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Abstract
The prediction capability of recurrent-type neural networks is investigated for real-time short-term prediction (nowcasting) of
ship motions in high sea state. Specifically, the performance of recurrent neural networks, long short-term memory, and gated
recurrent units models are assessed and compared using a data set coming from computational fluid dynamics simulations
of a self-propelled destroyer-type vessel in stern-quartering sea state 7. Time-series of incident wave, ship motions, rudder
angle, as well as immersion probes, are used as variables for a nowcasting problem. The objective is to obtain about 20 s
ahead prediction. Overall, the three methods provide promising and comparable results.

Keywords Nowcasting · Real-time short-term prediction · Recurrent neural networks · Long short-term memory networks ·
Gated recurrent units · Ship motion prediction

1 Introduction

The prediction of the seakeeping andmaneuverability perfor-
mance of naval ships constitutes one of the most challenging
problems in naval hydrodynamics and is important from
both an operational and safety point of views, especially in
heavy weather conditions. Seakeeping and maneuverability
of naval ships in heavyweather have been traditionally inves-
tigated bymeans of experimental model scale testing in large
basins. To reduce the statistical uncertainty of the experi-
mental campaigns and to met security and safety as for the
NATO Standardization Agreement, a large number of condi-
tions (i.e., speeds, wave headings, length, and height, number
of encounters wave) have to be investigated during the tests,
including the so-called rare events. This makes scale model
testing time-consuming and expensive.

During the last decades, low- to high-fidelity simulation
methods have been developed for investigating ships sea-
keeping and maneuvering. Nevertheless, a complete solution
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of the seakeeping and maneuverability problem involves
resolving complex nonlinear wave–body interactions that
may require hundreds of computational CPU hours, espe-
cially if statistical indicators are sought after. For this reasons,
to alleviate the computational burden associated with numer-
ical simulations, regressive and decomposition approaches
and, more in general, machine learning methods, can be
used to model and predict seakeeping and maneuverabil-
ity performance of ships. Some examples for ship motion
prediction, using computational and/or sensor data, include
support vector regression (Kawan et al. 2017), singular value
decomposition (Khan et al. 2016), dynamic mode decompo-
sition (DMD) (Diez et al. 2022a), nonlinear autoregressive
exogenous network (Li et al. 2017), long short-termmemory
(LSTM) (Liu et al. 2020), as well as its bidirectional variant
(Zhang et al. 2020) and hybridization with DMD (Diez et al.
2022b) and Gaussian process regression (Sun et al. 2022).
Among others, neural networks’ (NNs) approaches are gain-
ing an increasing attention in several areas for time-series
forecasting of relevant variables.

Classical NNs treat each observation or data point in the
same way. This means that the NN does not take into account
the correlation across the data points, assuming that they
are independent and identically distributed (i.i.d.). Never-
theless, in several application, such as in time-series fore-
and nowcasting (long- and real-time short-term predictions),
the value of the target variable (e.g., ship motions and con-
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trollers) is usually strongly correlated to the past values of
the target variable at the previous time step. This correla-
tion is lost in a classical NN model. To solve this limitation,
recurrent NNs (RNNs) have been developed with the objec-
tive to learn the dependencies of the data across time and
to improve the prediction accuracy in case of sequential data
(Rumelhart et al. 1986). An RNN is a class of artificial neural
networks where connections between nodes form a directed
graph along a temporal sequence, allowing to exhibit tem-
poral dynamic behavior. Derived from feed-forward neural
networks, RNNs can use their internal state (memory) to pro-
cess inputs’ sequences of variable length. Nevertheless, RNN
suffers the so-called vanishing gradient problem (Pascanu
et al. 2013). To overcame this issue, different mathematical
models have been developed creating gates along the time
steps. Among them the long short-term memory (LSTM,
Hochreiter and Schmidhuber 1997) and the gated recurrent
unit (GRU, Cho et al. 2014) have shown quite effective per-
formance for modeling sequences in several research fields.

In the ship hydrodynamics context, the development and
the assessment of machine learning methods in fore- and
nowcastingof shipmotions and (possibly) loads havebecome
of certain interest and a cutting-edge topic in the ocean
engineering community. In particular, recurrent-type NNs
nowcasting capabilities result to be an hot topic of research.
Trained by both historical and computational fluid dynamic
(CFD) data, up to real-time data, NNs could provide decision
support to captains in choosing route, heading, and speed,
contributing to the safety of vessels, cargo, and crews. Short-
term prediction based on radial basis NN has been presented
in De Masi et al. (2011). LSTM and GRU have been investi-
gated for the prediction of 2 and 3 degrees of freedom (DoF)
of a catamaran in sea state 1 and theDTMBmodel in sea state
8, based on CFD computations in del Águila et al. (2021).

The objective of the present work is to investigate the
capability of recurrent-type NNs for real-time short-term
prediction (nowcasting) of ship motions in high sea state.
Specifically, a preliminary study on the performance ofRNN,
LSTM, and GRU models is presented as a proof of con-
cept for the nowcasting of a self-propelled destroyer-type
vessel, sailing in stern-quartering sea state 7. An encoder–
decoder architecture for sequence-to-sequencemodeling and
multi-step ahead forecasting is proposed here. Furthermore,
uncertainty estimation of the NN prediction is also provided
through casting dropout in the training process (Gal and
Ghahramani 2016a).

The data set is formed by free-running CFD simulations
of a destroyer-type vessel with appendages (skeg, twin split
bilge keels, twin rudders and rudder seats slanted outwards,
shafts, and struts), that have been assessed for course keep-
ing in irregular stern-quartering waves (sea state 7) at target
Froude number equal to 0.33, within the activity of theNATO
STO Research Task Group AVT-280 “Evaluation of Predic-

tion Methods for Ship Performance in Heavy Weather” (van
Walree et al. 2020). RNN, LSTM, and GRU are assessed and
compared in predicting wave elevation, ship motions, rud-
der angle, and immersion probes time histories. These are
organized to form NN input and output arrays, which in this
case include the same physical variables. Note that this is
different from system identification approaches (Silva and
Maki 2022) where the sets of input and output variables are
different from each other.

2 Recurrent-type NNs for sequences’
modeling

A recurrent-type NN differs from a classical NN, allowing
to pass at the successive time step the hidden units zt or
states of the network as a function of the input data xt ∈ R

D

and the state at the previous time step zt−1, namely zt+1 =
h(xt , zt−1).

For fore- and nowcasting of time-series data (or sequences
modeling), observing the input data xt ∈ R

D for a temporal
window T (t = 1, . . . , T ), at t = T , a recurrent-type NNs
can predict (in real time) multiple time steps t ′ with t ′ =
T + 1, . . . , T ′ of the target variable y ∈ R

K , with T ′ non-
necessarily equal to T (i.e., the length of the desired output
may differs from the length of the input). This particular
problem is called sequence-to-sequence learning where the
model is trained to map an input sequence of fixed length xt
for t = 1, . . . , T which best predicts the target variables yt
for t = T +1, . . . , T ′. A particular architecture that allows to
model this kind of problems is the encoder–decoder model
developed for machine translation (Sutskever et al. 2014).

The model is composed by two parts, as shown in Fig.
1: the encoder network which take all the inputs vector
x1, . . . , xT and return a latent representation of what the
encoder learned in the time window T , namely, the final
hidden state zT for t = 1, . . . , T , through the function
h(xt , zt−1). Given the vector zT , the decoder network will
map into the target space R

K the latent representations for
t = T + 1, . . . , T ′, through a function zt = h′(zT , zt−1),
providing

ft = Wz f zt , (1)

where ft ∈ R
K is the prediction of yt and Wz f is a weight

matrix of dimension K × M , with M an hyperparameter.
Network’s hyperparameters are found minimizing the

reconstruction error for the target, defined as follows:

e(W) = 1

(T ′ − T )

T ′∑

t=T

||yt − f(zt ,W)||2. (2)
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Fig. 1 Conceptualization of the sequence-to-sequence learning via an encoder–decoder model

Fig. 2 Detail of the boundary-layer computational grid (left) and a CFD snapshot with location of the probes (right)

Note that the NNswork with variables normalized within−1
and 1.

2.1 Recurrent neural networks

The equations for the forward propagation of an RNN (for
t = 1, . . . , T ) read

zt = tanh(Wxzxt + Wzzzt−1), (3)

with T the time window and also the number of RNN’s cells,
tanh the hyperbolic tangent function applied element wise,
Wxz and Wzz the weight matrices with dimension M × D
andM×M , respectively. Equation 3 is used for the encoding
phase, while for the decoding, xt is substituted by zT .

2.2 Long short-termmemory

TheLSTMcell or unit is composed by threemain gates called
the input i, forget g, output o, and the cell state ct . They are
all M-dimensional vectors that cover a particular role in the

network. Those are given by

⎡

⎢⎢⎣

i
g
o
c

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

sigm
sigm
sigm
tanh

⎤

⎥⎥⎦W
[
xt
zt

]
, (4)

where sigm is the sigmoid function and the weight matrixW
is of dimension 4M × (M + D). The update of the cell state
ct and the state zt is given by

ct = g � ct−1 + i � c (5)

zt = o � tanh(ct ) (6)

with “�” theHadamard product. The vector g is called forget,
because it multiplies by the cell state at the previous time step
ct−1. Since g assume values between 0 and 1, this can be
interpreted as the amount of information that are allowed to
pass to the next cell state. The intermediate cell state vector c
is multiplied by the input vector i, which can be seen as what
kind of new information could be relevant for the current cell
state update. Finally, the state vector zt is updated filtering
the cell state vector ct with a multiplication with respect to
output gate o. Equation 4 is used for the encoding phase,
while for the decoding, xt is substituted by zT .
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2.3 Gated recurrent units

The mathematical model describing the state updates of a
GRU is similar to the LSTM network, but it has only two
gates as follows:

[
d
r

]
=

[
sigm
sigm

]
W1

[
xt
zt

]
, (7)

where d and r are the update and the reset gates, respectively.
The weight matrix W1 has dimension 2M × (M + D). The
state zt update is given by

zt = d � zt−1 + (1 − d) � tanh

(
W2

[
xt

r � zt−1

] )
, (8)

where the weight matrixW2 has dimension M × (M + D),
with M the dimensionality d and r. It can be observed the
reset gate decide which information should be retained from
the previous hidden state zt−1. Equation 7 is used for the
encoding phase, while for the decoding, xt is substituted by
zT .

3 Application for shipmotion nowcasting

The hull form under investigation is theMARINmodel 7967
which is equivalent to 5415M, used as test case for the NATO
STO Research Task Group AVT-280 “Evaluation of Predic-
tion Methods for Ship Performance in Heavy Weather” (van
Walree et al. 2020). This is a geosim replica of the DTMB
5415 model with different appendages designed byMARIN.
The DTMB 5415 is an open-to-public naval combatant hull
geometry. The model was self-propelled and kept on course
by a proportional-derivative (PD) controller actuating the
rudders’ angle.

The code CFDShip-Iowa V4.5 (Huang et al. 2008) is used
for the CFD computations. CFDShip-Iowa is an overset,
block-structured CFD solver designed for ship applications
using either an absolute or a relative inertial nonorthogo-
nal curvilinear coordinate system for arbitrary moving but
non-deforming control volumes. The free-running CFD sim-
ulations were performed with propeller RPM fixed to the
self-propulsion point of the model for the envisaged speed.
The simulations were conducted in irregular long-crested
waves, following a JONSWAP spectrum. The turbulence is
computed by the isotropic Menter’s blended k − ε/k − ω

(BKW) model with shear stress transport (SST) using no
wall function. The location of the free surface is given by the
”zero” value of the level-set function, positive in the water
and negative in the air. The 6 degrees of freedom rigid body
equations ofmotion are solved to calculate linear and angular
motions of the ship. A simplified body-force model is used

for the propeller, which prescribes axisymmetric body force
with axial and tangential components. The total number of
grid points is about 45 M. Further details can be found in
Serani et al. (2021).

The data set collects 8 CFD runs (with different random
phases) at Fr = 0.33, with nominal peak period Tp = 9.2
s and wave heading of 300 deg. It may be noted that the
simulation conditions are close to a resonance condition for
the roll. The nominal significant wave height is equal to 7 m,
corresponding to sea state 7 (high), according to the World
Meteorological Organization (WMO) definition. A total of
215 encounter waves have been recorded, with a total run
length of about 3323 s and a data rate equal to 129.2 Hz (for
the current application, the data set has beendown-sampled to
8.6 Hz). Data collection have taken about 1 M CPU hours on
HPC systems.Wave elevation far from the ship, ship motions
(the 6 DoF), rudder angle, and two immersion probes’ (IP3
and IP5) time-series compose the data set. Figure 2 shows
a detail of the computational grid (on left) and a snapshot
of the ship behavior with the location of signal probes (on
right).

Themain objective is to obtain an accurate real-time short-
term prediction of about 20 s (about one and an half roll
periods) of the ten variables (D = 10) at the same time.

4 Networks’ setup and evaluationmetrics

The dataset has been divided in 60% training set, 20% valida-
tion set, and 20% test set, for cross-validation. The networks’
hyperparameters are selected using a grid search by evalu-
ating different: (1) number layers (depth of the network, 1
and 2), (2) number of hidden units M (20, 50, 100, and 200),
and (3) dropout percentage (0.1, 0.2, and 0.5). For the cur-
rent analysis, the batch size is fixed to 512 and the number of
cells of the encoder/decoder network (width of the network)
is fixed to 25 and 30 time steps, respectively, correspond-
ing to about 18 s of observation to produce approximately
20 s of ahead prediction. The optimization is carried out
using the Adam algorithm (Kingma and Ba 2015) for a max-
imum number of epochs fixed to 1000 and a fixed learning
rate equal to 0.001. The early stopping strategy (Morgan
and Bourlard 1989) is used as regularizer. A linear acti-
vation is used to compute the output vector ft . The same
setting of the matrices’ parameters is used in each time step
despite the states that can evolve in time. This parameter
sharing characteristic allows the network to generalize better
even in case of limited number of training data (Goodfel-
low et al. 2016). Furthermore, to improve the generalization,
200 Monte Carlo realization of the dropout is performed,
providing the expected value and the variance (Var) of the
prediction (Gal and Ghahramani 2016a, b). In the following,
for the sake of simplicity, the prediction refers to the expected
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Table 1 Summary of the
hyperparameters’ optimal set
found via cross-validation

Model M (encoder, decoder) Batch size Dropout N. cells (encoder) N. layers

RNN (100, 100) 512 0.2 25 1

GRU (100, 100) 512 0.2 25 1

LSTM (100, 100) 512 0.2 25 1

Table 2 NRMSE breakdown
for each variable for training
and test sets

Data set variable Training Test

RNN GRU LSTM RNN GRU LSTM

Wave 0.079 0.057 0.052 0.186 0.175 0.191

Surge 0.008 0.005 0.005 0.028 0.022 0.029

Sway 0.022 0.012 0.011 0.059 0.075 0.115

Heave 0.086 0.050 0.049 0.140 0.132 0.140

Roll 0.017 0.010 0.009 0.026 0.025 0.026

Pitch 0.062 0.036 0.035 0.121 0.105 0.102

Yaw 0.046 0.031 0.028 0.146 0.135 0.151

Rudder 0.024 0.016 0.014 0.037 0.033 0.036

Im (IP3) 0.068 0.041 0.038 0.111 0.106 0.121

Im (IP5) 0.100 0.062 0.057 0.156 0.146 0.154

Average 0.051 0.032 0.030 0.101 0.095 0.107

value, while the variance of the prediction is used to define
the prediction uncertainty band as ±2

√
Var.

Defining the network’s residual (or error) at each time step
t for each variable (or feature) i as follows:

ri,t = yi,t − fi,t
2σ(yi )

, (9)

with σ the signal standard deviation, the assessment of the
network’s performance is based on the evaluation of the nor-
malized root-mean-squared error (NRMSE)

NRMSEi =

√√√√√ 1

(T ′ − T )

T ′∑

t=T+1

r2i,t with i = 1, . . . , D,

(10)

as well as by evaluating the probability density functions
(PDFs), via kernel density estimate (KDE), of the residuals
and their statistical moments (i.e., mean, variance, skewness,
and kurtosis).

5 Results and discussion

The optimal hyperparameters are given in Table 1. Interest-
ingly, the three methods provide their optimal performance
with the same hyperparameters (at least considering the cur-
rent sets for the present application).

Table 2 provides the average NRMSE for the training and
the test sets obtained by each model. Furthermore, Table 2

shows the NRMSE for each variable, as well as Fig. 3 (top
row) for the test set. The lowest NRMSE on average for the
test set is achieved by GRU followed by the RNN and LSTM
models. The lowest NRMSE is achieved for surge, roll, and
rudder angle. On the contrary, wave, heave, yaw, and immer-
sion probe signals (IP3 and IP5) are the most challenging
variables to nowcast, providing the highest errors. Overall,
the performances of all the models are comparable, except
for sway, where LSTM achieved the highest NRMSE with
respect to the other models.

The PDFs of the variable residuals are shown in Fig. 4 and
provide a statistical assessment of the methods. Specifically,
an important property that the residuals obtained from a fore-
or nowcasting model should satisfy is that they should have a
zeromean. In case of residuals with amean strongly different
from zero, it means that there is bias in the prediction and the
model needs to be improved. Looking at Fig. 4, the sway pro-
vides amean slightly different from zero, especially for GRU
and LSTM, while the RNN seems more robust in this case.
Residual mean values, as well as variance, skewness, and
kurtosis are also shown in Fig. 3. Wave has the highest vari-
ance. An high positive skewness (more weight in the right
tail of the distribution) is obtained for the residuals of IP5
indicating a systematic overestimate of the forecast obtained
for this variable, while the opposite behavior is obtained for
sway and IP3. A substantial high value of the residuals kurto-
sis is obtained for both the immersion probes (IP3 and IP5),
meaning that the distributions have long tails indicating the
presence of high and low values in the residuals, as also
shown in Fig. 4. This is probably mainly due to the presence
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for IP3 and IP5 of strong changes from zero to higher values
in some particular time step which seems difficult to be mod-
eled (high absolute value of the residuals), while for the rest
of the time steps, their values are very regular and simple to
be predicted (low value of the residuals).

Finally, an example of prediction expectation along with
uncertainty band for each variable by all methods is shown
in Fig. 5. It may be noted that, even if the errors on test set

are higher than on the training set (see Table 2), suggesting
some overfitting, an overall good prediction is achieved, with
all methods following quite effectively the dynamics of the
time-series. Nevertheless, some discrepancy is shown, spe-
cially for wave and sway, confirming the outcomes of the
NMRSE and residuals’ assessment. It can also be observed
that the wave considered is not the one acting on the ship’s
center of gravity, but is the signal of a lateral probe (which
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Fig. 5 Example of nowcasting for wave, ship motions, rudder angle, and immersion probes

provides a signal not affected by the ship’s wake, see Fig. 2).
Thismeans that between the processedwave and the ship sys-
tem outputs (the 6 DoF, the rudder angle, and the immersion
probes), there is a time lag, which “relaxes” the input/output
relationship on the ship system state. For this reason, it is
possible that the NNs makes a higher error on the wave pre-
diction. This could be further investigated using the wave
elevation virtually acting on the center of gravity, as opposed
to wave probes far from the ship. Nevertheless, this goes
beyond the scope of the present proof of concept and will be
addressed in future studies.

6 Conclusions and future work

A preliminary study was presented on the performance of
three recurrent-type neural networks for ship motion now-
casting using a data set composed by CFD simulation of
a self-propelled destroyer-type vessel in long-crest stern-
quartering waves at sea state 7. Specifically, recurrent neural
network, long short-term memory, and gated recurrent units
were assessed and compared for real-time short-term pre-
diction of wave elevation, ship motions, rudder angle, and
immersion probes’ time-series. All the variables have been
used defining a multiple time-series nowcasting problem.
The objective was to obtain about 20 s ahead prediction.
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Anoverall good predictionwas obtained using all the three
methods. Surge, roll, and rudder angle prediction have pro-
vided the lowest errors,whilewave and the immersion probes
exhibited the highest residuals. Overall, the GRUmodel pro-
vided with the best results, even if the three models provided
very close results.

Future work will include the use of Bayesian optimization
for the selection of the networks’ hyperparameters (extend-
ing the grid search) and the statistical assessment of the NN
architectures, as well as the analysis of the performance of
themethods for real-time long-termprediction.Different reg-
ularization strategies will also be investigated to alleviate
possible overfitting problems. Furthermore, comparisonwith
classical (and simpler) feed-forward NN will be addressed.
Finally, to improve knowledge and forecasting of motions
and trajectories for ships operating in waves, as well as
global/local loads, hybridmachine learningmethodswill also
be investigated (Diez et al. 2022b).
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