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Abstract
Offshore cranes require particularly careful design due to the difficult environmental conditions inwhich theywork. This paper
presents a 3Dmodel of the dynamics of an offshore cranewith a truss jib formulated bymeans of the rigid finite elementmethod.
The inertial features of the truss members are assigned to nodes whose rotational and translational displacements are degrees
of freedom. Flexible features of the truss members are modelled by massless and dimensionless spring–damping elements
(sde). The computer programme developed on the basis of the model is verified and validated, and good correspondence of
the authors’ own results with those obtained using commercial FEM package is achieved. Computer simulations are carried
out for the light crane used on the wind platforms. The influence of the base movements (sea waves) on the system are
also investigated. Lifting a load from a supply vessel and the load on the system during rotational movement of the crane
are simulated too. Finally, conclusions concerning the influence of the movement conditions on the overload coefficient and
deflections of the crane boom are formulated.

Keywords Offshore lattice crane · Rigid finite element method · Truss structure · Sea wave motion · Overload

1 Introduction

Offshore cranes analysed in this paper operate in diffi-
cult environmental conditions. They ensure transportation
to/from vessels as well as wind and tidal platforms. Sea
waves, sea currents andwind considerably influence thework
of these cranes. Thus, both for the safety and cost reasons,
these types of cranes are often designed with lattice jibs, the
important feature of which is the relatively high strength and
low weight.

For numerical simulations, designers usually use either
commercial software (ROBOT, Abaqus, FemUp) based on
the Finite Element Method (FEM) or dedicated software
developed for the needs of a specific company. In the latter
case, it is possible to develop an interface adapted to the needs
of the user (designers, computing specialists). It is therefore

B Adamiec-Wójcik Iwona
i.adamiec@ath.bielsko.pl

1 University of Bielsko-Biala, Willowa 2, 43-309
Bielsko-Biała, Poland

2 Protea S.A., Galaktyczna 30A, 80-299 Gdańsk, Poland

also possible to develop special programmes for the simu-
lations and optimisation of drives and Automatic Overload
Protection Systems (AOPS).

Models used in both commercial and dedicated packages
are often presented in the literature, especially in connec-
tion with the problems of drive control. Reviews of existing
models and especially control strategies are presented by
Abdel-Rahman et al. (2003), Ramli et al. (2017) and also
by Cao and Li (2020). In some research, the flexibility of
the boom, the rope system or the motion of the base (ship or
platform) caused by sea waves and sea currents is omitted.
In these cases, the models and the range of dynamic analysis
do not differ from those carried out for stationary cranes.

In the last few decades, the number of papers devoted
to modelling of stationary and offshore cranes has grown
rapidly. Thus, here, we refer mainly to those dealingwith off-
shore cranes, while rarelymentioning others. Abdel-Rahman
et al. (2003) identify two approaches to modelling cranes:
distributed mass and lumped-mass models. However, flexi-
ble booms are also modelled by means of the finite element
method (FEM) (Ren et al. 2008; Trąbka 2016; Maourane
and Szabó 2020) or so-called multibody approach (Cha et al.
2010; Cibicik and Egeland 2019) including the segment
method (Bak and Hansen 2013; Rong et al. 2019) and the
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rigid finite element method (RFEM) (Wittbrodt et al. 2013).
Different types of cranes such as container cranes (Hong
and Ngo 2012; Arena et al. 2015; Raja Ismail et al. 2015),
jib cranes (Osiński and Wojciech 1998; Doçi et al. 2016)
and knuckle-boom cranes (Bak and Hansen 2013; Chu et al.
2015, 2018; Adamiec-Wójcik et al. 2019; Cibicik and Ege-
land 2019) are analysed.

The rigid finite element method has been used success-
fully for modelling different types of cranes mounted on
platforms or vessels subject to wave motion (Osiński and
Wojciech 1998; Osiński et al. 2004; Wittbrodt et al. 2013).
Osiński and Wojciech (1998) and Osiński et al. (2004) deal
with planar dynamic analysis of a crane. Critical phases of
handling operations of a load while a supply ship is mov-
ing are considered.Modelling emergency conditions requires
taking into account the flexibility of the boom. Osiński et al.
(2004) use the planar model to select drive functions of
a hoisting winch to minimise rope overload and analyse
required velocities, while the load is lifted. Selection of drive
functions of the hoisting winch during lifting operations is
discussed by Maczyński and Wojciech (2011). Sea waves
are described using harmonic functions. Some other exam-
ples of applications of RFEM to modelling dynamics of
offshore devices during handling operations can be found
in Urbaś et al. (2010), Krukowski and Maczyński (2013),
Wittbrodt et al. (2013) and Adamiec-Wójcik et al. (2018).
A gantry crane used for transporting a Blowout Preventor
(BOP),while subject to seawaves, is discussed byUrbaś et al.
(2010). Krukowski and Maczyński (2013) analyse dynamics
of an offshore pedestal crane with three flexible components
(pedestal, frame and boom). All three components are mod-
elled using the rigid finite element method, although in each
case, it is a slightly different approach; elementswith variable
length are used for the pedestal model.

The RFEM used for discretisation of lattice booms was
only applied to solve static problems or in analysis of linear
vibrations. This paper is an extension of the application of
the RFEM to dynamics of cranes with lattice jibs. The advan-
tage of the RFEM in relation to classical methods such as the
finite elementmethods is the ease of taking into account addi-
tional concentrated masses and rigid mass elements. Static
problems of lattice booms were discussed by Nowak et al.
(2017). The model of the crane dynamics presented in this
paper takes into account motion of the base on which the
crane ismounted (platform or vessel), as well as bending, tor-
sional, longitudinal flexibilities and shear of the boom truss
members. The flexibility both of the rope system of the load
lifting mechanism and of the luffing system are also consid-
ered. The model and the computer programme are validated
by comparing the authors’ own results with those obtained
using theROBOTcommercial software package. The numer-
ical effectiveness of the crane dynamics model is evaluated

together with its applications in modelling dynamics of a ser-
vice crane used on wind platforms for typical transport tasks
such as lifting a load and rotation of the column. The numer-
ical calculations carried out make it possible to assess the
impact of the work performed, with variable boom inclina-
tion and different load lifting speeds, on the boom deflections
and overloading in the rope system.

2 Model of the crane

Figure 1a shows one of the lattice boom cranes intended
for servicing wind farms, manufactured by Protea, while the
model of the crane is shown in Fig. 1b.

The following notation of the coordinate systems is intro-
duced:

{}—global (inertial) system assigned to the sea bottom.
{ }ˆ—system assigned to the moving base of the crane

(vessel or platform).
{}−—system assigned to the rotary part of the crane.
{}′

—system assigned to the boom.
{ }ˆL—system assigned to the deck of the cargo unit.
α = ψJ—boom inclination angle.
To describe the orientation of the coordinate system,

we use ZYX Euler angles (Wittbrodt et al. 2006), and the
transformation of coordinates is performed by means of
homogenous transformations (Craig 1989). Position and ori-
entation of base { }ˆ with respect to the global system {} are
defined by the vector of position

r̂ =
⎡

⎢

⎣

x̂(t)
ŷ(t)
ẑ(t)

⎤

⎥

⎦ (1a)

and orientation

̂� =
⎡

⎢

⎣

̂ψ(t)
̂θ(t)
ϕ̂(t)

⎤

⎥

⎦
, (1b)

where it is assumed that x̂(t), ŷ(t), ẑ(t), ̂ψ(t), ̂θ(t), ϕ̂(t) are
known functions of time and can define base motion caused
by sea waves, sea currents and wind.

Transformation of coordinates from system {}ˆ to system
{} is carried out according to the following formula:

r = r̂ + ̂R̂r
′
, (2)

where r̂′ is the vector of coordinates in system { }ˆ,
̂R = R

̂ψR̂θRϕ̂ is the rotation matrix, r is the position
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Fig. 1 The crane analysed: a general view and b model assumed

vector in global system {}, R
̂ψ =

⎡

⎢

⎣

ĉψ −ŝψ 0
ŝψ ĉψ 0
0 0 1

⎤

⎥

⎦
, R

̂θ =
⎡

⎢

⎣

ĉθ 0 ŝθ
0 1 0

−ŝθ 0 ĉθ

⎤

⎥

⎦
, Rϕ̂ =

⎡

⎢

⎣

1 0 0
0 cϕ̂ −sϕ̂
0 sϕ̂ cϕ̂

⎤

⎥

⎦
.

Both in the formulae above and for further considerations,
the following notation is assumed:

cγ = cosγ , (3a)

sγ = sinαγ , (3b)

where γ ∈ {

̂ψ , ̂θ , ϕ̂
}

.
Using homogenous transformations, relationship (2) can

be written in the form

r = B̂r
′
, (4)

where r =
[

r
1

]

, B =
[

̂R r̂
0 1

]

, r̂
′ =

[

r̂′
1

]

.

Homogenous transformations enable the transformations
between coordinate systems to be performed by only one
mathematical operation, namely multiplication of a matrix
by a vector (formula 4). In the classical approach (formula 2),
two operations are necessary: multiplication of a matrix by a
vector and sum of vectors. Although, in the latter, the dimen-
sion of matrices and vectors is 3 and is smaller than when
homogenous transformations are used, the use of formula (4)
considerably facilitates the description of the transformation
of coordinates.

Coordinates from system {}−, assigned to the rotary plat-
form of the crane, to system { }ˆ and to the global system,
are transformed by means of the following formulae:

r̂ = Pr, (5a)

r = B̂r = BPr = Dr, (5b)

where P =

⎡

⎢

⎢

⎢

⎣

cθ 0 sθ 0
0 1 0 H

−sθ 0 cθ 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, H is the distance between

systems { }ˆ and {}− (Fig. 1b), D = BP, r is the coordinate
vector in system {}− assigned to the rotary part of the crane,
and θ is the rotation angle of system {}− with respect to
system { }ˆ (about axisŷ), which is the rotation angle of the
crane platform in relation to the base (platform or vessel).

The truss boom is divided into nodes and members
(Fig. 2). It is assumed that the nodes reflect mass features
of the truss, while the members reflect its damping and stiff-
ness features. The nodes are denoted by (i) and are numbered
from 1 to n.

The position and orientation coordinates of truss node i −
th (Fig. 2a) with respect to system {}− form the vector of
generalised coordinates describing the motion with respect
to the rotary platform

qi =
[

ri
�i

]

, (6)
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Fig. 2 Truss boom: a members
and nodes ( ); b translation
(

xi , yi , zi
)

and rotation
(ψi , θi , ϕi ) coordinates of node
(i)

Fig. 3 The truss member and nodes at its ends, —spring–damping
element (sde)

where ri are coordinates of a truss node in system{}−, and

�i =
⎡

⎢

⎣

ψi

θi

ϕi

⎤

⎥

⎦
are ZYX Euler angles (Craig 1989) defin-

ing orientation of the node axis with respect to system {}−
(Fig. 2b).

When the crane is unloaded, angles ψi of the nodes are
inclined to axis x of system {}− at the same angleψi = ψJ =
α (Fig. 1), and angles θi = ϕi = 0 for i = 1, . . . , n.

Truss members are numbered from 1 tom. For each mem-
ber p = 1, . . . , m numbers (i Lp) and (i Rp ) define nodes at the
ends of the member (Fig. 3).

The model assumes that the ends of the members meet-
ing at node (i) are rigidly connected (Fig. 4). This causes
translational and rotational displacements of the ends of the
members connected at node (i) to be equal.

Fig. 4 Members pi , 1, . . . , pi , ni connecting at node (i)

Generalised coordinates of the model of the crane shown
in Fig. 1b are the components of the following vector:

u =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q1
...

qn
θ

rL
ϕ0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−coordinates of node (1)
...

−coordinates of node (n)

−rotation angle of the boom platform
−vector of coordinates of the load (massmL)

−winch drum rotation angle
(7)

where rL =
[

xL yL zL
]T

.
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Fig. 5 Element e and mass dm

Thus, the vector of generalised coordinatesu of the system
consists of

N = 6n + 1 + 3 + 1 = 6n + 5 (8)

components.

3 Equations of motion of the crane

To formulate the equations of motion, the formalism based
on the Lagrange equations of the second order, presented in
detail by Wittbrodt et al. (2006) and Adamiec-Wójcik et al.
(2019), is used. The equations can be written in the following
form:

d

dt

∂E

∂ u̇i
− ∂E

∂ui
+ ∂V

∂ui
+ ∂D

∂ u̇i
= Qi i = 1 . . . N , (9)

where E is the kinetic energy of the system, V is its potential
energy, D denotes dissipation of the energy of the system, ui
is the i th component of the vector of the generalised coordi-
nates, and Qi is the i th generalised force.

The kinetic energy of an element (Fig. 5) can be presented
in the form

Ee = 1

2

∫

me

ṙT ṙdm = 1

2

∫

me

tr(ṙṙT )dm, (10)

where e and me are the number and mass of the element,

respectively, r =
[

r
1

]

, and tr(A) denotes the trace of matrix

A.
Due to relation (5b), the kinetic energy of the rotary plat-

form of the crane is defined by the expression

Eθ = 1

2
tr

∫

mθ

(Ḋṙ
T
ṙḊ)dm = 1

2
tr

(

ḊHθ Ḋ
T
)

, (11)

where Hθ = ∫

mθ
(ṙ

T
ṙ)dm is the pseudo-inertial matrix and

mθ is the mass of the rotary platform.

For nodes (1) . . . (n) of the truss, the following can be
written:

Ei = 1

2

∫

mi

tr(ṙṙT )dm, (12)

where r = DAir′ = Bir′, D defined in (5), Ai =
[

Ri ri
0 1

]

is the transformation matrix from the system assigned to
node(i), which is{i}, to system{}−; ri is defined in (6);
Ri = Rψ

i R
ϕ
i R

θ
i , matrices Rψ

i , R
ϕ
i , R

θ
i are defined as in (2)

having assumed ̂ψ = ψi , ̂θ = θi , ϕ̂ = ϕi ; Bi = DAi ; r′ are
local coordinates with respect to the system of node(i);mi is
the mass applied to node(i), which equals the halves of the
mass of each member pi , 1, . . . , pi , ni meeting at this node
(Fig. 4).

According to (10) and (12), kinetic energy Ei can be pre-
sented as follows:

Ei = 1

2
tr

(

ḂiHi ḂT
i

)

, (13)

where Hi = ∫

mi
(ṙ′T ṙ′)dm is the pseudo-inertial mass

matrix of node (i).
To calculate elements of matrix Hi the location of nodes

and members of the truss in the no-load conditions should be
taken into account. Let angles αp and βp define the orienta-
tion of member p with respect to axes of nodes (i) = (wL

p )

and ( j) = (wR
p ) at its ends (Fig. 6).

Angles αp and βp are constant in coordinate systems {i}
and { j}. The transformation (rotation) matrix from system
{p}′ assigned to member p to the systems assigned to nodes
(i) and ( j) can be written in the form

Up =
⎡

⎢

⎣

cαp −sαp 0
sαp cαp 0
0 0 1

⎤

⎥

⎦

⎡

⎢

⎣

cβp 0 sβp

0 1 0
−sβp 0 cβp

⎤

⎥

⎦
. (14)

These are matrices with constant elements.
Transformation of vector r

′
p defined in {p}′ to the base

coordinate system can be performed using the formula

r = BiLpr
′
p (15a)

or

r = B jLp

(

−r
′
p

)

= −B jLpr
′
p, (15b)

where Lp =
[

Up 0
0 1

]

.

To calculate matrixHi from formula (11), partial matrices
of half of the members connected at this node, as in Fig. 4,
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Fig. 6 a Member p with nodes (i) and( j), b rotation angle αp , c rotation angle βp

have to be summed obtaining the following:

Ei = 1

2

ni
∑

k=1

∫

mpi , k /2
tr(ḂiLpi , k r

′
pi , k r

′T
pi , kL

T
pi , k Ḃ

T
i )dm

= 1

2
tr

(

ḂiHi ḂT
i

)

, (16)

where Hi = ∑ni
k=1 Lpi , k

(

∫

mpi , k /2r
′
pi , k r

′T
pi , k dm

)

LT
pi , k .

It is assumed that the half-length of member pi , k applies
itsmass to node (i), while the other half of themass is applied
to node ( j).

When the cross-section of member pi , k is constant, it can
be assumed that

Hpi , k =

⎡

⎢

⎢

⎢

⎢

⎣

mpi , k (l
0
pi , k )

2
/24 0 0 mpi , k (l

0
pi , k )

2
/8

0 J y
pi , k 0 H

0 0 J zpi , k 0

mpi , k (l
0
pi , k )

2
/8 0 0 mpi , k (l

0
pi , k )

2
/24

⎤

⎥

⎥

⎥

⎥

⎦

,

(17)

where J y
pi , k = Api , kρ

∫ l0pi , k /2

0

(

z′
)2
dm,J zpi , k =

Api , kρ
∫ l0pi , k /2

0

(

y′)2dm, Api , k is the cross-section area
of member pi , k , ρ is the material density of the member,
and l0pi , k is the length of unloaded member pi , k . Elements
of matrices Hpi , k and Hi are constant.

Kinetic energy of the whole boom can be written as fol-
lows:

EJ =
n

∑

i=1

Ei , (18)

where Ei defined in (16) depends on qi , θ and t .
Kinetic energy of the drumwinch is calculated as follows:

ED = 1

2
JDϕ̇2

D , (19)

where JD is the mass moment of inertia of the drum winch.
Kinetic energy of the load is calculated according to the

following formula:

EL = 1

2
mL ṙTL ṙL , (20)

where mL is the mass of the load.
According to (7), components of vector rL are generalised

coordinates when the load is in the air. When the load rests
on the deck of the supply vessel, its generalised coordinates
are assumed to be known and determined by the movement
of the supply vessel, which means that

rL = r̂L(t) (21)

is a known function of time.
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Fig. 7 Translational deformation of member p

Total kinetic energy equals

E = EJ + Eθ + EL . (22)

Energy of translational deformation of sde p from Fig. 3
is calculated as follows:

V t
p = 1

2

r

′
p
T
Ct

p
r
′
p, (23)

where Ct
p =

⎡

⎢

⎣

cp, x ′ 0 0
0 cp, y′ 0
0 0 cp, z′

⎤

⎥

⎦, 
r
′
p is the difference of

displacements at the middle of the member p, and x
′
p = l0p/2

(Fig. 7).
Bearing in mind the previously introduced notation, it can

be written that 
r
′
p is the projection of the difference of

relative displacements rRp and rLp on the direction of the part
of member p assigned to node (i)


r
′
p = (

RiUp
)T

(

rRp − rLp
)

= RT
i , p

(

rRp − rLp
)

, (24)

where rRp = r j + R j , pr
′
p, R , R j , p = R jLp, r

′
p, R =

[

−l0p/2 0 0
]T

, rLp = r j + Ri , pr
′
p, L , Ri , p = RiUp, and

r
′
p, L =

[

l0p/2 0 0
]T

.

Energy of rotational deformation of sde p can be presented
in the form

V r
p = 1

2

�

′
p
T
Cr

p
�
′
p, (25)

where Cr
p =

⎡

⎢

⎣

cp,ψ 0 0
0 cp, θ 0
0 0 cp,ϕ

⎤

⎥

⎦, and 
�
′
p is the difference

in rotation angles between the halves ofmember p connected
bymeans of the spring–damping element, expressed inmem-
ber coordinate system {p}′.

Vector 
�
′
p can be calculated from the relation


�
′
p = �

′
p, R − �

′
p, L , (26)

where �
′
p, R = RT

j , p� j , �
′
p, L = RT

i , p�i .
The energy of spring deformation of sde p is the sum of

the quantities from (23) and (25), and the energy of spring
deformation of the whole truss is

V =
m

∑

p=1

(

V t
p + V r

p

)

. (27)

Themethod of calculating the stiffness coefficients of sdes
is based on the approach described by Kruszewski et al.
(1975) andWittbrodt et al. (2006). If member p is a homoge-
nous beam with length l0p, then the stiffness coefficients of
sde can be expressed by the following formulae:

cp, x ′ = cp, 1 = Ep Ap

l0p
longitudinal stiffness coefficient,

(28a)

cp, y′ = cp, 2 = 12Ep I
y
p

(

l0p
)3

cp, z′ = cp, 3 = 12Ep I zp
(

l0p
)3

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

shear stiffness coefficient for Bernouli beam, (28b)

cp, y′ = cp, 2 = Gp Ap

l0p

cp, z′ = cp, 3 = Gp Ap

l0p

⎫

⎪

⎬

⎪

⎭

shear stiffness coefficient for Timoszenko beam, (28c)

cp,ψ = cp, 4 = Ep I
y
p

l0p

cp, θ = cp, 5 = Ep I zp
l0p

⎫

⎪

⎬

⎪

⎭

bending stiffness coefficients,

(28d)

cp,ϕ = cp, 6 = Gp I xp
l0p

torsional stiffness coefficient, (28e)

where Ep is the elasticity modulus, Ap is the cross-section
area, Gp is the shear modulus, and I xp , I

y
p , I zp are second

moment of inertia with respect to axes x
′
p, y

′
p, z

′
p, respec-

tively.
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Fig. 8 Winch rope system

The rope connecting the load with the winch is also a
flexible element. The energy of elastic deformation of the
rope can be presented as follows:

Vr = 1

2
cr
r2, (29)

where cr is the stiffness coefficient of the rope, and 
r is the
deformation (elongation) of the rope which can be calculated
as follows:


r = l − l0 + ϕ0rD , (30)

where l is the actual length of the rope, l0 is the initial length
of the rope, and rD is the radius of the winch drum.

The actual length of the rope can be calculated from the
formula

l =
nL
∑

k=1

‖rk − rk−1‖ + iL‖rnL − rL‖, (31)

where ‖r‖ is the length of vector r, iL is the ratio of the
rope system on the section rnL rL , nL is the number of points
on the boom the rope passes through, rk is the vector of
coordinates of point wk which the rope passes through, and
r0 is the vector of coordinates of point w0 on the perimeter
of the winch drum.

If r
′
k are local coordinates of point wk with respect to the

local coordinate system of node ( jk) (Fig. 8), then

‖rk − rk−1‖2 = [

rk − rk−1
]T [

rk − rk−1
]

, (32)

where rk = B jkr
′
k and

‖rnL − rL‖2 = [

rnL − rL
]T [

rnL − rL
]

. (33)

When considering the potential energy of elastic deforma-
tion of the system, one must also take into account the elastic
deformation energy of the cylinder or the rope-lowering sys-
tem (Fig. 9).

The coordinates of point A in system {}−(rA =
[

x A yA zA
]T

) and the local coordinates of the connection

point with the jib (r
′
is in the local coordinate system of node

(is)) are assumed to be known. The deformation energy of
the boom or the luffing rope system may be presented in the
form

Vs = 1

2
cs


2
s , (34)

where cs is the stiffness coefficient and
s is the deformation
which can be calculated from the following relation:


s = ‖ris − rA‖ − L0
s , (35)

where ris = Bisr
′
is , L

0
s is the initial length of the cylinder or

rope (with no load on the system).
The total deformation energy of the system can be repre-

sented as

V f = VJ + Vr + Vs . (36)

In a similar way, it is possible to slightly modify the rela-
tions (22)–(36) to calculate the energy dissipation of the
system (Kruszewski et al. 1975)

D f = DJ + Dr + Ds . (37)

It is important to note that the stiffness and damping coef-
ficients (cr and br respectively) of the rope depend on the
extended length of the rope. Similarly, the stiffness anddamp-
ing coefficients of the luffing system may change.

The equations of motion of the crane are derived accord-
ing to Eq. (9), taking into account the relation on the kinetic
energy (22) and the relations on the energy of elastic defor-
mation and energy dissipation (36, 37). Having considered
gravity forces and moments Mθ (platform rotation) and MD

(winch drum rotation), the equations ofmotion form a system
of N non-linear ordinary differential equations of the second
order in the following form:

M(q)q̈ = f(t , q, q̇). (38)

The Runge–Kutta method of the fourth order or the New-
mark method with the iterative procedure necessary due to
the non-linearity of Eq. (38) are used to differentiate the equa-
tions of motion (Wittbrodt et al. 2006).

The procedures of the integration of the above equations
can be accelerated when the specific form of matrix M is
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Fig. 9 Luffing system: a with a cylinder and b with a rope system

taken into account

M(q) =

⎡

⎢

⎢

⎢

⎣

Mθθ Mθ J MθL MθD

MJ J MJ L MJ D

SY M MLL MLD

MDD

⎤

⎥

⎥

⎥

⎦

, (39)

where MJ J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M1 0 · · · 0 · · · 0
0 M2 · · · 0 · · · 0
...

...
...

...

0 0 · · · Mi · · · 0
...

...
...

...

0 0 · · · 0 · · · Mn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Mi =

(mi )
6
j , k=1, i = 1, 2, . . . , n.

The block-diagonal form of matrixMJ J , obtained due to
the assumption that coordinates of nodes in system {}− are
independent, makes it possible to accelerate the calculations.

4 Verification and validation
of the simulationmodel

The spatialmathematicalmodel of the dynamics of the lattice
crane presented in the previous section has been imple-
mented in a Delphi environment. Verification of the model
and its computer implementation consists in comparing the
static deflections of the boom structure obtained by means

of our own model with those calculated using the Microsoft
ROBOT package for three cases of the boom end load:

(P1) vertical force Fy in the range from 10 to 30 kN,
(P2) horizontal force Fz in the range from 10 to 30 kN,
(P3) simultaneous load with vertical force Fy = 20 kN and

horizontal force Fz = 30 kN for different angles of the
truss inclination α in the range from 0o to 80o,

and a comparison of the values of natural frequencies of the
boom obtained by both models.

Verification calculations have been carried out for the lat-
tice boom, which is a structural element of the lightweight
service crane manufactured by Protea and intended for wind
platforms (Fig. 10). The boom structure consists of 4 beams
with a square cross-section of 100 × 100 × 6.3 mm,
connected alternately by diagonal crosses with a circular
cross-section ∅51 × 4 mm. The ends of the upper and lower
leading beams are connected with four elements substituting
the end of the boom by means of parameters corresponding
to the stiff tip of the leading beams. In practice, this substi-
tution means stiffening the structure at this point. The most
important design, geometrical and mass parameters of the
truss are presented in Table 1.

For the calculations in this section, it is assumed that at
nodes (A1) and (A2), there are sliding supports, while nodes
(B1) and (B2) are fixed. Moreover, vertical and horizontal
forces are applied at node (G). Gravity is not included in the
calculations.
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Fig. 10 Design of the lattice
boom

The material density of the truss construction elements is
taken as ρ = 7850 kg/m3, and the strength parameters are:
Young modulus E = 210 GPa, Kirchoff’s modulus of shear
elasticity G = E/[2(1 + υ], and ν = 0.3.

Tables 2 and 3 show the results of verticalUy and horizon-
talUz deflections of the jib after loading its end with vertical
Fy and/or horizontal Fz forces, obtained in Microsoft Robot
and our own model. The tables also contain absolute 
 and
relative δ differences between the two. In the case of calculat-
ing relative values, the reference value is the result obtained
in Microsoft Robot.

By analysing the calculation results and their differences
shown in Tables 2 and 3, it can be concluded that in both
cases of the boom end load with vertical (P1) and horizon-
tal (P2) forces, both models give similar deflection values.
The relative difference does not exceed 0.6%. Slightly bigger
deflections are obtained by the authors’ own model. In the
case of a load with a vertical force, the difference remains
at a similar level, namely 0.35%. On the other hand, when
the value of the load with the horizontal force increases, the
difference in deflections between the models increases, but
remains at an acceptable level.

Larger differences between the deflection values along
with the change of the boom inclination angle can be noticed
by analysing the calculation results presented in Table 4. The
increase of the boom inclination angle α in the range of 〈0◦;
60◦〉, with a constant value of the load force, changes rel-
ative difference δUα from − 0.03 to − 0.83%. The results
presented in Table 4 are obtained for case P1.

The results concerning the natural frequencies of the boom
structure calculated by means of the authors’ own model and
Microsoft Robot software package are presented in Table 5.
Good consistency of the calculation results is obtained for
the first 5 frequency values. Absolute difference 
ωi does
not exceed 0.25 Hz, and relative difference δωi is lower than
1%. Slightly higher frequency values are obtained in our own
model.

5 Application of themodel

One of the important tasks that must be performed before
operating offshore cranes in real conditions is checking their
resistance to adverse environmental conditions. Sea waves
and the impact of wind are among themost important. Before
starting the production of offshore cranes, constructors must
make a series of engineering calculations thatwill confirm the
strength of individual structural elements. For many years,
guidelines have also been developed in the form of stan-
dards that enable the verification of design assumptions. In
the case of offshore cranes, there are static calculations taking
into account the influence of individual factors on the struc-
ture. The model of the dynamics of the truss crane proposed
extends these possibilities, because in addition to performing
static calculations, it enables simulations taking into account
base motion, motion of the delivery vessel, and various types
of drives (electric, hydraulic) for transportation (load lifting,
column rotation).

This section presents the results of simulations carried
out with the use of the authors’ own programme, performed
for a spatial model of a service crane with a capacity of
2000 kg intended for servicing wind platforms. Detailed
design parameters of the crane jib are included in the section
concerning verification of the lattice jib model (Table 1,
Fig. 10). In the model, it is assumed that the boom on the
rotating platform (column) is mounted at point O1(xO1 =
0.190m; yO1

= 0.820m; zO1 = 0). In addition, the crane’s
reach change mechanism is a single cylinder connected to
the column at point A(x A = 0.345m; yA = 0.102m;
zA = 0), and to the boom at point B(x

′
B = 0.683m;

y
′
B = −0.806m; zB = 0). The most important parame-

ters of the actuator are presented in Table 6.
The crane is equipped with an electric winch. The param-

eters of the winch and the rope system are presented in Table
7. An additional electric drive is used for the rotation of the
crane column.
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Table 1 Design, geometrical and
mass parameters of the boom Parameter Symbol Unit Value

Length of the truss LB (m) 8.368

Width of the truss at the support point W1 (m) 0.510

Width of the truss at the point of restraint W2 (m) 0.510

Width of the truss at the end of the leading beams W3 (m) 0.150

Truss support—points A1, A2 x ′
A; y′

A (m) 0;0

Truss restraint—points B1,B2 x ′
B ; y′

B (m) 0.683; − 0.806

Location of the boom load—point G x ′
G ; y′

G (m) 8.368; − 0.227

Total mass mB (kg) 922.61

Number of nodes n – 38

Number of members m – 80

Table 2 Comparison of
deflections U of the jib loaded
with vertical force Fy—case P1

Fy (kN) U (m) 
UFy (m) δUFy (%)

Autodesk robot Model

10 0.009191 0.009223 − 0.000032 − 0.33

15 0.013786 0.013834 − 0.000048 − 0.34

20 0.018383 0.018445 − 0.000062 − 0.34

25 0.022979 0.023056 − 0.000077 − 0.35

30 0.027575 0.027667 − 0.000092 − 0.35

Table 3 Comparison of
deflections U of the jib loaded
with horizontal force Fz—case
P2

Fz (kN) U (m) 
UFz (m) δUFz (%)

Autodesk robot Model

10 0.025374 0.025445 − 0.000071 − 0.28

15 0.038052 0.038188 − 0.000136 − 0.36

20 0.050726 0.050945 − 0.000219 − 0.43

25 0.063395 0.063719 − 0.000324 − 0.51

30 0.076057 0.076509 − 0.000451 − 0.59

Table 4 Comparison of jib
deflection U with respect to
inclination angle α of the
boom—case P3

α (deg) U (m) 
Uα (m) δUα (%)

Autodesk robot Model

0 0.031389 0.031398 − 0.000009 − 0.03

10 0.031232 0.031336 − 0.000104 − 0.33

20 0.030765 0.030920 − 0.000155 − 0.50

30 0.030033 0.030213 − 0.000180 − 0.60

40 0.029111 0.029308 − 0.000198 − 0.68

50 0.028100 0.028317 − 0.000217 − 0.77

60 0.027123 0.027352 − 0.000229 − 0.85

70 0.026307 0.026524 − 0.000217 − 0.83

80 0.025774 0.025926 − 0.000151 − 0.59
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Table 5 Comparison of the
natural frequencies of the truss ωi (Hz) Autodesk robot Model 
ωi (Hz) δωi (%)

ω1 7.73 7.80 − 0.07 − 0.91

ω2 12.90 13.01 − 0.11 − 0.85

ω3 28.51 28.72 − 0.21 − 0.73

ω4 32.42 32.56 − 0.14 − 0.43

ω5 47.10 47.26 − 0.16 − 0.34

Table 6 Parameters of the actuator

Parameter Symbol Unit Value

Outer diameter of the cylinder DCout (m) 0.165

Inner diameter of the cylinder DC in (m) 0.14

Minimum length of the actuator Lmin (m) 0.36

Extension of the actuator Lstr (m) 1.03

Minimum amount of oil in the
cylinder

Lso (m) 0.10

Table 7 Parameters of the winch and rope system

Parameter Symbol Unit Value

Winch drive

Outer diameter of the drum DDout (m) 0.287

Inner diameter of the drum DDin (m) 0.2

Drum length LD (m) 0.31

Winch mass mW (kg) 300

Rope system

Diameter of the rope DR (m) 0.013

Density of the rope material ρ (kg/m3) 6500

Modulus of elasticity EL (GPa) 120

Ratio of the rope system iL (–) 1

Further, we present the results of modelling the dynamics
of the service crane during the realisation of typicalwork, tak-
ing into account actual operating conditions (i.e., sea waves).
These results concern the following tasks:

T1—lifting the load hooked on the rope at a speed chang-
ing from zero to nominal speed vnom for the boom inclination
angle α = 50° (torque characteristics MD is presented in
Fig. 11).

T2—picking up cargo from the deck of a stationary supply
vessel. Driving torqueMD and angleα are as in T1; the initial
tension of the rope equals 0.

T3—lifting the load from the deck of a stationary supply
vessel for various values of inclination angle α of the jib to
the horizontal. Driving torque MD is assumed as in T1.

T4—maintaining a constant operating tension in the rope
when the load rests on the deck of the supply vessel. Regular

Fig. 11 Driving torque MD of the winch, SW L is the safe working load
defined as SWL = mLg/iL , mL is the load mass, and iL is the ratio of
the rope system from the end of the boom to the load

sea waves are considered, and the boom inclination angle is
α = 30°.

T5—column rotation for various boom inclination angles.
T6—column rotation for different loadmasses attached to

the rope.
In tasks T1,…,T6, the value of overload coefficient ψ in

the rope system is analysed. The following formula is used
to determine the value of coefficient ψ :

ψ = S/SWL , (40)

where S is the force in the rope.
For the numerical simulations, it is assumed that iL = 1

(Table 7).
In task T1, at time t = 0, the rope is loaded with mass

mL and S = SWL. In tasks T2 and T3, the force in the rope
at the beginning equals zero (mass mL remains on the deck
of the supply vessel). Torque characteristics MD (Fig. 11)
mean that, with the assumption of αM = 1.3 and αω = 1.5,
the load leaves the supply vessel’s deck after only about 0.1 s.
In the case of T4, and the torque acting on the drum winch
MD = 1.3Mnom is constant. Therefore, the torque reflects
AOPS (AutomaticOverloadProtectionSystem), inwhich the
activation and deactivation values are assumed to be equal to
1.3.
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Fig. 12 Lifting of the load a in the air—task T1, b from the deck of a supply vessel—task 2, courses of: vertical speed of the load ẏL , overload
coefficient in the rope ψ , vertical deflection of the boom Uy
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Fig. 13 Lifting the load from the deck of a supply vessel for various boom inclination angles α—task T3, courses: a rotational speed of the winch
drum ϕ̇D , b vertical speed of the load ẏL , c overload coefficient in the rope ψ , and d vertical deflection of the boom Uy

Graphs concerning lifting of the cargo in the air—task
T1—are presented in Fig. 12a. They show a clear influence
of the nominal speed vnom of load lifting on the value of
the overload ψ in the rope and vertical deflection Uy of
the boom. The value of the overload coefficient for nomi-
nal speed vnom > 0.75m/s is exceeded by more than 30%
compared to the situation when the load attached to the rope
hangs freely. Vertical deflection Uy of the jib increases with
the increase of the nominal speed of lifting the load. This is
especially noticeable in the initial time of simulations (t <

0.25). A similar situation is observed in task T2 (Fig. 12b),
with the difference that the courses ofψ andUy show greater
overload in the rope and deflections of the boom. In this case,
the vibrations are initiated by the cargo leaving the supply
vessel.

In taskT3, the influence of the boom inclination angleα on
the load of the rope system and on the crane structure is anal-
ysedwhile lifting a loadwith a givenmass. Simulations of the

lifting are carried out for the load with mass mL = 2000 kg,
having assumed that the load reaches nominal lifting speed
vnom = 0.75 m/s. The results of simulations are presented
in Fig. 13. Increasing the boom inclination angle α, while
lifting the load with the same mass, clearly reduces vertical
deflections of the boom; see courses Uy in Fig. 13d. Despite
the significant differences in courses of deflections, the max-
imum value of the overload coefficient ψ in the rope for
individual cases is within the limits of 〈1.36; 1.48〉. The dif-
ference between the extreme overload values is approx. 7%.

In turn, in task T4, the influence of the amplitude of waves
acting on a supply vessel on the overload of the rope system
is investigated when the load rests on a deck of the vessel.
Regular waves with amplitudes Aiε〈1, 3〉m are examined.
At the same time, it is assumed that the platform on which
the crane is placed is stationary. Initial position of the load
(at t = 0 s) for boom inclination angle α = 30° is xL = xG
= 7.36 m, yL = − 10 m, and zL = 0.
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Fig. 14 Maintaining the operating tension in the rope—task T4, cases C1 and C2, courses of hLi , overload coefficient ψ and vertical deflection of
the boom Uy
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Fig. 15 Rotation angle ̂θP and angular velocity ˙̂θ P of the column in tasks T5 and T6

Courses of the regularwave are described by the following
relation:

hLi (t) = Ai
(

1 − cosωP , i t
)

, for i = x , y, z, (41)

where Ai = 1
2Hs, i is the amplitude of thewave in direction i ,

Hs, i is the wave height, TP , i is the wave period, ωP , i = 2π
TP , i

is the wave frequency, and t is time.
It is assumed that the load is placed under point G of the

boom (Fig. 10), 10m below plane xz (Fig. 1), and thus

xL = x0G + hlx

yL = −10 + hly

zL = z0G + hlz

, (42)

where x0G , z
0
G are coordinates of point G for t = 0.

The height and period of the regular wave are assumed
as follows: HS, x = HS, z = 0, HS, yε〈2, 6〉m (case C1) or
HS, y = 0, HS, x = HS, zε〈2, 6〉m (case C2) and TP , i = 8s.

The results of simulations of task T4, and the courses of
the position of load xL , yL , zL , of overload coefficient ψ ,
and of vertical deflection of the boomUy , with respect to the
assumedcombinationofwaveparameters HS, i , are presented
in Fig. 14.

In both analysed cases, a different range of variability of
overload coefficient ψ is obtained. In the case of C1, when
the supply vessel is only moving vertically, coefficient ψ is
between 〈1.276 and 1.325〉. Much smaller values of the over-
load in the rope occur when the vessel’s motion is considered
in the horizontal plane; then,ψε〈1.289; 1.307〉. However, the
situation is different with vertical deflectionUy of the boom.
As a result of the horizontal movement of the supply vessel
in plane yz, much greater vertical deflections of the boom
are observed than when the load resting on the deck moves
only vertically.

The next two tasks (T5 andT6) are concernedwith simula-
tion of the rotation of the crane columnwith a load attached at
the end of the rope. The influence of boom inclination angle
α and load mass mL on the deflection of the crane structure
and overload of the rope system are analysed. The course of
the kinematic input, rotation angle of the crane column θP ,
and its velocity are presented in Fig. 15.

Simulation results obtained in our own programme for
various values of parameters α and mL are shown in Fig. 16.
In the simulations, the boom inclination angle is constant and
is α = 50o.

Having analysed the simulation results concerning the
rotation of the crane column (tasks T5 and T6), a significant
influence of the inclination angle of the boom on overload
coefficient ψ can be seen. In task T5, the maximum value
of the overload coefficient for inclination angle α = 70° is
1.05, and for angle α = 10°, the maximal value of coeffi-
cient ψ is 1.32. However, in task T6, the maximum value of
ψ is close to 1.15 in all courses. This is due to the fact that
during rotation of the crane column with a load attached to
the end of the rope, almost identical courses of coefficient ψ
are obtained.

As could be expected, both the reduction of the boom
inclination angle and the increase of the load mass cause
greater changes in the vertical and horizontal deflections of
the crane. To support this conclusion, Table 8 summarises the
maximum values of the amplitudes of vertical and horizontal
deflection of the boom in both tasks concerning rotation of
the crane column.

6 Final remarks

The paper presents a spatial model of the dynamics of a lat-
tice jib crane. The Rigid Finite Element Method is used
for discretisation and the translational and rotational dis-
placements in the truss nodes are assumed as generalised
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Fig. 16 Rotation of the crane
column with a load attached at
the end of the rope—tasks T5
and T6, courses of: overload
coefficient ψ , components Uy ,
Uz of the deflection of the boom,
trajectories of the load:
projections on xy and xz planes
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Table 8 Maximum amplitudes of
vertical AUy and horizontal AUz
deflections of the crane in tasks
T5 and T6

Task T5 Task T6

α (deg) AUy (m) AUz (m) mL (kg) AUy (m) AUz (m)

10 0.0103 0.0317 250 0.0007 0.0026

30 0.0089 0.0285 500 0.0014 0.0053

50 0.0056 0.0212 1000 0.0028 0.0106

70 0.0021 0.0111 2000 0.0056 0.0212

coordinates. The nodes of the truss also contain the mass
features of the truss members. On the other hand, flexible
features are reflected by massless spring–damping elements
located in the middle of the truss members. The advantage
of the method proposed for discretisation of the lattice boom
is simplicity and ease of physical interpretation. A computer
programme has been developed on the basis of themathemat-
ical model elaborated. The results obtained in the authors’
own programme have been compared with those obtained
using a commercial software package. Both for static deflec-
tions and frequencies of free vibrations, the relative errors do
not exceed 1%. Moreover, with the use of the model, sim-
ulations of the crane dynamics during transport operations
have been carried out taking into account sea conditions.
The problems considered included: lifting the cargo in the
air and from the deck of a supply vessel, maintaining con-
stant tension in the rope system, and rotation of the crane
column. The simulations performed enable deformation of
the crane structure and overload in the rope system to be
analysed before the crane is manufactured and used in real
conditions. This is the first model of crane dynamics for truss
jibs to use the rigid finite element method for discretisation
of the truss members.
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Kruszewski J, Gawroński W, Wittbrodt E, Najbar F, Grabowski S
(1975) Rigid finite element method (Metoda sztywnych elemen-
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