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Abstract
Recent studies of water waves propagating over sloping seabeds have shown that sudden transitions from deeper to shallower
depths can produce significant increases in the skewness and kurtosis of the free surface elevation and hence in the probability
of rogue wave occurrence. Gramstad et al. (Phys. Fluids 25 (12): 122103, 2013) have shown that the key physics underlying
these increases can be captured by a weakly dispersive and weakly nonlinear Boussinesq-type model. In the present paper, a
numerical model based on an alternative Boussinesq-type formulation is used to repeat these earlier simulations. Although
qualitative agreement is achieved, the present model is found to be unable to reproduce accurately the findings of the earlier
study. Model parameter tests are then used to demonstrate that the present Boussinesq-type formulation is not well-suited to
modelling the propagation of waves over sudden depth transitions. The present study nonetheless provides useful insight into
the complexity encountered when modelling this type of problem and outlines a number of promising avenues for further
research.
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1 Introduction

Long considered the stuff of legend, rogue waves are now
recognised as a serious hazard to ships and offshore struc-
tures. Historical reports of giant, powerful waves appearing
first without warning and then suddenly vanishing have since
been supported by theory and experiment (Dysthe et al. 2008;
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Kharif et al. 2009). In recent decades, numerous studies have
explored both the physical mechanisms which might pro-
duce such waves and the statistical parameters that may be
used to estimate their occurrence probability. Comprehen-
sive reviews are provided by Dysthe et al. (2008), Kharif
et al. (2009), Slunyaev et al. (2011), Onorato et al. (2013),
and Adcock and Taylor (2014), amongst others.

Rogue waves are typically defined as those having heights
which are more than twice the local significant wave height
(e.g. Holthuijsen 2007) but their study is complicated by a
limited number of real-world measurements (Kharif et al.
2009) and conflicting views as to how much information
can be inferred from these (Dysthe et al. 2008). The key
question at present is whether such observations represent
‘classical’ extremes which can be described by conven-
tional models and statistics, or ‘freak’ waves requiring new
theories and approaches (Haver and Andersen 2000; Dys-
the et al. 2008; Kharif et al. 2009). Some authors take
the view that rogue waves are rare instances of random
superposition in seas of weakly nonlinear waves (Chris-
tou and Ewans 2014; Fedele et al. 2016) whilst others
hypothesise that certain waves, such as the well-known
Draupner wave, must have been produced by some other
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forcing mechanism (Adcock et al. 2011; Cavaleri et al.
2016).

Other possible roguewavegeneratingmechanisms include
modulational instability; interactions with variable bathy-
metry, opposing currents, or between crossing seas; wind
forcing; or some combination of these factors (Dysthe et al.
2008; Kharif et al. 2009; Onorato et al. 2013; Fedele et al.
2016). Attempts to derive a single, unifying theory are com-
plicated by the facts that geometric focusing cannot explain
the transient nature of rogue waves (Janssen and Herbers
2009), that modulational instability requires an improbable
set of initial conditions (deep-water waves with a narrow
spectral bandwidth and narrow directional spreading) (Dys-
the et al. 2008), and that rogue waves can be produced even
when several of the foregoing factors are absent (Mori and
Janssen 2006; Kharif et al. 2009).

The simplest theory assumes that the dynamics of ocean
surface waves are purely linear, that the free surface ele-
vation is a stationary, Gaussian process, and that the wave
amplitudes are well approximated by the Rayleigh distribu-
tion (Ochi 2005; Holthuijsen 2007). However, because ocean
waves are inherently (weakly) nonlinear (Trulsen 2018),
wave-wave interactions or other mechanisms can result in
considerable deviations from the Gaussian model (Fedele
et al. 2016). Several authors have suggested that rogue waves
may be a result of non-equilibrium dynamics: if waves are
somehow forced into an unstable state, their statistics can
deviate in such a way as to suggest an increased likelihood
of extreme events (Janssen andHerbers 2009; Viotti andDias
2014). The kurtosis of the free surface elevation is a conve-
nientmetric bywhich to quantify such deviations: an increase
in free surface kurtosis signifies an increase in the probabil-
ity of rogue wave occurrence (Onorato et al. 2004; Mori and
Janssen 2006).

Waves propagating into shallower water are known to be
transformed by shoaling and nonlinear effects (Dean and
Dalrymple 1991; Dingemans 1997) but recent studies have
shown that sudden transitions between deeper and shallower
domains can also produce strongly non-Gaussianwave statis-
tics. Physical experiments by Trulsen et al. (2012), Zhang
et al. (2019), and Trulsen et al. (2020) showed significant
increases in free surface skewness and kurtosis for irregular
waves near the crest of an inclined seabed of 1-in-20 slope
connecting otherwise flat domains, and these findings have
been supported by numerical simulations due to Sergeeva
et al. (2011), Gramstad et al. (2013), Viotti and Dias (2014),
Ducrozet and Gouin (2017), Zhang et al. (2019), and Zheng
et al. (2020). Similar results have also been obtained in exper-
imental and numerical studies of waves propagating over
submerged bars (Ma et al. 2014, 2015), shoals (Janssen and
Herbers 2009; Raustøl 2014; Fallahi 2016; Trulsen et al.
2020), compound slopes (Kashima et al. 2014), and verti-
cal steps (Zheng et al. 2020).

The foregoing local increases in skewness and kurtosis
usually coincidewith local enhancements of higher harmonic
content related to the sudden decreases in depth and corre-
sponding increases in nonlinearity (Gramstad et al. 2013;
Zhang et al. 2019; Trulsen et al. 2020). In fact, Zheng et al.
(2020) have recently shown that second-order terms in wave
steepness are responsible for the change in the statistical
properties near the depth transition for the cases examined by
Trulsen et al. (2012) and Gramstad et al. (2013). These devi-
ations are also expected to depend on the initial steepness,
spectral bandwidth, and directionality of thewaves (Ducrozet
and Gouin 2017; Støle-Hentschel et al. 2018; Trulsen et al.
2020; Zheng et al. 2020), the gradient of the seabed slope,
and the depth beyond the slope: for milder slopes and deeper
depths beyond the slopes, there may be no local maxima, or
perhaps even local minima, in skewness and kurtosis (Zeng
and Trulsen 2012; Gramstad et al. 2013; Raustøl 2014; Fal-
lahi 2016; Trulsen et al. 2020).

In this paper, the phenomenon of increased free surface
skewness and kurtosis following a sudden depth transition
is explored further using an accurate yet computationally
efficient Boussinesq-type model, following the work of
Gramstad et al. (2013), whose model appears to be the
simplest of those describing such anomalous statistical devi-
ations. The aim is to first reproduce the findings of Trulsen
et al. (2012) and Gramstad et al. (2013) and then extend
the parameter space in the numerical simulations to provide
further insight into the underlying physics. The paper is struc-
tured as follows: Sect. 2 provides a brief description of the
numerical model, set-up of the numerical simulations, and
grid convergence and sponge layer calibration tests; Sect. 3
compares the present findings with those of Trulsen et al.
(2012) andGramstad et al. (2013) and summarises the results
of a model parameter study; and Sect. 4 presents the discus-
sion, conclusions, and recommendations for further work.

2 Model

2.1 Numerical model

The present simulations are performed using OXBOU, a
depth-integrated hybrid numerical model designed to sim-
ulate the propagation in one horizontal dimension of ocean
surface gravity waves from intermediate to shallow and zero
water depth. A brief overview of the model features will
suffice here; detailed descriptions of the numerical imple-
mentation and verification and validation tests are given by
Orszaghova (2011), Orszaghova et al. (2012), and Fitzgerald
et al. (2016).

The OXBOU model uses two sets of governing equations
and two numerical schemes: unbroken waves are simulated
using weakly dispersive, weakly non-linear Boussinesq-type
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equations, which are solved using a fourth-order finite dif-
ference method, whilst broken waves are modelled as bores
using the non-dispersive, non-linear shallow water equa-
tions, which are solved using a shock-capturing finite volume
scheme (Orszaghova et al. 2012). The model switches from
the Boussinesq-type to shallow water equations when cer-
tain depth or free-surface slope criteria are met, but the
present simulations involve non-breaking waves solely and
so employ only the Boussinesq-type model. The numerical
scheme incorporates amoving boundary piston paddlewave-
maker, which is facilitated by a mapping between stretching-
compressing physical and fixed computational sub-domains,
and is capable of producing waves with approximately cor-
rect second-order bound harmonics (see Orszaghova et al.
2012). The scheme also includes an absorbing-generating
sponge layerwhich allows incident waves to propagate freely
inshore whilst simultaneously removing offshore-travelling
reflections (see Fitzgerald et al. 2016).

OXBOU solves the Boussinesq-type equations ofMadsen
and Sørensen (1992), which were selected for their enhanced
linear dispersion characteristics and computational efficiency
(Borthwick et al. 2006; Orszaghova et al. 2012). Following
Orszaghova et al. (2012) and Fitzgerald et al. (2016), these
equations are presented in a well-balanced, stage-discharge
(η, q) form as

ηt + qx = ψ(ηo − η), (1)

qt +
(
q2

d
+ 1

2
g(η2 − 2ηb)

)
x

= −gηbx − τb

ρ
+ 1

3
h2qxxt + 1

3
hhxqxt

+B

(
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)
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where η = b + h + ζ is the free surface elevation above a
prescribed horizontal datum (with b the depth of the datum
below the seabed, h the still water depth, and ζ the free sur-
face elevation above still water level); q is depth-integrated
velocity; ψ is the sponge layer damping strength; d = h + ζ

is the total depth; g is acceleration due to gravity; τb is bed
stress; ρ is the fluid density; the subscripts t and x denote par-
tial derivatives with respect to time and horizontal distance,
respectively; the subscript o refers to solutions imposed by
the sponge layers; and B is a linear dispersion coefficient
such that the wave celerity, c, is given by

c2

gh
= 1 + Bk2h2

1 +
(
B + 1

3

)
k2h2

, (3)

where k is the wave number. Setting B = 1/15 embeds the
[2,2] Padé approximant of the exact linear dispersion rela-
tion within the momentum equation, whereas setting B = 0
recovers the classical equation derived by Peregrine (1967).

2.2 Set-up of numerical simulations

Following Gramstad et al. (2013), the first set of simu-
lations is designed to replicate the physical experiments
described by Trulsen et al. (2012), which were performed
in the shallow water basin at the Maritime Research Insti-
tute Netherlands (MARIN). These experiments considered
three cases of long-crested irregular waves propagating from
a piston-type wavemaker (at x = 0m) first over a deeper
flat domain, then over a 1-in-20 inclined seabed slope (from
x = 143.41 to 149.41m), and finally over a shallower flat
domain leading to an absorbing beach (at x = 173.41m).
In all three experimental cases, the still water depths before
and after the slope were h = 0.6 and 0.3m, respectively, and
the nominal input significant wave height was Hs = 0.06m.
Cases 1, 2 and 3 were distinguished by the nominal peak
periods of their input wave spectra: Tp = 1.27, 1.70, and
2.12 s, respectively. Wave records were obtained from eight
gauges placed along the length of the basin, and the influ-
ence of the depth transition on the probability of rogue wave
occurrence was examined by calculating the skewness and
kurtosis of the free surface elevation and exceedance function
of the (Hilbert) wave envelope at each location.

In repeating these experiments, the present study follows
closely the methodology described by Trulsen et al. (2012)
but uses OXBOU to output results at 1m spatial intervals,
and moves the seabed slope 0.01m closer to the wavemaker
to facilitate the use of uniform (fixed) computational grids.
The simulations for each case are performed as follows. The
wavemaker is used to generate identical irregular waves in
both an incident domain and a run-up domain. In the incident
domain, the numerical wave tank (from x = 0m to 200m) is
assigned aflat seabedprofile (h = 0.6m),whilst in the run-up
domain, the tank comprises deeper (h = 0.6m) and shal-
lower (h = 0.3m) sections connected by a 1-in-20 seabed
slope (from x = 143.4 to 149.4m). In both domains, the bed is
frictionless and thewaves propagate into an absorbing sponge
layer (from x = 185.8 to 200m), which gradually reduces ζ

and q to zero to ensure that there are no reflections either from
the end of the tank or the absorbing layer itself. Meanwhile,
in the run-up domain, reflections from the slope are removed
by an additional absorbing-generating sponge layer (from x
= 92.9 to 107.1m), which adjusts the free surface elevation,
ζr , and depth-integrated velocity, qr , to match those in the
incident domain, ζi and qi (Fig. 1).

Irregular waves are produced as the sum of wave compo-
nents obtained from a truncated JONSWAP spectrum with
peak frequency f p = 1/Tp and upper and lower cut-off
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Fig. 1 Schematic diagram showing a simulation performed using cou-
pled (a) incident and (b) run-up domains. Identical irregular waves
are produced by the moving boundary wavemakers (left), and absorb-

ing (right) and absorbing-generating sponge layers (centre) are used to
eliminate reflections from the ends of the tanks and submerged seabed
slope

frequencies fmax = 3 f p and fmin = 0.5 f p. The JONSWAP
function is given by

S( f ) = α
g2

(2π)4

1

f 5
exp

{
−1.25( f p/ f )

4
}

γ exp
{−( f − f p)2/2(σ f p)2

}
, (4)

where f is the component frequency, α is the energy scale
parameter, γ = 3.3 is the peak shape parameter, and σ is the
peak width factor, which is assigned values of σ = 0.07 for
f ≤ f p and σ = 0.09 for f > f p (Ochi 2005; Holthuijsen
2007). Pseudo-random wave signals are generated using the
random-amplitude/random-phase approach of Tucker et al.
(1984), in which the amplitudes and phases of the linear
components are determined, respectively, from a Rayleigh
distribution with scale parameter

√
S( f )� f , where � f is

the frequency domain sampling interval, and a uniformdistri-
bution on [0, 2π ] (Fitzgerald et al. 2016). The corresponding
linear wavemaker signal is then calculated using the Biésel
transfer function, and a large number of harmonic com-
ponents is chosen to ensure that the repeat period of the
signal is greater than the duration of the simulation. This
linear signal can also be corrected by applying a second-
order transfer function approximated from the wavemaker
theory of Schäffer (1996) but, for ease of computation, only
first-order accurate wavemaker signals are considered ini-
tially.

2.3 Grid convergence and sponge calibration tests

Model solutions converged for a uniform computational grid
spacing of 0.02m and a time step of ∼ 0.0066s. Figure 2a
shows the excellent agreement in free surface time series
obtained when computational grids of resolution 0.018m,
0.02m, and 0.022m (which reproduce the tank using 11,000,
10,000, and 9,000 grid points, respectively) are used to sim-
ulate an example focused wave group, which is created by
bringing 128 harmonic wave components from the Case 2
spectrum to a linear focus amplitude of 0.03m at the toe of
the seabed slope (x = 143.4m). Wave records from a point
just beyond the crest of the slope (x = 150m) show excel-
lent agreement, with root mean square error (RMSE) values
ranging from ∼ 2.47 × 10−5 m to ∼ 5.68 × 10−5 m, as do
the corresponding frequency-domain results, which are not
shown for brevity. Excellent results are also obtained in tests
for mass conservation, reversibility, and the accumulation of
round-off error, with model errors typically much less than
1%.

The absorbing and absorbing-generating sponge layers are
then calibrated to ensure that they are able to damp effec-
tively waves passing through without altering the incoming
wave field. The absorbing-generating layer, which is used
only in the run-up domain and placed such that its mid-
point lies halfway along the one-dimensional tank (Fig. 1), is
assigned a triangular strength profile (such that ψ increases
and decreases linearly and symmetrically about the midpoint
of the layer), whilst the identical absorbing layers, which are
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Fig. 2 Free surface elevation time histories at x = 150m showing excel-
lent agreement between (a) records of a crest-focused group simulated
on computational grids of resolution 0.018m (circles), 0.02m (line),

and 0.022m (crosses), and (b) subsequent repeat periods (crosses, line)
of a periodic irregular wave signal

placed at the ends of the tanks in both the incident and run-
up domains, are given linearly increasing strength profiles
(Fitzgerald et al. 2016).

Calibration is undertaken by comparing, for different
sponge layer lengths, Ls , and integrated sponge layer
strengths,ψ , thewave records obtained frompoints upstream
and downstream of the sponge layers. With the absorbing-
generating layer switched off, a crest-focused wave group
is first propagated from left to right through the absorbing
layers, which are temporarily moved 20m upstream so that
measurements can be taken both upstream and downstream
of the layers, and measurements are taken in the run-up
domain as the waves are damped to zero. With the absorbing
layers calibrated and moved back to the end of the tank, the
reflected wave group, which is obtained from an additional
simulation with no sponge layers, is then propagated from
right to left through the absorbing-generating layer, which
is set to damp the waves to the conditions in the incident
domain (in this case, still water).

Excellent absorption properties are achieved by setting,
for all layers, Ls = 4λp = 14.2m and ψ = 4ωp =
14.8 rad/s, where λp is the the peak wavelength and ωp is the
peak angular frequency of the Case 2 spectrum. Following
Fitzgerald et al. (2016), a periodic irregular wave signal with
repeat period ∼ 2.17 × 102 s is then used to determine the
efficacy of the sponge layer absorption by testing for repeata-
bility in the wave record at a given gauge. Figure 2b shows
the excellent agreement (RMSE ≈ 2.64 × 10−4 m) in free
surface time series obtained between subsequent repeat peri-
ods in the wave record at x = 150m in the run-up domain,

which confirms that the reflections from the end of the tank
and submerged seabed slope are negligible.

3 Results

3.1 Comparison with the results of Trulsen et al.
(2012) and Gramstad et al. (2013)

The three experimental cases performed at MARIN are
simulated by first discretising their input spectra into 214 har-
monic wave components to produce irregular wave signals
and corresponding linear paddle signals with repeat periods
∼ 1.67 × 104 s, 1.11 × 104 s, and 1.39 × 104 s, respectively
(Fig. 3a-b). OXBOU is then used to run each simulation for
a duration of Td = 1.10 × 104 s with the linear dispersion
coefficient tuned for optimal dispersion: B = 1/15. With the
three simulations complete, the wave records are compiled
and the first 200s of each is neglected, following Trulsen
et al. (2012), which leaves, at each grid point, records of
duration ∼ 8.48 × 103, 6.36 × 103, and 5.90 × 103 peak
wave periods, respectively. Figure 3c shows, for the Case 2
simulation, the convergence of the normalised mean, stan-
dard deviation, skewness, and kurtosis of the free surface
elevation with number of time samples in the wave record at
x = 150m. Each statistic is normalised by the correspond-
ing value obtained for the entire record, and it is clear that
the ∼ 1.644 × 106 samples are sufficient to provide robust
estimates for each experimental case.

Figure 4 then compares, for each case, the simulated vari-
ations in variance, skewness, and kurtosis along the length
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Fig. 3 Example plots from the present Case 2 simulation showing (a)
the input JONSWAP spectrum, (b) the nominal input wave signal, and
(c) the convergence of the statistical moments G with the number of

time samples n in thewave record (which has a total of N ≈ 1.644×106

samples) at x = 150m: mean (dotted line), standard deviation (dashed-
dotted line), skewness (dashed line), and kurtosis (solid line)

of the tank with those obtained from the Boussinesq-type
numerical simulations ofGramstad et al. (2013) and the phys-
ical experiments of Trulsen et al. (2012). The results from the
present Boussinesq-type simulations are shown with 95%
confidence intervals determined using histograms produced
by calculating the same statistics for 1000 bootstrap samples,
which are obtained by random sampling with replacement of
5% of the available data. Although the trends for each statis-
tic are qualitatively similar, the present profiles do not match
those reported by Trulsen et al. (2012) and Gramstad et al.
(2013): the skewness results are consistently lower and ini-
tially negative (Fig. 4d-f), and the kurtosis profiles exhibit
greater reductions along the tank and much less promi-
nent spikes near the crest of the submerged seabed slope
(Fig. 4g-i).

3.2 Case 2 parameter study

To investigate these discrepancies, a parameter study based
on the Case 2 simulation is used to examine the effects
of various model inputs on the kurtosis profiles obtained
for irregular waves propagating over a flat, horizontal bed
(Fig. 5a) aswell as over the submerged seabed slope (Fig. 5b).
For a flat domain with still water depth h = 0.6m, the kur-
tosis profile obtained for x < 143.4m (Fig. 5a: solid line) is
practically identical to that obtained in the Case 2 simulation
(Fig. 5b: solid line), which confirms that the upstream kur-
tosis profile is unaffected by reflections from the submerged
slope. This flat-bed simulation also demonstrates a reduction
in kurtosis along the length of the tank: the kurtosis decreases
from the input value of∼ 3 and appears to stabilise at a value
of ∼ 2.9 towards the end of the domain. Repeating this sim-
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Fig. 4 Profiles of free surface elevation statistics: variance (a–c),
skewness (d–f), and kurtosis (g–i) for Cases 1 (left column), 2 (cen-
tre column), and 3 (right column). Results are obtained from the
physical experiments of Trulsen et al. (2012) (crosses), the Boussinesq-

type simulations of Gramstad et al. (2013) (solid lines), and the
present Boussinesq-type simulations (dots with 95% confidence inter-
vals shaded in grey). The vertical dotted lines mark the positions of the
toe (left) and crest (right) of the submerged seabed slope

ulation with a lower input value of kurtosis (which is done by
replacing the original wavemaker signal with the negatively
skewed wave record subsequently obtained at x = 160m)
yields amore uniformprofile,which further suggests an equi-
librium kurtosis value of ∼ 2.9 for this case. However, this
equilibrium value is found to depend, as in earlier studies
(see Janssen 2003; Zeng and Trulsen 2012), on both the still
water depth (Fig. 5a: dotted line) and the bandwidth of the
input wave spectrum (Fig. 5a: dashed line).

For simulations including the submerged seabed slope,
the kurtosis profiles appear insensitive to the location of

the generating-absorbing sponge layer and the end-of-tank
boundary condition. A similar profile is also obtained when
the strengths of the absorbing and absorbing-generating lay-
ers are reduced by 90% (Fig. 5b: dotted line), which implies
that the observed reduction in kurtosis is not the result of
excess numerical damping. Dividing each wave record from
the Case 2 simulation into five equal sections and taking
the quasi-ensemble average of these fifths yields a similar
profile (Fig. 5b: dashed line), as does taking the ensem-
ble average across five alternate, independent realisations
(Fig. 5b: dashed-dotted line). This demonstrates that the
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Fig. 5 Kurtosis profiles from the Case 2 parameter study. (a) Flat
domain: still water depth, h = 0.6m (solid line); narrower input
spectrum (dashed line); lower input kurtosis (dashed-dotted line); and
h = 0.3m (dotted line). (b) Submerged seabed slope: single realisation
(solid line); quasi-ensemble average of the single realisation divided

into fifths (dashed line); ensemble average of five alternate, indepen-
dent realisations (dashed-dotted line); reduced sponge layer strengths
(dotted line); and shorter simulations using first- (circles) and second-
order (crosses) accurate wavemaker signals

present results do not depend on the type of measurement
taken. Moreover, the kurtosis profiles obtained from shorter-
duration (for ease of computation) simulations using first-
and second-order accurate wavemaker signals are very sim-
ilar (Fig. 5b: circles; crosses), which implies that neither are
the observed trends due to error waves produced by the first-
order accurate wavemaker (see Orszaghova et al. 2014).

4 Discussion and conclusions

The kurtosis profiles obtained in each experimental case
agree qualitatively with those of Trulsen et al. (2012) and
Gramstad et al. (2013) but the present numerical model is
clearly unable to capture accurately the spikes near the crests
of the submerged seabed slopes (Fig. 4g–i). A parameter
study has confirmed that the present results do not depend
on the type of measurement taken, the position or damping
strengths of the sponge layers, or the order of accuracy of the
wavemaker signal (Fig. 5b). Further discrepancies are also
evident: for the depths considered here, second-order bound
harmonics are expected to positively skew the probability
distribution function for the free surface elevation (Onorato
et al. 2005) but the present skewness results are initially neg-
ative (Fig. 4d–f). Replication of an example irregular wave
simulation with the ‘fully nonlinear’ OceanWave3D model
(see Engsig-Karup et al. 2009) (comparison not shown for
brevity) confirms that OXBOU produces consistently lower
values of free surface elevation skewness and kurtosis.

The discrepancies between the present results and those
of Gramstad et al. (2013) most likely stem from differences
in the underlying momentum equations. The exact source
of these discrepancies, however, is difficult to determine.
When examining the propagation of irregular waves over
a compound slope, Kashima et al. (2014) found that the
present equation set returned values of skewness and kur-
tosis which were considerably lower than those obtained in
the corresponding physical experiment. These lower values
were explained as being the result of insufficient nonlinearity
in the numerical simulations, but Gramstad et al. (2013) were
able to use a similar weakly nonlinear model to reproduce
the results of Trulsen et al. (2012). Further, in deriving the
present equation set, Madsen and Sørensen (1992) adopted a
mild slope assumption which retained only the lowest-order
spatial derivatives of the water depth. This means that the
present model is unable to capture the effects of the sudden
depth transition as well as that of Gramstad et al. (2013),
which retains these high-order terms. It is also worth not-
ing that two of the present three experimental cases consider
water depths which exceed the depth limit (kph < 1, where
kp is the peak wavenumber of the input spectrum) recom-
mended to ensure the accuracy of the present equation set
(see Madsen and Sørensen 1992, 1993).

Using a boundary element method with fast multipole
acceleration to solve Laplace’s equation for potential flow
with fully nonlinear boundary conditions, Zheng et al. (2020)
have recently predicted the local changes in the statistical
properties of irregular waves propagating over a range of
submerged slopes in close agreement with the experiments

123



Journal of Ocean Engineering and Marine Energy (2021) 7:145–155 153

by Trulsen et al. (2012). In doing so, Zheng et al. (2020)
have demonstrated that these local changes are driven by
second-order terms,whichmay help to explainwhy the peaks
in skewness and kurtosis cannot be accurately captured by
the present Boussinesq-type model. The present equation
set includes a linear dispersion coefficient, B, which may
be tuned to produce either enhanced dispersion characteris-
tics or approximately correct second-order bound harmonics
(Yao 2007). Herein, B is assigned a value of 1/15 for opti-
mal dispersion. It is reasonable to assume that if the bound
waves are inaccurate, significant errors in skewness and kur-
tosis will arise near the sudden depth transition, because the
peaks in skewness and kurtosis at this location are likely
a consequence of the release of second-order bound waves
by the depth transition (Zheng et al. 2020). Although there
is no value of B which can make the present equation set
equivalent to that of Gramstad et al. (2013), it is possible to
match the linear dispersion relations by setting B = 0.057.
However, this is found to make no appreciable difference to
the present results and does not address the need to correct
the bound waves. Frequency domain comparisons between
OceanWave3D and OXBOU (again not shown for brevity)
demonstrate that there is also no value of B which gives sat-
isfactory agreement on sub-harmonic and super-harmonic
content.

Modelling this sudden depth transition problem is chal-
lenging because it requires an accurate yet computationally
efficient numerical code which is able to incorporate the
effects of both dispersion and nonlinearity on the evolution of
the wave field. The work of Gramstad et al. (2013) has shown
that the key physics underlying this localised increase in the
probability of rogue wave occurrence can be captured by a
weakly dispersive,weakly nonlinearBoussinesq-typemodel.
There are, however, many different sets of Boussinesq-type
equations and the present study demonstrates the importance
of making an appropriate selection. Although OXBOU is
a very useful tool for modelling nearshore wave propaga-
tion, run-up, and overtopping, it is clear that the underlying
equation set is not well-suited to modelling the propagation
of waves over a sudden depth transition. It is thus recom-
mended that this problem be revisited using a revised version
of OXBOU based on an improved set of Boussinesq-type
equations. The equations of Schäffer and Madsen (1995),
for instance, provide the same enhanced linear dispersion
characteristics as those of Madsen and Sørensen (1992) but
are not limited to mildly sloping seabeds. It should also be
noted, however, that the accuracy of any numerical model
will depend on the means by which the spatial and tempo-
ral derivatives are calculated (Borthwick et al. 2006), and
that sudden depth transitions invariably prove challenging
for any low-order finite difference scheme. Shock-capturing
schemes offer an alternative approach but are generally less
accurate and may introduce further complications.

In future studies, it would prove valuable to compare sta-
tistical results not only between different Boussinesq-type
formulations but also between weakly and highly nonlin-
ear models, following Viotti and Dias (2014), Ducrozet and
Gouin (2017), and Zheng et al. (2020), as well as with phys-
ical experiments, following Zhang et al. (2019) and Trulsen
et al. (2020). It would also be interesting to explore whether
idealised, multi-layer numerical models, such as SWASH
(Zijlema et al. 2011), can provide additional insight. Future
work should examine not only the extreme amplitudes but
also the shapes and periods of these rogue waves, which are
crucial in understanding the strength of the wave impact and
the resilience of ships and offshore structures (Kharif et al.
2009; Adcock and Taylor 2014). The effects of directionality
must also be considered because large waves evolve differ-
ently in unidirectional and directionally spread seas (Adcock
and Taylor 2014), and studies have shown that even a small
amount of counter-propagating wave energy can result in a
significant reduction in free surface kurtosis (Ducrozet and
Gouin 2017; Støle-Hentschel et al. 2018). Finally, real-world
observations should be included wherever possible in studies
of rogue wave formation and occurrence probability (Slun-
yaev et al. 2011) because it is the ocean that provides the
most representative conditions with which to test and revise
new theories.
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