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Abstract Climate change, including increasing atmospheric
CO2 concentrations ([CO2]), nitrogen deposition, and recov-
ery from past management have led to changes in forest pro-
ductivity in many parts of the world. Process-based forest
models have been widely used to project productivity changes
under changing environmental conditions into the future.
Based on a review of published simulation results from a large
number of process-based models, a synthesis of impacts of
environmental change on forest productivity and carbon pools
is presented. This synthesis shows that most stand-scale pro-
cess-based model studies have been carried out in temperate
and boreal forests, focusing mostly on monospecific forests
with tree species that are relevant for forestry and on analyses
of the impacts of climate change and of increasing [CO2]
rather than that of other environmental drivers. Forest produc-
tivity and biomass carbon pools in these forests mainly re-
spond positively to environmental change especially if the
effects of increasing [CO2] are included. If climate change is
considered in isolation 61 % of the simulations show positive
responses, but 35 % of the simulations show decreasing forest
productivity and declining biomass carbon pools. Boreal for-
ests mostly become more productive and sequester more car-
bon under climate change and increasing [CO2], while tem-
perate and especially Mediterranean forests show more mixed

responses depending on the importance of individual environ-
mental driving variables. It is recommended that futuremodel-
ing studies should increasingly strive to incorporate mixed
stands and tropical forests, and include other environmental
drivers besides climate and [CO2] to better capture the totality
of future changes in forest productivity and carbon pools.
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Introduction

In past decades, ground-basedmeasurements and satellite data
have indicated shifts in forest productivity in all major forest
biomes [1–7]. These observations have been attributed not
only to environmental change such as increasing nitrogen
(N) deposition, increasing atmospheric carbon dioxide con-
centrations ([CO2]) and climate change but also to changing
management practices (e.g., [8, 9]. Recent analyses have
shown that N depositions indeed have a fertilizing effect on
forest productivity and increase carbon sequestration [10–12].
There is also evidence that increasing [CO2] enhances photo-
synthesis and water-use efficiency, although it is unclear how
strongly this ultimately affects productivity [13, 14]. In addi-
tion, climate has been identified as a major control of forest
productivity throughout the world as evidenced by analysis of
dendrochronological (e.g., [15]), observational [12, 16], flux
[17], and satellite [4, 18] data. Increasing temperature directly
affects tree productivity through its effects on growth tempera-
tures [19] and indirectly in combination with precipitation
through its effects on growing season length [20, 21] and soil
water status. All these environmental factors interact with each
other and with other environmental variables such as ozone
(O3) in complex and multiple ways [22, 23]. They also vary
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regionally, and more detailed reviews of the effects of environ-
mental change on forest processes are available [23–25]. It is
crucial for many forest ecosystem services such as carbon se-
questration or timber production as well as for forests’ adapta-
tion to climate change to determine how forest productivity will
change under projections of future environmental change.

Besides observing effects of environmental change on for-
est productivity, which, by definition, can only detect past
changes, and carrying out experiments, which are usually lim-
ited in forests due to the large spatial and temporal scales
involved in setting up experiments with trees, models can be
used to analyze and project forest productivity under environ-
mental change. An advantage of a modeling approach is that,
by integrating knowledge from observations and experiments,
they allow hypotheses to be generated and tested; they can
include many environmental drivers and analyze influences
of individual drivers over long time periods and under many
different environmental change scenarios. However, this flex-
ibility comes at the cost of simplifying the system to a degree
that essential responses and feedbacks may be lost. Further-
more, model-based projections of the effects of environmental
change suffer from several types of uncertainties (e.g., [26•]),
which need to be accounted for when interpreting the results
of model projections [27]. Summarizing the results of several
models allows an evaluation of the consistency of model re-
sults across different model structures.

Therefore, the objective of this paper was to review pub-
lished stand-scale process-based model projections of changes
in forest productivity and carbon pools driven by environmen-
tal change. The intention of the paper was not to explain the
individual models’ results in terms of the underlying processes
or the ways the models are constructed nor to judge the models’
quality. Although it is clear that the models considered here
have different structures, use different input data, and scenarios
of environmental change, it was assumed that general patterns
of changes in forest productivity under environmental change
will transcend these methodological differences.

Model Types for Simulating Climate Change
Impacts on Forests

There are many model types that have been used for simulating
the impacts of changing environmental conditions on forests
[28••], and much progress has been made since the early re-
views of Agren et al. [29] and Shugart et al. [30] of such
models. Gap-type models (see [31]) capture long-term forest
dynamics but have been criticized for oversimplifying tree
growth responses to climatic variables [32, 33]. Purely empir-
ical models that rely on statistical relationships cannot be ex-
trapolated to novel environmental conditions, which were not
used for model fitting. Process-based models (PBMs) are most
suitable for environmental change studies since they combine

changes in environmental variables with plant responses to this
change in a mechanistic way [34, 35, 36•]. Stand-scale PBMs
simulate the impact of environmental drivers on forest stands
and provide detailed physiological and structural output. They
require detailed input data for model initialization [36•], and
their mostly species-specific parameters can be derived from
physiological measurements [35]. This level of detail allows
the models to be used for estimating sustainable forest manage-
ment indicators [37] and at the same time differentiates them
from process-based dynamic global vegetation models or
global biogeochemical models that simulate global or re-
gional responses to environmental change for different
plant functional types only [38].

Stand-scale PBMs thus represent system dynamics and pro-
cesses at spatial and (to a limited extent) temporal scales similar
to observational studies (e.g., eddy-covariance flux towers or
intensive monitoring plots), which have been intensively used
to study past and current impacts of environmental change on
forest productivity (see review [9]). It is important to emphasize
that they represent physiological responses to environmental
drivers at the local scale and only seldom integrate processes
that occur at the landscape scale such as disturbances (e.g.,
storms or insect outbreaks). Although PBMs, as defined here,
usually work at similar spatial scales and include similar pro-
cesses (e.g., photosynthesis, allocation, etc.), the level of detail
in process description, temporal resolution, and way of cou-
pling different processes can differ drastically between them.
PBMs can be used either as diagnostic tools to disentangle the
importance of individual environmental drivers on forest pro-
ductivity in the past (e.g., [39–41]) or to generate projections of
future forest productivity under environmental change (e.g.,
[42]). The latter can also be carried out in an experimental
set-up by varying environmental drivers individually and in
combinations (e.g., [43]). While such an approach enables an
assessment of the relative contribution of environmental drivers
to the model result, simulations combining important drivers
represent the most comprehensive assessments of environmen-
tal change on forests. The change in environmental drivers can
be gradual, simulating transient change (e.g., [44]), or stepwise
(e.g., [45]). Thus, even within this narrowly definedmodel type
of stand-scale PBMs, there is a broad variety of approaches
towards simulating forest productivity under environmental
change, which allows for an assessment of the robustness of
model results over a broad range of models.

Literature Review

This review focuses on studies simulating individual forest
stands with process-based models, excluding purely gap and
hybrid/empirical models. This selection concurs broadly with
the model types 1 and 2 (i.e., stand-scale, process-basedmodels
and biogeochemical models) as defined byMedlyn et al. [28••].
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It focuses on mechanistic models applied at the stand scale
without considering changing species composition. Another
important criterion for the selection of studies was that model
output on changes in forest productivity and carbon pools
should be available for individual stands. Studies that simulated
individual stands but reported only aggregated values for sev-
eral stands or for an entire region were excluded. If the same set
of simulations was used in several papers (e.g., under different
viewpoints or response variables), only the main study was
considered to avoid double-counting of the same model simu-
lations. Different versions of the same model were accounted
for by recording the names of different model versions if spec-
ified in the publications. To analyze the papers, the following
information was extracted: general information (species, type
of change of driving variables (stepwise or transient), model
name, and biome), the driving variables (i.e., climate change
(consisting of increasing temperature and/or changing precipi-
tation), [CO2], N, O3, and their combinations) and the respec-
tive response variable for each simulation. In this study, only
response variables that relate to forest carbon pools (e.g., vol-
ume, wood carbon) and to forest productivity (e.g., stem incre-
ment, net primary production (NPP)) were included, and no
distinction was made between studies reporting carbon content
or fresh biomass, etc. Although for this review, it makes sense
to pool different response variables to some extent, it is impor-
tant to note that different response variables describe different
characteristics of a forest stand. For example, higher photosyn-
thesis does not necessarily translate into higher tree growth
[46]. However, analyzing different response variables together
seems appropriate in the context of this review, since there are
relationships between biomass and productivity [47, 48] and
also between various variables of forest productivity (e.g.,
[49]). Disturbances are another important environmental driver.
They can strongly affect forest biomass and carbon stocks [49,
50] and the productivity to biomass relationship. However, they
had to be excluded from the analysis because they are only
integrated to a very limited degree in stand-scale PBMs (e.g.,
[51]). Moreover, results of simulation experiments that featured
different management types or intensities under changing en-
vironmental conditions were included, but these were not ana-
lyzed separately from simulations of unmanaged forests. Ef-
fects of forest management and age structure can be very im-
portant for forest productivity and carbon pools (e.g., in the
USA [52, 53, 55, 56, but see [54]). However, they vary region-
ally and depend to a large extent on socioeconomic factors such
as wood prices, agricultural policies, and demographic devel-
opments. Thus, these different management scenarios were
interpreted as a variation of stand conditions that will still be
influenced by changing environmental variables. The analysis
thereby excludes adaptive forest management that may be im-
plemented to cope with the changes in productivity induced by
environmental change. Moreover, simulations reporting results
frommixed forests at the individual species level were included

if these were presented as individual simulations or at the forest
level if one model simulation included several species.

To ensure comparability, relative changes of response var-
iables were calculated for all simulations with respect to the
baseline scenario of each study. Hence, changes Brelative to
baseline conditions^ were reported throughout this paper. All
figures were produced using the statistical software R [57].

Overview of Model Simulations

In total, 74 studies were reviewed. They weremostly restricted
to temperate and boreal forests in the northern hemisphere,
especially Europe and Northern America (Fig. 1a, Appendix
Table 1). Only two studies were found for the Tropics in Asia,
and none for South-America or Africa. The 74 studies repre-
sented 1209 single simulations runs carried out with 55 dif-
ferent models or model versions. More than 50 % of the sim-
ulations looked at the coniferous genera Pinus (30 %) and
Picea (22 %). The broad-leaved genera Betula (12 %), Fagus
(9 %), and Quercus (7 %) made up almost another third of the
simulations. Most of the studies assumed a changing climate
(temperature and/or precipitation) and/or increasing [CO2],
but only few considered changes in N deposition and O3

(Appendix Table 1). Roughly 56 % of the simulations ana-
lyzed the effect of stepwise changes of environmental change
drivers in their scenarios, whereas the remaining simulations
featured transient responses (44 %).

The direction of change of the response to environmental
change was positive for 79 %, negative for 19 %, and none
for 2 % of all simulations reviewed here (Appendix Table 1).
The proportion of positive and negative responses per studied
site showed a distinct geographical pattern. For most studies in
the boreal forests, the responses were positive, whereas the re-
sponse was mixed in temperate and Mediterranean forests
(Fig. 1a). There were 333 simulations that considered a chang-
ing climate (i.e., increasing temperatures and changing precipi-
tation) without changes in [CO2]. Thereof, 61 % showed posi-
tive, 35 % negative, and 3 % no changes (Fig. 1c). A greater
number of simulations (870) had been run with a changing
climate and increasing [CO2]. Here, 87 % of the simulations
were positive, 12 % negative, and 1 % not changing (Fig. 1b).
Only six simulation runs did not consider climate change or
increasing [CO2] at all but the effects of N (five simulations with
positive responses) and O3 (one simulation with negative re-
sponses) individually. In the remaining simulations that included
N and O3 as driving variables, the reported responses were
always confoundedwith climate change and/or [CO2] scenarios.

Since changes in climate and [CO2] are gradually changing
and not stepwise, a subset of the full dataset was extracted,
which only included those simulations in which climate
change, [CO2], and their combination changed in a transient
way, and in which it was possible to calculate changes relative
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to baseline conditions. This selection resulted in 525 simula-
tions from 23 models and 40 different studies. These simula-
tions showed distinct changes in forest productivity and carbon
pools under environmental change in different biomes (Fig. 2).
Whereas the response in boreal forests was mostly positive, it
was less clear in temperate and especially Mediterranean for-
ests, although the median response was positive even in those
regions. While for boreal forests, the change in forest produc-
tivity and carbon pools relative to baseline conditions varied
from −11 to 75 % (up to 148 %), the change varied from −45
to 67 % (up to 115 %) and from −52 to 77 % (up to 217 %) in
temperate and Mediterranean forests, respectively (Fig. 2).

To synthesize the effects of climate change, [CO2], and their
combination on the changes in biomass and productivity rela-
tive to baseline conditions, the transient simulations in terms of
driving environmental change variables were pooled (Fig. 3).
The effects of a changing climate investigated separately from
increasing [CO2] led to both positive and negative changes in
forest productivity and carbon pools relative to baseline condi-
tions ranging from −20 to 33 % including several negative and
positive outliers. In contrast, the simulations including only the
effects of increasing [CO2] always resulted in positive changes
(from 2 to 58 % with one larger outlier). When climate change
effects and increasing [CO2] were simulated in combination,

most of the simulations showed positive changes in forest pro-
ductivity and carbon pools relative to baseline conditions (with
several outliers showing very strong positive changes).

It is important to note that the data shown on Figs. 2 and 3
might only appear skewed towards positive changes because
they are expressed on a linear scale (i.e., percentage changes
can reach very high positive values while negative changes
cannot exceed −100 %). When data were displayed on a pro-
portional scale using log transformation, it showed, however,
that the skew towards positive productivity changes still
remained although the general picture with positive and nega-
tive outliers became more balanced (results not shown).

Discussion of Model Simulations

The analysis presented here reveals several important foci of
current efforts to model the effects of environmental change on
forest productivity and carbon pools at the stand scale. Firstly,
there is a clear regional focus on temperate and boreal forests in
North America and Europe. The literature review did not reveal
any study in South America and Africa matching the selection
criteria, although there is strong—and partly conflicting—evi-
dence that forest productivity is changing in these regions as

Fig. 2 Changes in forest productivity and carbon pools under different
environmental change scenarios in three biomes (boreal: simulations=
305, models=12, studies 26; temperate: simulations=142, models=10,
studies=12; Mediterranean: simulations=78, models=4, studies=4). The
horizontal gray line indicates no change compared to the baseline scenario.
The boxplots show the following information: thick line median, bottom
and top of the box 25th and 75th percentiles, whiskers maximum value or
1.5 times the interquartile range of the data depending on which is smaller.
Points outliers larger than 1.5 times interquartile range

Fig. 3 Changes in forest productivity and carbon pools under different
drivers of global change. Climate change changing temperature and
precipitation, [CO2] increasing atmospheric CO2, Climate change+
[CO2] combination of climate change and [CO2] (climate change:
simulations=137, models=15, studies=19; [CO2]: simulations=48,
models=11, studies=12; climate change+[CO2]: simulations=340,
models=17, studies=31). The gray line and boxplots are as in Fig. 2
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well (e.g., [58, 59] but [5, 60]), and detailed model simulations
are urgently needed.

Secondly, the forest types described by detailed stand-scale
process-based models are mostly restricted to mono-specific
forests and tree species that are relevant for forestry. Forests
types and species that are more important for other ecosystem
functions and services such as mixed forests with high biodi-
versity value are only rarely addressed. This imbalance in plot
and forest type selection can be partly explained by the large
amount of physiological and environmental data that is neces-
sary to initialize and drive PBMs and which is mostly available
from long-term and intensive monitoring plots, which usually
have been installed in typical, representative forests of a region.
Such forests are often then also managed for timber production
or at least heavily influenced by past management decisions
such as species choice and silvicultural regime.

Thirdly, the assessment of the different environmental
drivers being covered reveals a focus on climate change and
increasing [CO2]. Few studies looked at other drivers such as
N or O3 (especially not in isolation) although these have been
identified as important drivers of forest change [61, 62]. This
selection bias may be less important since, for example, the
effect of N is considered to be comparably low in the future
[63]. Nonetheless, it would still be important to assess and test
this finding with forest models.

Having this in mind, this paper shows that most of the
responses of forest productivity and carbon pools to the dif-
ferent environmental change drivers and their combinations
were always positive when only increasing [CO2] was consid-
ered and mostly positive when climate change and increasing
[CO2] were combined. If only climate change was considered,
61 % of the simulations still showed positive responses, but
35 % also showed negative responses. This highlights the
importance of the effects of increasing [CO2] on plant produc-
tivity in the models by enhancing photosynthesis and water
use ([13, 14; see also discussion of the inclusion of [CO2]
effects in models by Reyer et al. [64]). There is increasing
observational and experimental evidence that the strength
and persistence of the [CO2] effect may be limited or overrid-
den by a lack of N, physiological acclimation to higher [CO2],
or droughts [65, 66] and whether studied at the leaf, canopy, or
landscape scale [67]. These effects are often not fully
accounted for in models (see also [36•, 64, 68]), and thus,
model simulations may overestimate the productivity re-
sponses to increasing [CO2]. At the same time, a recent anal-
ysis argues that mesophyll diffusion is not properly captured
in the most common photosynthesis models, and therefore,
the [CO2] effect may actually be underestimated [69].

The positive response in model simulations for boreal for-
ests is consistent with ground-based and satellite measure-
ments [1, 8, 9, 18, 24, 60] and with the current understanding
that temperature is a strongly limiting factor of forest produc-
tivity. Increasing temperatures and a concomitant lengthening

of the growing season as well as increasing nutrient availabil-
ity (through decomposition and mineralization) exert a posi-
tive effect on forest productivity [19, 70, 71]. If, under climate
change, water becomes a more limiting factor, photosynthesis
and subsequent stem volume production may be reduced [72].

These mechanisms are also relevant in temperate forests,
but there is evidence that a broader variety of environmental
conditions controls productivity in these systems (e.g.,
[73–75]). This variability and increased vulnerability to drier
and warmer conditions seem to be reflected by the larger
amount of negative changes in forest productivity and carbon
pools relative to baseline conditions in the dataset presented
here. In Mediterranean conditions, drier and warmer condi-
tions in recent decades have strongly influenced forest condi-
tions and growth [76–78]. While this sensitivity is supported
by some of the simulations yielding negative changes in forest
productivity and carbon pools in the dataset presented here, a
majority of the simulations actually show positive changes
even in the Mediterranean region, which contradicts the com-
mon expectation of growth decline under climate change.

This finding is strongly related to the importance of [CO2]
in the models and the climate change scenarios used in the
simulations. Under water shortages, the most important effect
of elevated [CO2] is decreased stomatal conductance, which
leads to enhanced water use efficiency [22, 79]. However,
recent carbon isotope tree ring studies have shown that this
effect has not been translated into increased tree growth but
may have been overridden by drought, warming, N limitation,
or physiological adjustments, which may not be sufficiently
covered in the models [60, 66, 80]. Interestingly, those simu-
lations in the Mediterranean in the dataset presented here that
were run without including the effects of elevated [CO2] (i.e.,
[81, 82] project exclusively negative changes in forest produc-
tivity and carbon pools relative to baseline conditions.

One other important issue is that the summary of responses
reviewed here does not differentiate between soil and biomass
carbon. Actually, there are only four studies that explicitly
consider soil variables (Appendix Table 1); hence, most of
the results presented here are valid for the responses of vege-
tation only. In reality, increasing productivity from higher tem-
peratures or [CO2] can lead to higher N demand, which may
lead to reduced soil N availability and reduced productivity
unless soil N mineralization itself will be strongly stimulated
by higher temperatures [24]. Results from model applications
confirm that soil and vegetation responses to climate change
can be opposite, i.e., increasing productivity but decreasing
soil carbon (e.g., [83]).

In summary, the review of available stand-scale forest sim-
ulations with process-based models shows a mostly positive
response of boreal forests to climate change and increasing
[CO2], which is mostly consistent with expectations from ob-
servations, experiments, larger-scale modeling efforts, and the-
ory, while temperate and Mediterranean forests show more
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mixed responses. These findings are consistent over different
models with different model structures. They highlight the re-
gional differentiation of climate change effects on forest pro-
ductivity and carbon pools (increasing if temperature-limited
and decreasing if water-limited) in contrast to a general positive
effect of increasing [CO2]. This regional differentiation is con-
sistent with findings from recent stand-scale carbon isotope
studies [60]. In general, the results presented here are also con-
sistent with model applications at more regional or even global
scale [42, 84, 85].

Limitations of Model Simulations

The studies presented here do not consider the impacts of altered
disturbances regimes and extreme events such as fire, insects, or
storms on forest productivity and carbon pools, which may limit
or reverse positive effects of climate change already at lower
degrees of warming (e.g., [50, 86]). It is also unclear to which
degree PBMs include higher-order interactions such as higher
growth rates that lead to decreased longevity [87, 88] and non-
linear responses to change or extreme events [64, 68]. The latter
are probably more important predictors of forest productivity
and carbon pools (e.g., [18]) than mean climate [16].

Moreover, this review did not evaluate the models regarding
their quality or ability to precisely describe relevant processes
but assumed that the models are equally good and independent.
This is a common but not unchallenged assumption in model
comparison studies [28••, 89]. In reality, the models are not fully
independent since they share submodels for specific processes
such as the description of photosynthesis. Additionally, some
models are more widely used than others, have more published
applications, or more simulations per application so that they
may be overrepresented in the dataset presented here. Moreover,
weighting the model simulations by their ability to simulate
observed data could help to quantify uncertainties but would
require more synchronized model comparisons (e.g., [90•,]
which was beyond the scope of this synthesis. The formulation
of different processes in the models was not analyzed, which
would explain the results of each individual model because
this has been done in an exemplary way elsewhere [28••].

Conclusions

This paper shows that stand-scale process-basedmodels are able
to capture the broad regional variety of responses of forest pro-
ductivity and carbon pools in response to climate change and
elevated [CO2]. The models agree on mostly positive responses
in boreal forests but show more mixed responses in temperate
and Mediterranean forests depending on the importance of indi-
vidual environmental variables in the model simulations. These
broad, overall responses transcend the variability of data sets,

time frames, assumptions, etc. that are made in the different
models. However, uncertainties remain regarding these re-
sponses as a result of different model structures, site conditions,
magnitudes of environmental change considered, and the long-
term persistence of [CO2] effects. It is important to note that the
studies reviewed here cover the physiological response to envi-
ronmental change, but that there is a possibility that at larger
spatial scales, the effects of disturbances and management re-
gimes shape the state of forest ecosystems. This paper provides a
synthesis of published model-based changes in forest productiv-
ity and carbon pools with which the results of future studies can
be compared. Furthermore, this paper serves to inform regional
studies that strive to integrate changes in forest productivity and
carbon pools with disturbances or socioeconomic drivers to, for
example, develop adaptive management strategies. The results
of this review can be refined by more structured model inter-
comparisons with improved stand-scale process-based models.

This synthesis also found that past modeling efforts have
largely focused on species that are important for forestry, par-
ticular biomes, and prominent environmental variables. This
is partly due to constraints in data availability to parameterize
complex process-based models. Nevertheless, further studies
may exploit newly available datasets as well as data integra-
tion and uncertainty quantification techniques to cover a larger
array of forest stands, species, biomes, and environmental
drivers and thus different ecosystem services and functions
and corresponding challenges for sustainable management.
Moreover, further studies could make better use of the
strengths that differentiate modeling approaches from obser-
vational and experimental studies: to simulate the effects of a
multitude of single environmental drivers and their combina-
tions in full factorial designs in a transient way. In general,
however, it is encouraging to see that many valuable and com-
plex models exist, which allow us to explore the distant fu-
tures of forests in times of rapidly changing environmental
and societal conditions.
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