx.doi.org/10.1016/j.rse.2013.04.005
http://dx.doi.org/10.1080/02827589709355400
http://dx.doi.org/10.1080/01431160500166433
http://dx.doi.org/10.1016/j.rse.2009.05.009
http://dx.doi.org/10.1016/j.rse.2009.05.009
http://dx.doi.org/10.1016/j.rse.2004.12.001
http://dx.doi.org/10.1016/S0034-4257(02)00173-6
http://dx.doi.org/10.1016/S0034-4257(01)00222-X
http://dx.doi.org/10.1016/S0034-4257(01)00222-X
http://dx.doi.org/10.1080/01431160410001680400
http://dx.doi.org/10.1080/01431160410001680400
http://dx.doi.org/10.1016/s0034-4257(01)00209-7
http://dx.doi.org/10.1016/j.foreco.2006.01.014
http://dx.doi.org/10.1016/j.foreco.2006.01.014
http://dx.doi.org/10.1016/j.rse.2004.08.008
http://dx.doi.org/10.1016/j.rse.2004.08.008
http://dx.doi.org/10.1016/j.rse.2006.02.022
http://dx.doi.org/10.1016/j.rse.2006.02.022
http://dx.doi.org/10.3390/rs4092661
http://dx.doi.org/10.1080/01431161.2013.772308
http://dx.doi.org/10.1080/01431161.2013.772308
http://dx.doi.org/10.1016/s0034-4257(02)00056-1
http://dx.doi.org/10.1016/j.rse.2006.01.021
http://dx.doi.org/10.1016/j.rse.2006.01.021
http://dx.doi.org/10.3390/rs1040934
http://dx.doi.org/10.3390/rs1040934
http://dx.doi.org/10.1016/S0378-1127(99)00113-9
http://dx.doi.org/10.1139/x2012-019
http://dx.doi.org/10.5849/forsci.09-127
http://dx.doi.org/10.1139/x08-037
http://dx.doi.org/10.1016/j.rse.2012.05.014
http://dx.doi.org/10.1080/02827580701672147
http://dx.doi.org/10.1080/02827580701672147


Manag. 2005;208(1-3):189–209. doi:10.1016/j.foreco.2004.12.
001.

38. Jensen JLR, Humes KS, Vierling LA, Hudak AT. Discrete return
LiDAR-based prediction of leaf area index in two conifer forests.
Remote Sens Environ. 2008;112(10):3947–57. doi:10.1016/j.rse.
2008.07.001.

39. Donoghue DNM,Watt PJ. Using LiDAR to compare forest height
estimates from IKONOS and Landsat ETM+ data in Sitka spruce
plantation forests. Int J Remote Sens. 2006;27(11):2161–75. doi:
10.1080/01431160500396493.

40. Eid T, Gobakken T, Naesset E. Comparing stand inventories for
large areas based on photo-interpretation and laser scanning by
means of cost-plus-loss analyses. Scand J For Res. 2004;19(6):
512–23. doi:10.1080/02827580410019463.

41. Naesset E, Gobakken T, Holmgren J, Hyyppa H, Hyyppa J,
Maltamo M, et al. Laser scanning of forest resources: the Nordic
experience. Scand J For Res. 2004;19(6):482–99. doi:10.1080/
02827580410019553.

42. Lefsky MA, Cohen WB, Spies TA. An evaluation of alternate
remote sensing products for forest inventory, monitoring, and
mapping of Douglas-fir forests in western Oregon. Can J For
Res-Revue Canadienne De Recherche Forestiere. 2001;31(1):
78–87. doi:10.1139/cjfr-31-1-78.

43. McInerney DO, Suarez-Minguez J, Valbuena R, Nieuwenhuis M.
Forest canopy height retrieval using LiDAR data, medium-
resolution satellite imagery and kNN estimation in Aberfoyle.
Scot For. 2010;83(2):195–206. doi:10.1093/forestry/cpq001.

44. Pascual C, Garcia-Abril A, Cohen WB, Martin-Fernandez S.
Relationship between LiDAR-derived forest canopy height and
Landsat images. Int J Remote Sens. 2010;31(5):1261–80. doi:
10.1080/01431160903380656.

45. Ackermann F. Airborne laser scanning: present status and future
expectations. ISPRS J Photogramm Remote Sens. 1999;54(2-3):
64–7. doi:10.1016/s0924-2716(99)00009-x.

46. Dubayah RO, Drake JB. Lidar remote sensing for forestry. J For.
2000;98(6):44–6.

47. Lim K, Treitz P, Wulder M, St-Onge B, Flood M. LiDAR remote
sensing of forest structure. Prog Phys Geogr. 2003;27(1):88–106.
doi:10.1191/0309133303pp360ra.

48. Wehr A, Lohr U. Airborne laser scanning—an introduction and
overview. ISPRS J Photogramm Remote Sens. 1999;54(2–3):68–
82. doi:10.1016/s0924-2716(99)00011-8.

49.•• Wulder MA, White JC, Nelson RF, Naesset E, Orka HO, Coops
NC, et al. LiDAR sampling for large-area forest characterization: a
review. Remote Sens Environ. 2012;121:196–209. doi:10.1016/j.
rse.2012.02.001. This paper throughly reviews the LiDAR
sampling studies and provide guidelines for characterising
large-area forests.

50. Gleason CJ, Im J. A review of remote sensing of forest biomass
and biofuel: options for small-area applications. Gisci Remote
Sens. 2011;48(2):141–70. doi:10.2747/1548-1603.48.2.141.

51. Ustin SL, Gamon JA. Remote sensing of plant functional types.
New Phytol. 2010;186(4):795–816. doi:10.1111/j.1469-8137.
2010.03284.x.

52. Eysn L, Hollaus M, Schadauer K, Pfeifer N. Forest delineation
based on airborne LiDAR data. Remote Sens. 2012;4(3):762–83.
doi:10.3390/rs4030762.

53. Mustonen J, Packalén P, Kangas A. Automatic segmentation of
forest stands using a canopy height model and aerial photography.
Scand J For Res. 2008;23(6):534–45. doi:10.1080/
02827580802552446.

54. Nordkvist K, Granholm AH, Holmgren J, Olsson H, Nilsson M.
Combining optical satellite data and airborne laser scanner data for
vegetation classification. Remote Sens Lett. 2012;3(5):393–401.
doi:10.1080/01431161.2011.606240.

55.• Sasaki T, Imanishi J, Ioki K, Morimoto Y, Kitada K. Object-based
classification of land cover and tree species by integrating airborne
LiDAR and high spatial resolution imagery data. Landsc Ecol
Eng. 2012;8(2):157–71. doi:10.1007/s11355-011-0158-z. A
representative study of sensor fusion in enhancing land cover
mapping and species classification.

56. Bork EW, Su JG. Integrating LiDAR data and multispectral im-
agery for enhanced classification of rangeland vegetation: a meta
analysis. Remote Sens Environ. 2007;111(1):11–24. doi:10.1016/
j.rse.2007.03.011.

57.• Dupuy S, Laine G, Tassin J, Sarrailh JM. Characterization of the
horizontal structure of the tropical forest canopy using object-
based LiDAR and multispectral image analysis. Int J Appl Earth
Obs Geoinf. 2013;25:76–86. doi:10.1016/j.jag.2013.04.001. This
paper examined different segmentation parameters to
optimise segmenttaion in the object-based classification
process.

58. Wang Z, Boesch R, Ginzler C, editors. Integration of high resolu-
tion aerial images and airborne LiDAR data for forest delineation.
The ISPRS XXXVII Congress. 2008; Beijing, China.

59. Haywood A, Stone C. Semi-automating the stand delineation pro-
cess in mapping natural eucalpt forest. Aust For. 2009;74(1):13–
22. doi:10.1080/00049158.2011.10676341.

60. Machala M, Zejdova L. Forest mapping through object-based im-
age analysis of multispectral and LiDAR aerial data. Eur J Remote
Sens. 2014;47:117–31. doi:10.5721/EuJRS20144708.

61. Lu D, Weng Q. A survey of image classification methods and
techniques for improving classification performance. Int J
Remo t e Sen s . 2 007 ; 28 ( 5 ) : 8 23–70 . do i : 1 0 . 1 080 /
01431160600746456.

62. Chubey MS, Franklin SE, Wulder MA. Object-based analysis of
Ikonos-2 imagery for extraction of forest inventory parameters.
Photogramm Eng Remote Sens. 2006;72(4):383–94.

63. Gao J. Classification accuracy assessment. Digital analysis of re-
motely sensed imagery. New York: McGraw Hill; 2009.

64. Foody GM. Status of land cover classification accuracy assess-
ment. Remote Sens Environ. 2002;80(1):185–201. doi:10.1016/
S0034-4257(01)00295-4.

65. Orka HO, Dalponte M, Gobakken T, Naesset E, Ene LT.
Characterizing forest species composition using multiple remote
sensing data sources and inventory approaches. Scand J For Res.
2013;28(7):677–88. doi:10.1080/02827581.2013.793386.

66. Hirata Y, Furuya N, Suzuki M, Yamamoto H. Airborne laser scan-
ning in forest management: individual tree identification and laser
pulse penetration in a stand with different levels of thinning. For
Ecol Manag. 2009;258(5):752–60. doi:10.1016/j.foreco.2009.05.
017.

67. Li W, Guo Q, Jakubowski MK, Kelly M. A new method for
segmenting individual trees from the LiDAR point cloud.
Photogramm Eng Remote Sens. 2012;78(1):75–84. doi:10.
14358/PERS.78.1.75.

68. Yu XW, Hyyppa J, Vastaranta M, Holopainen M, Viitala R.
Predicting individual tree attributes from airborne laser point
clouds based on the random forests technique. ISPRS J
Photogramm Remote Sens. 2011;66(1):28–37. doi:10.1016/j.
isprsjprs.2010.08.003.

69. Holmgren J, Persson A, Soderman U. Species identification of
individual trees by combining high resolution LiDAR data with
multi-spectral images. Int J Remote Sens. 2008;29(5):1537–52.
doi:10.1080/01431160701736471.

70. Ke YH, Quackenbush LJ, Im J. Synergistic use of QuickBird
multispectral imagery and LiDAR data for object-based forest
species classification. Remote Sens Environ. 2010;114(6):1141–
54. doi:10.1016/j.rse.2010.01.002.

71.• Zhang Z, Liu X. WorldView-2 satellite imagery and airborne
LiDAR data for object-based forest species classification in a cool

Curr Forestry Rep (2015) 1:206–219 217

http://dx.doi.org/10.1016/j.foreco.2004.12.001
http://dx.doi.org/10.1016/j.foreco.2004.12.001
http://dx.doi.org/10.1016/j.rse.2008.07.001
http://dx.doi.org/10.1016/j.rse.2008.07.001
http://dx.doi.org/10.1080/01431160500396493
http://dx.doi.org/10.1080/02827580410019463
http://dx.doi.org/10.1080/02827580410019553
http://dx.doi.org/10.1080/02827580410019553
http://dx.doi.org/10.1139/cjfr-31-1-78
http://dx.doi.org/10.1093/forestry/cpq001
http://dx.doi.org/10.1080/01431160903380656
http://dx.doi.org/10.1016/s0924-2716(99)00009-x
http://dx.doi.org/10.1191/0309133303pp360ra
http://dx.doi.org/10.1016/s0924-2716(99)00011-8
http://dx.doi.org/10.1016/j.rse.2012.02.001
http://dx.doi.org/10.1016/j.rse.2012.02.001
http://dx.doi.org/10.2747/1548-1603.48.2.141
http://dx.doi.org/10.1111/j.1469-8137.2010.03284.x
http://dx.doi.org/10.1111/j.1469-8137.2010.03284.x
http://dx.doi.org/10.3390/rs4030762
http://dx.doi.org/10.1080/02827580802552446
http://dx.doi.org/10.1080/02827580802552446
http://dx.doi.org/10.1080/01431161.2011.606240
http://dx.doi.org/10.1007/s11355-011-0158-z
http://dx.doi.org/10.1016/j.rse.2007.03.011
http://dx.doi.org/10.1016/j.rse.2007.03.011
http://dx.doi.org/10.1016/j.jag.2013.04.001
http://dx.doi.org/10.1080/00049158.2011.10676341
http://dx.doi.org/10.5721/EuJRS20144708
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.1080/02827581.2013.793386
http://dx.doi.org/10.1016/j.foreco.2009.05.017
http://dx.doi.org/10.1016/j.foreco.2009.05.017
http://dx.doi.org/10.14358/PERS.78.1.75
http://dx.doi.org/10.14358/PERS.78.1.75
http://dx.doi.org/10.1016/j.isprsjprs.2010.08.003
http://dx.doi.org/10.1016/j.isprsjprs.2010.08.003
http://dx.doi.org/10.1080/01431160701736471
http://dx.doi.org/10.1016/j.rse.2010.01.002


temperate rainforest environment. Developments in multidimen-
sional spatial data models. Berlin: Springer Berlin Heidelberg;
2013. p. 103–22. A recent study utilising very high resolution
imagery and LiDAR to classify forest species, the advantages
of sensor fusion were well addressed.

72. Dalponte M, Bruzzone L, Gianelle D. Fusion of hyperspectral and
LiDAR remote sensing data for classification of complex forest
areas. IEEE Trans Geosci Remote Sens. 2008;46(5):1416–27. doi:
10.1109/TGRS.2008.916480.

73. Jones TG, Coops NC, Sharma T. Assessing the utility of airborne
hyperspectral and LiDAR data for species distribution mapping in
the coastal Pacific Northwest. Can Remote Sens Environ.
2010;114(12):2841–52. doi:10.1016/j.rse.2010.07.002.

74. Mountrakis G, Im J, Ogole C. Support vector machines in remote
sensing: a review. ISPRS J Photogramm Remote Sens.
2011;66(3):247–59. doi:10.1016/j.isprsjprs.2010.11.001.

75. Lefsky M, Cohen W, Spies T. An evaluation of alternate remote
sensing products for forest inventory, monitoring, and mapping of
Douglas-fir forests in western Oregon. Can J For Res. 2001;31(1):
78–87.

76.• Mora B,WulderMA,White JC, Hobart G. Modeling stand height,
volume, and biomass from very high spatial resolution satellite
imagery and samples of airborne LiDAR. Remote Sens.
2013;5(5):2308–26. doi:10.3390/rs5052308. This applied study
adopted the optimal modelling appraoch to model invididual
forest structural atrributes.

77. McCombs JW, Roberts SD, Evans DL. Influence of fusing
LiDAR and multispectral imagery on remotely sensed estimates
of stand density and mean tree height in a managed loblolly pine
plantation. For Sci. 2003;49(3):457–66.

78. Suárez JC, Ontiveros C, Smith S, Snape S. Use of airborne LiDAR
and aerial photography in the estimation of individual tree heights
in forestry. Comput Geosci. 2005;31(2):253–62. doi:10.1016/j.
cageo.2004.09.015.

79. Popescu SC, Wynne RH. Seeing the trees in the forest: using
LiDAR and multispectral data fusion with local filtering and var-
iable window size for estimating tree height. Photogramm Eng
Remote Sens. 2004;70(5):589–604. doi:10.14358/PERS.70.5.
589.

80. Erdody TL, Moskal LM. Fusion of LiDAR and imagery for esti-
mating forest canopy fuels. Remote Sens Environ. 2010;114(4):
725–37. doi:10.1016/j.rse.2009.11.002.

81. Rosenqvist A, Milne A, Lucas R, Imhoff M, Dobson C. A review
of remote sensing technology in support of the Kyoto Protocol.
Environ Sci Pol. 2003;6(5):441–55. doi:10.1016/s1462-9011(03)
00070-4.

82. Jochem A, Hollaus M, Rutzinger M, Höfle B. Estimation of
aboveground biomass in alpine forests: a semi-empirical approach
considering canopy transparency derived from airborne LiDAR
data. Sensors. 2010;11(1):278–95.

83. St-Onge B, Hu Y, Vega C. Mapping the height and above-ground
biomass of a mixed forest using LiADR and stereo Ikonos images.
Int J Remote Sens. 2008;29(5):1277–94. doi:10.1080/
01431160701736505.

84. Tonolli S, Dalponte M, Neteler M, Rodeghiero M, Vescovo L,
Gianelle D. Fusion of airborne LiDAR and satellite multispectral
data for the estimation of timber volume in the Southern Alps.
Remote Sens Environ. 2011;115(10):2486–98. doi:10.1016/j.rse.
2011.05.009.

85. Popescu SC, Wynne RH, Scrivani JA. Fusion of small-footprint
LiDAR and multispectral data to estimate plot-level volume and
biomass in deciduous and pine forests in Virginia. USA For Sci.
2004;50(4):551–65.

86. Wallerman J, Holmgren J. Estimating field-plot data of forest
stands using airborne laser scanning and SPOT HRG data.

Remote Sens Environ. 2007;110(4):501–8. doi:10.1016/j.rse.
2007.02.028.

87. Estornell J, Ruiz LA, Velazquez-Marti B, Hermosilla T.
Estimation of biomass and volume of shrub vegetation using
LiDAR and spectral data in a Mediterranean environment.
Biomass Bioenergy. 2012;46:710–21. doi:10.1016/j.biombioe.
2012.06.023.

88. Berterretche M, Hudak AT, Cohen WB, Maiersperger TK, Gower
ST, Dungan J. Comparison of regression and geostatistical
methods for mapping leaf area index (LAI) with Landsat ETM+
data over a boreal forest. Remote Sens Environ. 2005;96(1):49–
61. doi:10.1016/j.rse.2005.01.014.

89. Packalen P, MaltamoM. The k-MSNmethod for the prediction of
species-specific stand attributes using airborne laser scanning and
aerial photographs. Remote Sens Environ. 2007;109(3):328–41.
doi:10.1016/j.rse.2007.01.005.

90. Cartus O, Kellndorfer J, RombachM,WalkerW.Mapping canopy
height and growing stock volume using airborne LiDAR, ALOS
PALSAR and Landsat ETM. Remote Sens. 2012;4(11):3320–45.
doi:10.3390/rs4113320.

91. Brosofske KD, Froese RE, Falkowski MJ, Banskota A. A review
of methods for mapping and prediction of inventory attributes for
operational forest management. For Sci. 2014;60(4):733–56. doi:
10.5849/forsci.12-134.

92. Clark A, Daniels RF, Borders BE, editors. Effect of rotation age
and physiographic region on weight per cubic foot of planted
loblolly pine. Proceedings of the 13th Biennial Southern
Silvicultural Research Conference. USDS, Forest Service,
Southern Research Station, Asheville, NC. 2006.

93. Tomé J, Tomé M, Barreiro S, Paulo JA. Age-independent differ-
ence equations for modelling tree and stand growth. Can J For
Res. 2006;36(7):1621–30.

94. Weber TC, Boss DE. Use of LiDAR and supplemental data to
estimate forest maturity in Charles County, MD, USA. For Ecol
Manag. 2009;258(9):2068–75. doi:10.1016/j.foreco.2009.08.001.

95. Avery TE, Berlin GL. Fundamentals of remote sensing and
airphoto interpretation. 5th ed. Englewood Cliffs: Prentice Hall;
1992.

96. Avery TE, Burkhart HE. Forest measurements. vol Ed. 3.
Dubuque: McGraw-Hill; 1983.

97. CohenWB, Spies TA, FiorellaM. Estimating the age and structure
of forests in a multi-ownership landscape of Western Oregon,
USA. Int J Remote Sens. 1995;16(4):721–46.

98. Jensen JR, Qiu F, Ji MH. Predictive modelling of coniferous forest
age using statistical and artificial neural network approaches ap-
plied to remote sensor data. Int J Remote Sens. 1999;20(14):2805–
22.

99. Gemmell FM. Effects of forest cover, terrain, and scale on timber
volume estimation with thematic mapper data in a rocky-mountain
site. Remote Sens Environ. 1995;51(2):291–305. doi:10.1016/
0034-4257(94)00056-s.

100. Vega C, St-Onge B. Mapping site index and age by linking a time
series of canopy height models with growth curves. For Ecol
Manag. 2009;257(3):951–9. doi:10.1016/j.foreco.2008.10.029.

101. Skovsgaard JP, Vanclay JK. Forest site productivity: a review of
the evolution of dendrometric concepts for even-aged stands.
Forestry. 2008;81(1):13–31. doi:10.1093/forestry/cpm041.

102. Bontemps J-D, Bouriaud O. Predictive approaches to forest site
productivity: recent trends, challenges and future perspectives.
Forestry. 2014;87(1):109–28. doi:10.1093/forestry/cpt034.

103. Sharma RP, Brunner A, Eid T. Site index prediction from site and
climate variables for Norway spruce and Scots pine in Norway.
Scand J For Res. 2012;27(7):619–36. doi:10.1080/02827581.
2012.685749.

104. Chen Y, Zhu X. Site quality assessment of a Pinus radiata planta-
tion in Victoria, Australia, using LiDAR technology. Southern

218 Curr Forestry Rep (2015) 1:206–219

http://dx.doi.org/10.1109/TGRS.2008.916480
http://dx.doi.org/10.1016/j.rse.2010.07.002
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.3390/rs5052308
http://dx.doi.org/10.1016/j.cageo.2004.09.015
http://dx.doi.org/10.1016/j.cageo.2004.09.015
http://dx.doi.org/10.14358/PERS.70.5.589
http://dx.doi.org/10.14358/PERS.70.5.589
http://dx.doi.org/10.1016/j.rse.2009.11.002
http://dx.doi.org/10.1016/s1462-9011(03)00070-4
http://dx.doi.org/10.1016/s1462-9011(03)00070-4
http://dx.doi.org/10.1080/01431160701736505
http://dx.doi.org/10.1080/01431160701736505
http://dx.doi.org/10.1016/j.rse.2011.05.009
http://dx.doi.org/10.1016/j.rse.2011.05.009
http://dx.doi.org/10.1016/j.rse.2007.02.028
http://dx.doi.org/10.1016/j.rse.2007.02.028
http://dx.doi.org/10.1016/j.biombioe.2012.06.023
http://dx.doi.org/10.1016/j.biombioe.2012.06.023
http://dx.doi.org/10.1016/j.rse.2005.01.014
http://dx.doi.org/10.1016/j.rse.2007.01.005
http://dx.doi.org/10.3390/rs4113320
http://dx.doi.org/10.5849/forsci.12-134
http://dx.doi.org/10.1016/j.foreco.2009.08.001
http://dx.doi.org/10.1016/0034-4257(94)00056-s
http://dx.doi.org/10.1016/0034-4257(94)00056-s
http://dx.doi.org/10.1016/j.foreco.2008.10.029
http://dx.doi.org/10.1093/forestry/cpm041
http://dx.doi.org/10.1093/forestry/cpt034
http://dx.doi.org/10.1080/02827581.2012.685749
http://dx.doi.org/10.1080/02827581.2012.685749


For: J For Sci. 2012;74(4):217–27. doi:10.2989/20702620.2012.
741767.

105. Raulier F, Lambert M-C, Pothier D, Ung C-H. Impact of dominant
tree dynamics on site index curves. For Ecol Manag. 2003;184(1–
3):65–78. doi:10.1016/S0378-1127(03)00149-X.

106. Holopainen M, Vastaranta M, Haapanen R, Yu X, Hyyppä J,
Kaartinen H, et al. Site-type estimation using airborne laser scan-
ning and stand register data. Photogramm J Fin. 2010;22:16–32.

107. Rombouts J, Ferguson IS, Leech JW. Campaign and site effects in
LiDAR prediction models for site-quality assessment of radiata
pine plantations in South Australia. Int J Remote Sens.
2010;31(5):1155–73. doi:10.1080/01431160903380573.

108. Packalén P, Mehtätalo L, Maltamo M. ALS-based estimation of
plot volume and site index in a eucalyptus plantation with a non-
linear mixed-effect model that accounts for the clone effect. Ann
For Sci. 2011;68(6):1085–92. doi:10.1007/s13595-011-0124-9.

109. Gatziolis D. LIDAR-derived site index in the US pacific north-
west—challenges and opportunities. The International Archives of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences, Espoo, Finland. 2007. 36(Part 3/W52):pp. 136–43.

110. Lefsky MA, Turner DP, Guzy M, Cohen WB. Combining LiDAR
estimates of aboveground biomass and Landsat estimates of stand
age for spatially extensive validation of modeled forest productiv-
ity. Remote Sens Environ. 2005;95(4):549–58. doi:10.1016/j.rse.
2004.12.022.

Curr Forestry Rep (2015) 1:206–219 219

http://dx.doi.org/10.2989/20702620.2012.741767
http://dx.doi.org/10.2989/20702620.2012.741767
http://dx.doi.org/10.1016/S0378-1127(03)00149-X
http://dx.doi.org/10.1080/01431160903380573
http://dx.doi.org/10.1007/s13595-011-0124-9
http://dx.doi.org/10.1016/j.rse.2004.12.022
http://dx.doi.org/10.1016/j.rse.2004.12.022

	Integrating...
	Abstract
	Introduction
	Fusion of LiDAR and Optical Sensors
	Forest Delineation and Classification
	Forest Species
	Tree Height
	Forest Volume and Biomass
	Forest Age and Productivity

	Conclusion
	References
	Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance



