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Abstract

Fiber reinforced polymer composites (FRPC) have gain rapid interest as light-weight and corrosion-resistant materials for
various applications in marine infrastructure. Despite their advantages, FRPCs are still susceptible to other environmental
factors present in the marine environment and manufactured mostly from non-renewable materials. This greatly affects the
overall economic and environmental sustainability of such components. To determine the long-term suitability of various
FRPC:s for use in marine environments, this paper provides a holistic comparison of the performance of 16 FRPCs (four
fiber types: glass, carbon, natural, basalt; and four polymer resins: epoxy, polyester, vinylester, thermoplastic) not only from
a technical, but also from an economic, environmental and resource perspective. The resulting ranking not only assesses
each material’s long-term potential, but also provides a detailed overview of individual strengths and weaknesses. Although
ranked the lowest of all materials, the partial renewability of the natural fiber composites makes them an interesting mate-
rial in the longer term. Therefore, we use the framework to evaluate a number of approaches aimed at improving the overall
performance of these composites.

Keywords Fiber reinforced polymer composites - Marine environment - Sustainable construction - Multi-criteria decision-

making - Environmental impact - Resource availability

1 Introduction

Over the past decades, fiber reinforced polymer composites
(FRPC) have been used more and more frequently in a wide
range of applications in vehicles, aircraft, ships, and also
civil infrastructure. More recently, FRPCs have also been
used as external (fabric or plates) and internal (rebar) rein-
forcement for concrete structures and also as fully structural
members (Fang et al. 2019; Shahawy et al. 1996; Uomoto
et al. 2002). In marine environments, FRPCs have, in many
cases, replaced more traditional materials such as aluminum
or steel due to their high specific strength, excellent cor-
rosion resistance, and, consequently, lower life cycle costs
(Bai 2013; Graham-Jones and Summerscales 2015). Due
to the artificial combination of two distinct materials (fiber
and polymer resin), a plethora of different components with
highly diverse and tailored mechanical properties can be
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constructed making the selection of appropriate material
combinations a challenging task.

The most commonly employed FRPCs are reinforced
either with carbon fibers (CF) or glass fibers (GF). In light
of the growing importance of sustainability considerations
in society, composites containing natural, plant-based fib-
ers (NF) have been gaining increasing interest as low cost,
environmentally friendlier alternatives (Pickering et al.
2016). Another fiber type that is seeing increasing usage is
basalt fibers (BF) made from basaltic rock, which is a widely
available resource in certain regions. These fibers require
less preprocessing than GF and provide similar mechani-
cal strength, thus presenting another viable alternative
(Colombo et al. 2012; Fiore et al. 2015). While the durabil-
ity of these materials under the harsh conditions present in
the marine environment have been investigated extensively
(Berges et al. 2016; Correia et al. 2006; Davies et al. 1996;
Garcia-Espinel et al. 2015; Gassan and Andrzej 1999; Koot-
sookos and Mouritz 2004; Liu et al. 2006; Maslinda et al.
2017; Poodts et al. 2013; Tual et al. 2015; Wei et al. 2011;
Yan et al. 2015), the comparability of this data is limited due
to the wide amount of experimental parameters affecting
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the final results (Frigione and Lettieri 2018). Furthermore,
existing performance evaluations focus solely on mechanical
and durability aspects, thus failing to address the question
whether the production, use, and disposal of such FRPCs is
actually sustainable in the long term. To answer this ques-
tion not only considerations of technical, but also economic
and environmental and resource availability aspects need to
be included.

In this paper, we present such an evaluation for the four
previously mentioned fiber types used with four different
polymer matrices, resulting in a total of 16 FRPC materi-
als. For this, we apply a framework designed to provide a
holistic evaluation of different construction materials for
the use in sustainable construction to the specific case of
marine construction. The framework builds on a ranking of
materials according to their durability, economics of use,
and environmental performance as well as the long-term
availability of their raw materials (Kappenthuler and Seeger
2019). The resulting ranking of the different materials pro-
vides a detailed overview of the strengths and weaknesses of
each material, and allows a further high-level prioritization
of research areas which have a high potential to improve the
performance of the individual materials.

This paper is structured as follows. First, the methodol-
ogy of the ranking is explained and the different FRPCs
that were evaluated are presented. This is followed by the
results of the ranking, which was completed with experts
from industry and academia. Finally, we specifically address
the weaknesses of the renewable NF composites and briefly
discuss those research areas offering the highest potential for
improvement, allowing these materials to compete with the
non-renewable alternatives.

2 Methodology

The results presented in this study are based on the appli-
cation of a previously developed framework that ranks a
set of materials according to the four categories of Dura-
bility, Economics & Costs, Sustainability & Environmental
Impact (EI), and Future Availability. Each category consists
of multiple attributes which are given a score from 1 to 5
(low—high) for each material according to a predefined scale.
Aggregating the individual attribute scores using a Simple
Additive Weighting process produces the final score for
each material and enables the assessment of the material’s
overall potential. Furthermore, the individual scores provide
an overview of each material’s strengths and weaknesses,
which enables a first high-level evaluation of the impact
various material and policy developments may have on
the performance of a material in a specific area. A detailed
description of the framework is presented in Kappenthuler
and Seeger (2019). In addition to the information provided
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there, case-specific adaptions are discussed in the following
subchapters.

2.1 Goal of ranking

The goal of the presented study is to assess the potential
of various FRPCs for the use as structural components for
sustainable marine construction in the long-term future. The
Durability attributes of the original framework were adapted
to evaluate the durability of the composites exposed to the
harsh marine environment, specifically the splash zone (See
“Appendix”). The Future Availability attributes are evalu-
ated for a timeframe of 50 years unless stated otherwise.

2.2 Category and attribute weights

A weighting factor is assigned to all categories and attrib-
utes according to their overall importance for achieving the
stated goal (i.e., the use of the evaluated materials as struc-
tural components for sustainable marine construction in the
long-term future). Attributes with a high, medium, or low
importance are weighted with a factor of 3, 2, or 1, respec-
tively. These weights were defined together with experts
from industry and academia.

As the main goal is to assess the long-term sustainability
of the evaluated materials, Future Availability was given a
higher weight. The immediate Economics & Costs have a
reduced effect on the long-term performance of materials, as
the scores may change quickly in the wake of technological
or regulatory developments. Thus, the weighting factor for
this category was reduced. All categories, attributes, and
the corresponding weighting factors are shown in Table 1.

2.3 Definition of functional unit

To compare the performance of the different composites
used as structural materials, the functional unit (FU) was
related to the materials’ compressive strengths. For each
composite, the FU was the weight of a I m long column with
a square cross-section that is able to withstand a compres-
sive load of 5000 kN produced from the given composite.
Consequently, the compressive strength of each FRPC deter-
mines the area of the cross-section and, thus, the volume of
the entire column, which, in turn, determines the weight of
the column.

2.4 Material selection for ranking

For this analysis, different materials were considered for the
matrices and fibers of the composites. Material selection was
intended to include not only the most commonly used mate-
rials, but also materials that exhibit favorable properties, but
have so far not been applied widely in marine construction.
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Table 1 Categories, attributes,

Category (weight
and respective weights used for gory (weight)

Attribute (weight)

ranking Durability (2)

Economics and costs (1)

Sustainability and environmental impact (2)

Future availability (3)

Corrosion resistance (3)

Resistance to biological degradation (3)

Fatigue resistance (2)

Resistance to stress corrosion cracking (2)

UV resistance (1)

Moisture resistance (3)

Material costs (3)

Ease of manufacture (1)

Maintenance cost—vulnerability (3)

Maintenance cost—repairability (3)

Reaction to fire (2)

Resistance to fire (2)

Performance uncertainty (1)

Projected price development (1)

Raw material renewability (2)

Recycling approach (3)

Impact of production on human health (2)

Impact of production on ecosystems (2)

Impact of production on resources (2)

Short-term raw material availability (2)

Long-term raw material availability (3)

Geographical distribution of reserves (3)

Potential for restrictive government regula-
tion (2)

Development of recycling infrastructure (3)

Projected growth of competing industries
@)

Ease of production increase (1)

In a first step, existing textbooks on material science
and engineering were analyzed to determine the generally
accepted categories of composite materials that are used in
engineering and construction (Ashby 2016; Graham-Jones
and Summerscales 2015; Reuben 1994). To bring the num-
ber of materials down to a manageable level, materials were
grouped into subcategories containing materials with very
similar chemical compositions (ex. natural fibers, thermo-
plastics). Although the materials in such a subcategory may
exhibit different properties depending on their exact compo-
sition, the differences will be significantly smaller than when
compared to materials in other subcategories.

Materials which are almost exclusively used in mechani-
cal engineering and not construction (such as technical
ceramics) as well as recently developed materials for which
little-to-no data exist were also removed. Finally, the list
of candidate materials was discussed with several industry
experts to ensure that no relevant materials were missing.

Glass fiber (GF), carbon fiber (CF), natural fiber (NF),
and basalt fiber (BF) were included in the ranking. For
the matrices, three different thermoset resins [Epoxy (E),

Polyester (PE), and Vinylester (VE)] as well as a general
thermoplastic (TP) polymer were included. Each fiber and
matrix combination was evaluated as a single material. The
composite was assumed to contain continuous fibers at a
fiber volume fraction of 0.5. As the mechanical properties
of FRPC components depend greatly on the exact form of
manufacturing (ex. pultrusion, winding, hand-layup, etc.),
an average value of compressive strength (established
through discussions with industry experts) was assumed
for all composites (Table 3). Finally, to enable accurate EI
calculations, a specific material needed to be chosen for the
natural fibers (i.e., Jute) as well as the thermoplastic resin
(i.e., polycarbonate).

2.5 Data collection

The main source of data for completion of the ranking were
discussions with experts from industry and academia, as
well as data from technical reports, material databases, and
scientific literature. The individual experts completed the
ranking for all materials and were asked to explain their
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reasoning behind each score. If the scores given for a spe-
cific attribute varied by only 1 point, the average score was
chosen as the final score. If the scores varied by more than 1
point, further investigation into the literature was conducted,
to conclude which score was appropriate. Six experts from
academia and industry completed the ranking.

3 Results and discussion

The results of the material ranking are displayed in Table 2.
CF composites achieved the overall highest scores mainly
due to their high chemical resistance and mechanical
strength leading to the highest Durability, Economics, and
Sustainability scores for each respective CF composite.
The Future Availability scores are almost identical for all
materials, as the main raw material of concern is petroleum
or natural gas for the production of the polymer matrices.
GF and BF composites perform very similarly with the BF
composites achieving slightly higher Durability and Sustain-
ability scores. However, the values for BF are largely based
on estimates, as they have not been extensively used in con-
struction to date (resulting in a lower Economics score com-
pared to GF). Consequently, further research will be required
to determine the overall performance of the BF compos-
ites in marine environments more precisely. Despite being
the only fiber type that can be produced from renewable
sources, the NF composites are the lowest ranked materials
in this analysis. This is due to their low-moisture resistance
and biological resistance, as well as their relatively weak
mechanical properties. While these composites may be very
promising for certain applications where cheap, light-weight
components are required, they are not well suited for the
use as structural materials in marine environments without
further protection and improving their mechanical proper-
ties. The individual attribute scores will be discussed for all
analyzed composites in the following sections.

3.1 Durability

Aside from the NF composites, all materials have a high
Durability score with the main weaknesses being UV and
Moisture Resistance.

All FRPCs are inherently corrosion-resistant and except
for the NF composites are immune to degradation by marine
organisms (score 5). The natural fibers contained in the poly-
mer matrix could be degraded by marine organisms if they
are exposed to the surrounding environment, through for
instance cracking of the matrix (score 4).

The fatigue resistance of FRPCs is determined mainly
by the fiber type and content. GF, BF, and NF can suffer
from fatigue damage. However, if stresses are kept below
the fatigue limit (which can be accurately predicted), the
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polymer matrix will stretch elastically leading to an infi-
nite fatigue life (score 3) (Kulkarni et al. 2003). CFs are
more resistant to fatigue than the other fiber types (score 4)
(Colombo et al. 2012).

For the thermoset matrices, UV radiation mainly presents
a problem concerning the aesthetics, as the rays can only
penetrate about 1 mm into the polymer. This leads to a dis-
coloring and roughening of the surface layer, but does not
strongly affect the mechanical properties of the composite
if the entire component is thick enough (> 10 mm) (Correia
et al. 2006; Karbhari 2007). As the degraded surface can
be more easily removed by mechanical forces which would
lead to the exposure of the polymer layer beneath it, UV
rays can lead to a more rapid degradation of the composite
(score 3 for GF, CF, and BF with E, PE, and VE matrix).
TP is more vulnerable to UV degradation. It becomes brit-
tle during exposure and can completely degrade over time.
The time of degradation can be controlled by increasing the
composites thickness (score 2 for GF, CF, and BF). As NFs
are degraded through exposure to UV rays, the scores were
reduced for the NF composites (score 2 for E, VE, and score
1 for TP) (Yan et al. 2015).

The most crucial attribute determining the Durability of
FRPCs in the marine environment is their moisture resist-
ance. The polymer matrices of these composites can absorb
water which can lead to swelling and degradation of the
polymer. Swelling of the matrix leads to degradation of the
fiber—matrix interface and thus decreases the composites
mechanical properties. In general, VE has the best prop-
erties of all the matrices as it only absorbs little moisture
(Figliolini and Carlsson 2013). This also limits the amount
of moisture that could potentially reach the imbedded fib-
ers (score 4 for GF and BF). For CFs, however, the CF-VE
bond is inherently weak and further decreases with even
slight swelling of the matrix (score 2) (Figliolini and Carls-
son 2014; Latif et al. 2019).

Although the individual behavior is not exactly the same
the E and TP matrices were seen as similar concerning mois-
ture resistance. Swelling moderately reduces the mechanical
properties of composites with these matrices. GF and BF
fibers may degrade slightly over an extended period of time
(score 3), while CFs are not affected (score 4) (Ramirez et al.
2008).

PE, being one of the cheapest resin materials, absorbs
comparably large amounts of water and is also susceptible to
leaching. When used in combination with GF and BF, com-
ponents should not be used in marine environments without
a protective coating if longer lifetimes are desired (score 2).
For CF, this is less critical (score 3).

For NF composites, the fibers themselves completely
degrade over time if exposed to moisture. Therefore,
even if the matrix only absorbs a small amount of water,
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Table 2 Ranking results including attribute, category, and total scores of analyzed FRP composites

Fconomics & Costs

Glass Fiber

Carbon Fiber

Natural Fiber

Basalt Fiber

Durability

Corrosion Resistance
Resistance to Biological
Degradation
Fatigue Resistance

Resistance to Stress
Corrosion Cracking

UV Resistance

Moisture Resistance

Category Score

Material Costs
Ease of Manufacture
Maintenance Cost -

Vulnerahility
Maintenance Cost -
Repairability
Reaction to Fire
Resistance to Fire
Performance
Uncertainty
Projected Price
Developments

Category Score| 3.38 | 3.06 [ 3.19 | 225 | 3.63

Sustainability

Raw Material
Renewability
Recyecling Approach
Impact of Production on
Human Health
Impact of Production on
Ecosystems
Impact of Production on
Resources

Category Score

Future Ayaihbility

Short-Term Availahility
Long-Term Availability
Geographical
Distribution of Reserves
Potential for Restrictive
Government Regulation
Development of
Recyeling Infrastructure
Projected Growth of
Competing Industries
Ease of Production
Increase

Category Score

Total Score| 3.42 | 3.14 | 3.59 | 3.13| 3.81 | 3.65 | .73 2.82(2.80(2.94(2.75] 3.49 | 3.26 | 3.62 | 3.24
Rank| 8 | 11 | 5§ | 12 1 3 2 14 |15 | 13 (16| 7 9 4 | 10
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the mechanical properties of the component will decrease
greatly over time (score 1 for all matrices) (Yan et al. 2014).

The susceptibility of the composites to SCC (defined in
this study as damaged caused through the combined effect
of mechanical stresses and chemical attack in seawater, see
“Appendix”) is similar to the moisture resistance rating, as
it is dependent on the propensity of the fibers to be degraded
by moisture if mechanical forces cause cracks in the sur-
rounding polymer matrix. CFs will not be degraded (score
4), while NFs will degrade rather quickly (score 2). GFs
are slightly more resistant, but will also degrade over time
if exposed to moisture (score 3) (Affolter et al. 2018). Not
much data exist on the performance of BFs. Some experts
believe them to be immune, while others consider their
behavior similar to GFs (score 4). Further research would
allow a more exact ranking of this fiber type.

3.2 Economics and costs

The scores for most analyzed composites are rather low in
this category as they are relatively susceptible to mechani-
cal damage as well as fire and have not been used exten-
sively for large-scale structural components in the marine
environment.

While CF composites are the most expensive per kg, their
superior mechanical properties greatly reduce the weight of
one FU and thus make them the cheapest material for this
evaluation. The opposite occurs with the NF composites,
which are the cheapest per kg but due to the low mechani-
cal strength require such a large amount of material for the
production of 1 FU, which leads to the highest costs per FU.

There exist various techniques for the manufacture of
FRPC components which depend mainly on the type of
matrix and not the fiber type. Composites with thermoset
matrices can be constructed rather easily by hand-layup.
However, the quality of such components can be very vari-
able and needs to be done carefully to achieve good results.
For highest quality, large-scale composites, layup can be
done with machines followed by curing in an autoclave.
Another manufacturing technique, vacuum-assisted resin
transfer molding (VARTM) enables the production of large
parts in any shape (provided an appropriate mold is manu-
factured) with a high quality and curing at room tempera-
ture. In general, it may be more appropriate to manufacture
composite components in a factory, but on-site fabrication
is also possible (score 4 for all E, VE, and PE composites).
Thermoplastics, on the other hand, need to be heated to
allow for the forming and bonding of a composite compo-
nent. Therefore, TP composites are manufactured in a fac-
tory where the regular application of heat does not present
a problem (score 3 for all TP composites).

FRPCs are rather sensitive to damage from impact as this
can cause delamination. This damage can occur inside the
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composite and not be visible from the outside. However,
due to the structure of composite materials, damage remains
rather local. A crack in the matrix is stopped when it reaches
the next fiber interface. In general, TP matrices are more
ductile and can absorb larger impact forces than thermosets,
but the overall ranking score was not changed as the general
behavior is very similar (score 3 for all composites).

If damaged, FRPCs can be replaced on-site by cutting out
the damaged part and applying a new composite patch with
fresh resin. This can restore a certain amount of strength.
However, the fibers are cut at interface between the old and
new matrix, decreasing the strength and durability of the
component. The on-site application of thermoset resins is
simpler than that of thermoplastics. Thus, mechanical prop-
erties can be restored more completely when repairing ther-
moset composites (score 4 for all E, PE, and V composites
and score 3 for all TP composites).

The flammability classes used to determine the compos-
ites’ Reaction to Fire are dependent on the polymer mate-
rial. E and VE composites correspond to class C, while PE
composites fall into class D (Correia et al. 2010; Hertzberg
2005; Nguyen et al. 2013). As no data could be found for
TP composites, it was assumed that they would fall into the
lowest category. All NF composites also fall into this class,
as the fibers themselves are combustible (Seefeldt 2012).

For the NF composites, this also leads to the lowest score
for Resistance to Fire, as both the polymer matrix and the
fibers are flammable, but burn at different rates and tempera-
tures which makes it exceedingly difficult to predict their
burning behavior.

The Resistance to Fire of the GF, CF, and BF composites
is also limited by the relatively low-degradation temperature
of the polymer matrix. However, intensive research into the
burning behavior of different matrix materials has made it
possible to more or less accurately predict the burn and char
rate of these materials (Correia et al. 2015). Char formation
on the surface of a component protects the underlying layer
of material from the heat for a certain amount of time, thus
increasing the lifetime of the component in a fire. Further-
more, it has been shown that with a proper design, composite
components can retain their structural integrity during a fire
for an extended period of time if necessary (score 3 for E,
PE, and VE composites) (Correia et al. 2015). TP melts and
degrades at low temperatures and will not be able to with-
stand a fire for very long. Even if the fibers remain intact as
the matrix material melts away, the composite will lose all
mechanical strength (score 1 for all composites).

Concerning Performance Uncertainty, GF and CF com-
posites are the only composites that have been used exten-
sively in the construction of small and large vessels to date.
However, the use as structural components in larger offshore
structures has not been fully established to date (score 3).
An exception are CF-VE composites which, due to the
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mentioned weak interfacial bond, have not found any sig-
nificant application in marine environments (score 1).

The same is true for NF and BF composites. Although
tests concerning the durability in humid environments have
been conducted (Alhuthali and Low 2015; Fiore et al. 2016;
Liu et al. 2006; Maslinda et al. 2017; Wei et al. 2011; Yan
et al. 2015), and the assumption by most experts that BF will
perform similarly to GF in marine use, the real-life perfor-
mance uncertainty for these composites is very high (score
1 for all matrices).

The Projected Price Developments are dependent on
the change in prices of the fibers as well as the polymer
matrices. In general, it is expected that prices for petroleum-
based products will increase in the future. This will also be
affected by governments and politics by influencing the price
of crude oil through tariffs, taxes, and trade restrictions.

Considering the already low prices for GF, it is very
unlikely that the production of GF will become any cheaper
in the future. The same is true for BFs, which are even
cheaper to produce (score 2 for all GF and BF composites).

The processes for CF production and CF composite pro-
duction are, however, still being further optimized. Never-
theless, CF prices have not decreased strongly in the past
years despite predictions that they could reach the price of
GF at some point. Therefore, although a slight decrease in
price is possible with further development of production and
processing technologies, it is not expected that the prices
for CF will decrease greatly in the future (score 3 for all
matrices).

Finally, as NF composites are currently still being pro-
duced on a relatively small scale, a large increase in produc-
tion volumes which is expected in the longer term for these
materials may lead to economies of scale and thus reduced
production costs for manufacturers. Further process develop-
ments may also decrease the production costs for the fibers
(score 3 for all matrices).

3.3 Sustainability and environmental impact

Aside from those containing NF (which contain 50% fibers
that are considered renewable, score 3), none of the analyzed
composites is produced from renewable raw materials (score
1). Further decreasing the overall Sustainability scores for
all composites are the very low recycling rates. Currently,
no technology exists to fully recycle FRPCs, especially with
a thermoset matrix, as the covalent bonds that form upon
curing of the resin cannot be easily broken once the polymer
has hardened. Therefore, downcycling is the only disposal
option beside incineration or landfilling. For downcycling,
the composite is ground into fine powder and used as filler
in concrete or other composites. Although it may be possible
to melt thermoplastic matrices and recover the fibers, this is
currently only done on a laboratory scale and the mechanical

properties of the recovered fibers are strongly degraded (Job
et al. 2016; Oliveux et al. 2015). In Europe, downcycling is
more common than in the US where incineration and land-
filling are still the major disposal options (score 2 for all
composites).

The Els of the individual composites were calculated
using data from the Ecoinvent 3.3 database, which was
adapted with data from literature to reflect the exact fiber
and matrix type, as well as the fiber volume fraction speci-
fied earlier [information on the individual calculations can
be found in the Supplementary Information (SI)]. Overall,
the CF composites have the lowest EI/FU followed by the BF
composites which are slightly better than the GF composites
(Table 3). The lowest ranking materials are the NF compos-
ites. This is due to the relatively low mechanical strength of
the NFs leading to a large amount of material required for
a FU. Per kg, the NF composites produce a lower EI than
those with GF. Contrarily, the CF composites have an EI of
production that is almost three times higher per kg than that
of the corresponding GF composites.

Concerning the polymer matrices, they all have very simi-
lar impacts per kg. However, factoring in the contribution
to the overall compressive strength, VE performs best, fol-
lowed by E, PE, and TP if ranked in relation to the FU.

3.4 Future availability

The future availability scores are very similar for all ana-
lyzed composites, as petroleum (or alternatively natural gas)
required for production of the polymer matrices as well as
the CFs is the only critical raw material. Table 4 shows the
availability and concentration values for these resources.

The petroleum-based materials (resins and CF) are also
the reason for the slightly reduced Government Regulation
score of all composites (score 4). In the past, governments
have already banned certain chemicals from being used,
after it had been shown that they can have severe negative
effects on human health or the environment. Although the
substances used for the manufacture of the polymers and
CFs which are being analyzed in this ranking have been used
intensively for years, there is a small possibility that more
stringent environmental regulations will restrict their use.
Furthermore, as petroleum is a limited resource, there is a
chance that governments may impose regulations to control
its use, in light of increasing scarcity. Most likely however
the use of petroleum as a fuel will be restricted before the
manufacture of high-quality products, such as polymers, is
affected.

Concerning the materials required for the production
of GF and BF, there is no reason why governments should
forbid any specific mining practices as the rock mining
which takes place does not involve any strongly hazardous
chemicals.
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Table 3 Mechanical, economic, and EI data of analyzed FRP composite materials (based on data from van Vuure et al. (2015), industry sources,
the MaterialUniverse database provided by Granta Design (Granta Material Intelligence 2018), and own EI calculations shown in SI)

Fiber Matrix Compressive kg/FU Price ($/FU) Environmental impact (Pt/FU)
strength (MPa)
Human health Ecosystems Resources Total
Glass Fiber Epoxy 600 15.96 485.7 4.29 1.72 3.30 9.32
Polyester 420 22.59 572.5 5.51 2.69 4.18 12.38
Vinyl ester 600 15.08 573.2 3.70 1.55 2.97 8.22
Thermoplastic 420 22.47 671.3 5.77 2.52 4.13 12.43
Carbon Fiber Epoxy 1700 4.52 165.1 2.81 1.21 3.37 7.39
Polyester 1200 6.33 223.7 2.94 1.51 4.06 8.51
Vinyl ester 1700 4.21 168.1 2.01 0.98 2.86 5.85
Thermoplastic 1200 6.29 229.6 3.07 1.47 4.12 8.66
Natural Fiber Epoxy 150 44.25 942.8 10.35 5.49 8.63 24.47
Polyester 105 62.38 1106.7 12.35 8.73 10.23 31.32
Vinyl ester 150 40.75 1084.0 8.07 4.81 7.34 20.21
Thermoplastic 105 61.90 1294.6 13.37 8.11 10.15 31.63
Basalt Fiber Epoxy 600 16.46 501.0 3.83 1.68 3.18 8.69
Polyester 420 23.30 590.6 4.87 2.63 4.01 11.51
Vinyl ester 600 15.58 592.2 3.27 1.52 2.85 7.64
Thermoplastic 420 23.18 692.6 5.12 2.46 3.96 11.55

Table 4 Availability and geographical concentration of petroleum
and natural gas (calculated with data from BP 2018)

Resource Short-term avail- Long-term avail- Geo-
ability ability graphical
distribu-
tion
(reserves/production (resource/production HH Index
ratio) ratio) of reserve
concentra-
tion
Petroleum  50.7 128 957
Natural Gas 52.8 115 998

The long-term recycling potential of all composites
(except for the CFs) is rather moderate. While the percent-
age of composites which will be downcycled in the future
will increase, the step toward full recycling is very unlikely
for GF, NF, and BF, especially with the matrices investigated
here. The processes which are currently running on pilot
plant scale for the full recycling of continuous fiber com-
posites involve pyrolysis or chemical treatment to dissolve
the matrix. As these methods are extremely aggressive, the
fibers degrade to a point where they cannot be used in the
same applications again. For GF and BF, additionally, the
price of production is very low and, therefore, the pressure
to develop new recycling methods is also not very high. A
promising approach for these fibers is to use chopped com-
posite pieces as feed for cement kilns. The high calorific
value of the resins provides heat for clinker production,

@ Springer

while the mineral content of the fibers (calcium carbonate,
alumina, and silica) is recycled into cement clinker. Thus,
this can be seen as a type of cross material recycling. How-
ever, full recycling of long GF and BF for reuse in compos-
ites will not be possible in the foreseeable future (score 3).

For NF, the possibility of composting would mean that
they could be considered as fully recycled. However, as
mentioned, it is not possible to remove the fibers from the
polymer matrices and, therefore, even composites with NFs
will be treated in the same way as those with GF and BF
making downcycling the only option (score 3). A possibility
for full recycling would be the development of fully biode-
gradable, bio-based composites using a matrix which was
also produced from biological sources. However, these bio-
based plastics are currently not durable enough to be used in
structural applications (Le Duigou et al. 2009).

For CF composites, full recycling is potentially possible
(score 4). CFs can withstand the aggressive processes for
removal of the matrix material without being fully degraded.
Nevertheless, currently, the recycled CFs lose around 50% of
their strength during their recycling process, so they cannot
replace virgin fibers. However, further research is ongoing
to improve this process and retain a larger proportion of the
fibers’ mechanical strength (Bhat et al. 2017; Job et al. 2016;
Oliveux et al. 2015). An additional approach which has been
proposed is the development of new thermoset resins where
the covalent bonds which form upon curing can be selec-
tively broken under specific conditions which do not affect
the integrity of the fibers contained in the polymer. This is
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currently only being investigated in the lab and is still a long
way from commercial production.

Whether competition from other industries will be signifi-
cant in the future is uncertain for all but the CF composites.
The construction industry is not yet a major user of CF com-
posites accounting for only 5% of total demand. The three
largest industries are aerospace and defense (30%), automo-
tive (22%), and wind turbines (13%). Demand is expected
to increase strongly for all these sectors, for instance due
to increasing pressure from governments and also society
for lower emission vehicles requiring light-weight alterna-
tives to steel. Demand from the construction industry is still
far below the expected potential. This is mostly due to the
high price of CF composites compared to steel and in some
countries building code requirements limiting the use of
structural FRPC components. However, even with increasing
demand growth in the construction sector, it is still expected
to remain a rather small percentage of global CF composite
demand in the future. In the past, it has already happened
that a strong increase in CF demand from the aerospace
industry caused a scarcity in the market for other segments.
It is likely that this will occur again in the future despite
the addition of significant production capacity by producers
(score 2) (Das et al. 2016; Witten et al. 2016).

The main concern for the GF, NF, and BF composites
comes from the use of oil for the manufacture of the matrix
material. Currently, only a small percentage of raw oil is
used for the manufacture of high value chemicals and plas-
tics, while the main use is as fuel. This distribution will
definitely shift further toward the chemical and plastic sec-
tor as the resource becomes scarcer. The global demand for
plastic is expected to increase rapidly, especially due to eco-
nomic development in emerging countries. As composite
resins only account for a small part of the overall plastics and
chemical industry, it may be possible that in the long-term
future, the limited petroleum resources are diverted to pro-
duce other products. For the use of the FRPCs themselves,
no strong competition is expected for these fiber types.

The transport and construction industries are the major
consumers of GF composites. Each sector is responsible
for about one-third of total demand. The demand from the
transport industry for light-weight GF components will
likely increase in the future. The construction industry is
also expected to be one of the strongest growing demand
sources as more and more building codes are adapted to
allow the replacement of more traditional materials such as
steel with GF composites for certain applications (score 3)
(Witten et al. 2016).

BF composites serve mainly the same markets as GF
composites. In general, the use of BF is currently still limited
compared to GF or CF, as it is a relatively new material. The
main demand growth is expected from similar industries as
for GF composites which are the transport and construction

industries. Depending on the results of further research on
the durability of these fibers, the marine industry may also
become a major customer. As the raw materials for the pro-
duction of BF and GF are abundantly available around the
globe, there should not be any large competition for these
materials from the different industries (score 3).

For NF composites, the largest market is currently the
automobile sector. As mentioned, it is expected that this sec-
tor will continue to grow at above average rate and remain
the main demand driver for natural fiber composites. The
construction industry is the second largest user of natural
fiber composite materials and is also expected to exhibit a
high level of demand growth in the coming years (score 2)
(Lucintel 2011; O’Dea 2015).

Significantly increasing global production levels will be
most challenging for NF composites. The manufacture of NF
for the use in polymer composites is rather new and a strong
increase in production requires a scale-up of the current pro-
cess involving a certain extent of technological development.
Furthermore, the supply of plants for production of fibers
would also need to be increased (score 2).

In the short term, CF, GF, and BF supply and demand
forecasts are more or less balanced. However, it is already
expected that more capacity will need to be installed to meet
longer term demand (Das et al. 2016). Therefore, for a major
increase to multiple levels of today’s production, new facili-
ties would be required (score 3). While the technology for
manufacturing CF and GF is mature, the large-scale manu-
facture of BF is comparatively new. However, the process is
very similar to the manufacture of GF (Azrague et al. 2016).
Thus, it can be assumed that scale-up should not be such a
big issue and can profit from the maturity of the GF produc-
tion process.

Increasing the supply of polymer resins would not present
an issue. The petroleum industry would have the capacity
increase production if it is required and the chemical indus-
try in turn would also be able to increase the production of
the polymer resins. The technologies for the production of
the thermoset and thermoplastic resins are also mature and
already today produce at extremely large scales.

3.5 Improving NF composite performance

As can be seen in Table 2, the NF composites, which are
promising materials from an availability perspective and
have the lowest costs and EI per kg, achieve the lowest
scores of all composites mainly due to their low mechanical
strength which leads to the largest amount of material (in kg)
required for the production of 1 FU. While they also suffer
from low-moisture resistance and high flammability, these
weaknesses are also critical for the other fiber types. There-
fore, focusing specifically on increasing the strength of these
NF composites would be highly beneficial for their overall
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Table 5 Effect of improving NF composite properties on overall ranking (red and green ranks represent a decrease resp. increase in rank)

Glass Fiber

Carbon Fiber

Natural Fiber Basalt Fiber

E | PE | VE | TP | E | PE

VE | TP | E |PE | VE | TP | E | PE | VE | TP

Score |3.42(3.14|3.59|3.13 |3.813.65

3.73 [3.58(2.82 | 2.8 | 2.94|2.75|3.49 | 3.26 | 3.62 | 3.24

Original Ranking
Rank | 8 [ 11| 5 |12 ] 1

2 6 14 | 15 | 13 | 16 7 9 4 10

NF strength equal

Score |3-31[2.98|3.39|2.92|3.72|3.56

3.68 [ 3.49 | 3.37 | 3.12 | 3.42 | 3.11 | 3.33 | 3.05 | 3.43 | 3.03

to GF/BF Rank | 20 | 15| 7 | 16 | 1

Moisture/SCC

Score |3-42(3.14|3.59|3.13 |3.813.65

3.73 ([3.58(2.98 | 2.9 |3.15| 2.9 |3.44 |3.26 | 3.62 | 3.24

resistance equal

to GF Rank 8 12 5 13 1
Reaction/Re- Score |3-42|3.143.59(3.13|3.81|3.65|3.73 [3.58|2.89|2.85| 3 |2.78|3.44|3.26 | 3.62 | 3.24
sistance to Fire
equal to GF Rank 8 11 5 12 1 2 6 14 15 13 16 7 9 4 10

performance as this would increase their scores for the mate-
rial cost and EI attributes. This is illustrated in Table 5 which
shows how the NF composites would rank if their properties
were increased to values comparable with the other com-
posites. If the compressive strength of the NF composites
could be increased to the level of the corresponding GF/BF
composites, they would be ranked higher than both other
fiber types for all matrices except VE, despite still suffer-
ing from the other mentioned weaknesses. CF composites
remain superior and it is very unlikely that NF composites
will ever reach similar mechanical properties as CF com-
posites. If the moisture and, consequently, the SCC resist-
ance of the NF composites could be increased to the values
of the corresponding GF or even BF composites, some of
the NF composites would achieve an overall slightly higher
rank. However, they would still remain the lowest ranked
fiber option for each individual matrix material. Increasing
the reaction to fire and resistance to fire attributes would
have the smallest effect, as only the scores, but not the ranks
would be increased.

A major issue affecting the mechanical strength of NF
composites is the low-bonding strength between the polar
fibers and non-polar polymer matrices. Various physical and
chemical surface treatments have been investigated to alter
the fiber surface and increase the strength of the interfa-
cial bond (Pickering et al. 2016; Ramesh et al. 2017; Sun
2018). While these treatments have been shown to increase
the mechanical strengths of the resulting NF composites, it
must be kept in mind that the increased amount of energy
(for physical treatments) and use of potentially harmful sub-
stances (for chemical treatments) will also increase the EI
of production per kg. However, if the increase in strength is
sufficient, the EI per FU of NF composites could neverthe-
less be decreased even to below the value of GF production
(Wu et al. 2018).

@ Springer

4 Conclusion

This paper provides a holistic overview of the strengths and
weaknesses of different fiber reinforced polymer compos-
ites used as structural components for marine construction.
Overall, the best ranked materials are the CF composites
followed by BF and GF composites. The lowest scores were
achieved by NF composites mainly due to their low mechan-
ical strength and lower chemical resistance. Concerning
the matrix material, E and VE show a similar performance
followed by the cheaper and less-resistant PE and TP res-
ins. Using the results from the presented ranking, the main
weaknesses of the NF composites were discussed and the
improvement of mechanical strength was identified as the
most promising development area to increase the overall per-
formance of these composites. Naturally, there exist many
further research areas aiming at improving the performance
of composites with all fiber types for the use in marine con-
struction, such as increasing moisture and fire resistance.
These research areas will be essential to develop composites
that are stable and durable in the extreme conditions present
in the marine environment. Further evaluations comparing
the performance of these FRPCs with other commonly used
construction materials such as steel or concrete may fur-
thermore provide additional insight into the suitability and
long-term effects of substituting such materials with FRPC
components.

Appendix

For the presented evaluation, the scoring of the attributes is
completed on a 5-point scale, 1 being the lowest and 5 the
highest possible score. For each attribute, the values of 1, 3,
and 5 were defined to represent the following scale:

1.Property or value below the level a material can be con-
sidered acceptable.
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3.Property or value that can be seen as average for a mate-
rial used in construction.

5.Property or value of a hypothetical ideal material.

The attributes included in the framework are either quali-
tative or quantitative. For the quantitative attributes, val-
ues were specified for the points along the scale. For the
qualitative attributes, the requirements for each of the three
mentioned points were described as precisely as possible.
All attributes and their ranking scales are shown in Tables 6,
7,8,and 9
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