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Abstract This paper describes the optimisation of arrays
of wave energy converters (WECs) of point absorber type.
The WECs are spherical in shape and operate in heave only.
Arrays of five to seven devices are considered. To simplify
the optimisation, the arrays are constrained to lie in a spec-
ified geometry, namely a straight line or a circle, thereby
reducing the number of array variables. The array layout is
optimised from a hydrodynamic perspective with respect to
the spacing or angles between the devices. Following the
work of McGuinness and Thomas (Eleventh EuropeanWave
and Tidal Energy Conference. Nantes, France, 2015), the
objective function of the optimisation is taken to be the
mean of the interaction factor, rather than the interaction
factor itself. This mean is defined over a non-dimensional
length measure of the array. This is motivated by the desire
to produce arrays that are stable to changes in the inci-
dent wavelength. A more general optimisation is performed
here than in McGuinness and Thomas (Eleventh European
Wave and Tidal Energy Conference. Nantes, France, 2015),
with no prescribed symmetry in the arrays. The behaviour of
the optimal arrays is analysed with respect to performance
and device motions. Closely spaced groups of devices are
found to exist in some of the optimal arrays; the implica-
tions of this and the possibility of replacing these groups
with larger devices are discussed. For circular arrays, it is
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shown that the inclusion of a further device at the circle
centre tends to alter the overall performance of the array.
Most optimal circular arrays formed a semi-circular pat-
tern dependent on the incident wave direction. For all array
geometries considered, it is seen that the incident wave angle
has a large impact on the optimal layout and the overall
performance.

Keywords Wave-power · Arrays · Optimisation ·
Interaction · Point absorber · Hydrodynamics

1 Introduction

The fundamental modelling of arrays of point absorber type
wave power devices was presented independently by Evans
(1979) and Falnes (1980). The point absorber approximation
assumes that the ratio of device size to incident wavelength is
small enough that the scattered wave field of the device may
be neglected. This allows a simplification of calculations,
particularly those relating to WEC arrays. Many subsequent
papers have applied this theory to assess arrays of differ-
ing configurations, e.g. Thomas and Evans (1981), McIver
(1994), Mavrakos and McIver (1997), Fitzgerald (2006),
Fitzgerald and Thomas (2007) and Child (2011).

Linear arrays of five equally spaced devices were investi-
gated by Thomas and Evans (1981) together with arrays of
two such rows and arrays of thin-ship typeWECs. Unequally
spaced arrays of five devices were considered by McIver
(1994) for both heave and surge motions and it was found
that unequal spacing had a considerable effect on array per-
formance. A question of interest was whether or not a linear
array in head seas would behave as an attenuator, i.e. would
the incident wave amplitude decay due to absorption as
it passes down the array? The cited initial work demon-
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strates clearly that this is not the case and it was found,
for configurations symmetric about the central point of the
array, that array members worked with regard to a rule
of symmetry. For example, for a five-member linear array,
symmetric about the third member, the second and fourth
memberswork equally hard and similarly for thefirst andfifth
members.

General two-dimensional arrays of five devices were opti-
mised by Fitzgerald (2006) and reported in Fitzgerald and
Thomas (2007), where the array layouts were optimised by
maximising the interaction factor in a point absorber regime.
Arrays of heaving cylindrical WECs were similarly opti-
mised using Genetic Algorithms by Child (2011), within a
full interaction regime. Linear symmetric arrays of spherical
point absorbers were optimised in McGuinness and Thomas
(2015), where the mean of the interaction factor over the
non-dimensional length of the array, rather than the interac-
tion factor itself, was maximised.

As stated above, the concept of unequal spacing in a lin-
ear array was first considered byMcIver (1994), who showed
that unequally spaced arrays performed better in some cases
in comparison to equally spaced arrays. However, McIver
considered only a very specific case of unequal spacing,
while subsequent research has moved to more general opti-
misations. The research presented herein is motivated by
the possibility that unequally spaced linear arrays may per-
form better that their equally spaced analogs. The work of
McGuinness and Thomas (2015) was similarly motivated,
although considered only symmetric linear arrays of one
spacing variable. An extension of this is presented here,
where general non-symmetric linear arrays of five devices,
described by three spacing variables, are optimised. This
work is extended further to consider circular array geome-
tries, with the WECs constrained to lie on the circumference
and the possibility of including another device in the cir-
cle centre is also investigated. In these cases, the arrays are
described by five angular variables, which the arrays are opti-
mised with respect to.

One common issue encountered in Thomas and Evans
(1981), Fitzgerald (2006) and Child (2011) is that the opti-
mal array arrangements were often found to be only slightly
different to those corresponding to very poorly performing
arrays. Quite often, either the best and worst array lay-
outs were surprisingly close or the optimal array had a
sharp peak in performance surrounded by large troughs. This
means that a small change in the non-dimensional parame-
ters of such arrays, either by a physical mis-alignment or
a change in sea conditions (incident wavelength or wave
angle), can have a potentially disastrous impact on array
performance. An important aspect of this paper is to opti-
mise elementary array layouts, namely those constrained to
a straight line or circle, such that the performance is stable to
small changes in non-dimensional parameters. To this end,

optimisation is performed by maximising the mean of the
interaction factor over a non-dimensional length scale, rather
than the interaction factor itself, with respect to the array
layout.

Another item of concern when considering array perfor-
mance is the motions of the individual devices associated
with optimal performance. A hydrodynamically optimised
array is typically accompanied by large amplitude device
motions. The large motion of WECs creates engineering
difficulties with the control, maintenance and power take-
off of the devices. In addition, linear wave theory assumes
that all device motions are at most of the same order of the
wave amplitude, and violation of this requirement invalidates
the underlying assumptions; this is considered in Thomas
and Evans (1981), Fitzgerald (2006), and McGuinness and
Thomas (2015), where the optimal arrays were predicted
to exhibit large device motions. Device motion constraints
were investigated inThomas andEvans (1981) andFitzgerald
(2006), and it was found that in some cases, these constraints
severely limited array performance.

The present approach does not include full interactions
and follows the point-absorber implementation employed in
Evans (1979), Thomas and Evans (1981), McIver (1994),
Fitzgerald (2006) and McGuinness and Thomas (2015). The
accuracy of this approximation is discussed inMavrakos and
McIver (1997), where it is shown that the point absorber
approximation gives almost exact agreement with the exact
multiple scattering method for a non-dimensional device
radius of ka < 0.8. Therefore, the work presented herein
is conducted within this regime, namely for ka = 0.4. An
external model is required in this methodology to determine
thedevicemotions and for the chosendevice geometry,which
is spherical in this case, the motions can be determined using
the approachofHavelock (1955), for afixednon-dimensional
radius of the WECs.

2 Mathematical formulation

2.1 Power absorption theory

Consider an array of N semi-submerged spheres, considered
to be point absorbers and which operate in heave only. It is
assumed that linear wave theory is applicable and that regular
long-crestedwaves of amplitude A, frequencyω, wavelength
λ and angle β are incident on the array in water of infinite
depth. It has been shown by Evans (1979) that the mean
power absorbed by an array is given by

Pabs = 1

8
X†

B
−1X−1

2

(
U − 1

2
B

−1X
)†

B

(
U − 1

2
B

−1X
)

,

(1)
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where X and U are complex time-independent column vec-
tors of the exciting forces and velocities of the devices,
respectively,B is the radiation damping matrix and † denotes
complex conjugate transpose. In this notation, the exciting
force and velocity of body m are given by Re[Xme−iωt ] and
Re[Ume−iωt ]. The power absorbed can bemaximised by tak-
ing the second term in (1) to be zero, which occurs when the
velocity is

Uopt = 1

2
B

−1X. (2)

This gives the maximum power absorbed by the array to be

Popt = 1

8
X†

B
−1X. (3)

The device displacement amplitudes are given by the non-
dimensional column vector D, such that the displacement of
themth device is given byRe

[
ADme−iωt

]
. Maximumpower

absorption occurs when

Dopt = i

2ωA
B

−1X. (4)

An absolute measure of the power absorption is not ideal
as this does not give an indication of the power absorption
capabilities of a chosen array compared to other arrays or
to an isolated device. Therefore, a relative power measure is
first defined as the absorption length

L = Pabs
Pw

, (5)

where Pw is the mean power per unit crest width of incident
wave. Equation (5) can be considered as the width of a wave
train having the same mean energy as that extracted by the
array. This can be optimised for heave motions, to give

Lopt = Popt
Pw

= λ

2π
Nq, (6)

where q is the interaction factor and can be written

q = 2π

λN

Popt
Pw

. (7)

The quantity q is considered usually to be the key indicator of
array performance and denotes the ratio of the performance
of an array to that of N isolated devices, thus quantifying
the effect of deploying the devices in an array. Therefore, for
heave motions alone, q can also be expressed as

q = Popt

N P(1)
opt

, (8)

where P(1)
opt is the optimal power absorbed by a single isolated

device. It can be shown that the interaction factor can be
written in terms of the exciting forces alone, giving

q = X†
m (β)

[
1

2π

∫ 2π

0
Xi (θ) X∗

j (θ) dθ

]−1

mn
Xn (β) , (9)

where ∗ denotes complex conjugate, repeated subscripts
denote summation and

[
ai j

]−1
mn denotes the (m, n)th term

of the inverse of the matrix whose (i, j)th term is given in[
ai j

]
. A derivation of this result is given in Thomas andEvans

(1981).

2.2 Point absorber approximation

In essence, the point absorber theory assumes that the devices
are sufficiently small so that they do not produce a scattered
wave field. The corresponding modelling assumption is that
ka � 1, for a wavenumber k and a device of radius a. A
value of ka = 0.4 has been assumed by previous authors and
this is applied herein. Mavrakos and McIver (1997) showed
that this value is well within the range of applicability of
the point absorber approximation. This allows the far-field
angular dependence of the WECs to be simplified, which in
turn gives the following simplified expression for q, as shown
in Evans (1979):

q = 1

N
���†J−1���, (10)

where ��� is a column vector with components {�m =
eikdm cos(β−αm );m = 1, . . . , N }, and J is an N × N matrix
with elements Jmn = J0 (kdmn) for devices operating in
heave, where J0(x) is the zeroth order Bessel function of
first kind. In this notation, dm is the distance from the origin
to the mth devices, dmn is the distance between the mth and
nth devices, αm is the angle from the origin to themth device
measured positive in a counter-clockwise direction from the
positive x axis. In most (but not all) cases, it is convenient
to fix one device at the origin of the system, usually the first
device. In this case, dm can be considered as the distance
between the first and mth devices, and αm the angle between
the first and mth devices.

An important consistency relation was derived for the
q-factor by Fitzgerald (2006) and reported in Fitzgerald
and Thomas (2007), where it was shown, within the point
absorber regime for a single mode of motion, that

1

2π

∫ 2π

0
q(β) dβ = 1. (11)

It can also be shown that a symmetry in the interaction factor
with respect to the incident wave angle exists and is
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q(β) = q(β + π). (12)

For the case of linear arrays of physical length L , the
above formulation can be simplified further. Since the angu-
lar dependence between each device is the same, a coordinate
system can be used such that αm = 0 for all devices.
This gives the simpler expression �m = eikdm cosβ . Also,
as consecutive device separations will be often used in the
implementation, the convenient notation sm = dm(m+1) is
introduced.

For circular arrays of radius r , the origin is set to be the
centre of the circle, thus dm = r for each device on the circle
circumference and dm = 0 if the mth device is in the centre
of the circle.

2.3 Optimisation method

2.3.1 Linear arrays

Following McGuinness and Thomas (2015), the aim of the
optimisation is to seek a layout of a linear array that is sta-
ble to changes in non-dimensional parameters associated
with device spacing and incident wavelength. It should be
noted that most previous studies assume an equal spacing d
between devices, determine q for a given non-dimensional
spacing parameter kd and then plot q vs kd for a given
range of kd. In the present work, the objective function used
in the optimisation is the mean of the interaction factor q
over a range of non-dimensional length kL and this is to be
maximised. Thus the spacing is not specified but is to be
determined. Denote the specified lower and upper bounds
of the range of the non-dimensional array length to be kLl

and kLu , respectively. In terms of the above notation and
explicitly including the variables upon which q depends, the
objective function can be formally written as

I (ks1, . . . , ksN−1)

= 1

kLu − kLl

kLu∫
kLl

q(ks1, . . . , ksN−1, β0) d[kL], (13)

whereβ0 is the prescribed fixed incidentwave angle. It can be
seen from (13) that the integration variable does not appear
explicitly in the integrand but occurs via the individual para-
meters ks j .

It is expedient to introduce the following notation to sim-
plify the calculations. The consecutive device separations are
reparameterised as

ks j = n j kL, (14)

where n j ∈ (0, 1) is a real parameter that represents the
relative separation between devices with respect to the total

length. Therefore, ks j is written as a fraction of the total
non-dimensional length giving

I (n1, . . . , nN−1)

= 1

kLu − kLl

kLu∫
kLl

q(n1, . . . , nN−1, β0, kL) d[kL], (15)

and the variable of integration appears explicitly in the inte-
grand. There are limits on the values of n j ; since the sum
of all separations is the total length,

∑N−1
j=1 ks j = kL and

consistency requires

N−1∑
j=1

n j = 1. (16)

The optimisation algorithm is implemented in Fortran
with the aid of Numerical Analysis Group (NAG) routines
(http://www.nag.co.uk). The optimisation routine chosen to
find the maximum of (15) is E04UCF, with appropriate algo-
rithms employed for the calculation of Bessel functions,
matrix inversion and quadrature. This algorithm searches for
the minimum value of the objective function using a sequen-
tial quadratic programming method.

The optimisation is performed for several values of fixed
wave angles β0, namely β0 = 0, π

4 , π
2 in order to allow com-

parison with the work of McGuinness and Thomas (2015)
and to assess the effect of different incident wave directions.
Note that since the array is linear and lies on the x axis, sym-
metry exists about β = π

2 , as well as β = π . Hence, only
angles between β ∈ [0, π

2 ] need be investigated. Other wave
angles in this range, such as β0 = π

8 , 3π
8 were also investi-

gated, but the results for these wave angles are not explicitly
presented for brevity.

2.3.2 Circular arrays

Arrays are considered in which the WECs are constrained to
lie in a circular geometry. For a circle of radius r the array
layout variables are the angular positions of each device on
the circle. A convenient notation is introduced to define the
relative angles θ j between each device, so that

θ j = α j − α j+1. (17)

The possibility exists to place an extra device in the centre of
the circle if desired. As one device will be at a fixed angular
separation, to avoid replication of results, this can be used
to remove one variable from the optimisation process. There
are now N − 1 variables, and consistency requires that
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N∑
j=1

θ j = 2π. (18)

In keeping with the preliminary unpublished work of
C. Costigan (Modelling Circular Arrays of Wave-Power
Devices, Project Report, University College Cork, 2014), the
mean of the interaction factor is defined over a range of non-
dimensional radius kr. By analogy with the previous section,
denote the upper and lower bounds of the non-dimensional
array radius as kru and krl , respectively, and the objective
function for circular arrays is written as

I (θ1, . . . , θN−1)

= 1

kru − krl

kru∫
krl

q(θ1, . . . , θN−1, β0, kr) d[kr], (19)

for a fixed prescribed incident wave angle β0. There are now
N − 1 optimisation variables which are the relative angles
θ j between the WECs. By averaging over kr in this manner,
the aim is to find array layouts which perform well over a
relatively large range of non-dimensional radius. This is done
so that, for a fixed radius r , good performance is maintained
even if the wavelength changes.

The optimisation is performed for β0 = 0, π
4 , π

2 . Other
angles, namely multiples of π

8 , were also investigated but
are not presented for brevity. As with the linear arrays in
Sect. 2.3.1, NAG routines implemented in FORTRAN were
used to evaluate the objective function and perform the opti-
misation.

3 Optimisation of 5-device linear arrays

In the most general case, this array is described by four vari-
ables, namely the position along the line of the second to
fifth devices or the positions of three of these devices and the
array length. However, in the optimisation procedure out-
lined above, the array length parameter kL is the variable
of integration and the array is essentially described by three
variables.

The arrays considered are general linear arrays without
any stipulated symmetry and, therefore, the optimisation is
performed with respect to three variables, namely n1, n2, n3.
The value of the remaining separation variable (ks4 or n4) is
given by Eq. (16). In this way, the results of McGuinness and
Thomas (2015) are extended to amore general formulation. It
is assumed that the target non-dimensional length of a given
array is kL = 10 and that the sea state under consideration is
such that kL remains within the range [kLl , kLu] = [5, 15].
The method can be applied to any range of kL as required,

Fig. 1 Diagram of a general five-device linear array (without imposed
symmetry)

as the values used in this work are chosen arbitrarily but are
intended to represent a typical case.

A diagram of the array under consideration is shown in
Fig. 1. Constraints on the device motions are not consid-
ered and the objective is simply to maximise the mean of the
interaction factor with respect to the array layout, under the
assumption of maximum power absorption.

A starting point is required as input to the optimisation
algorithm. The interaction factor is acknowledged as being
a highly oscillatory function, with many local maxima and
minima. However, the results of this and previous work
indicate that the mean of the interaction factor is a more
well-behaved function for the case of linear arrays. Despite
this, it is prudent to do an exhaustive search of the vari-
able space for optimal values. This is conducted in a similar
manner to Fitzgerald (2006), where the optimisation rou-
tine is run for a wide range of initial starting points for each
variable. All permissible unique combinations of starting
points with n j = {0.1, 0.2, . . . , 0.7}with j = 1, . . . , 4 were
investigated, where some combinations were omitted due to
consistency considerations in line with Eq. (16). For each
value of β0 investigated, the resulting optimal variable para-
meters and optimalmean interaction factor are then tabulated
and presented. Diagrams of the layout of the best performing
arrays in each case are also presented and analysed.

Minimum and maximum values of each separation para-
meter were enforced within the optimisation so that 0.05 ≤
n j ≤ 0.85 for j = 1, . . . , 4. This ensures that no device
will be within 5 % of the total array length of another device.
The upper bound of 0.85 was chosen to allow the possibility
that all but one of the separations was exactly the minimum
bound. This minimum bound is more limiting than that used
inMcGuinness and Thomas (2015), where a minimum value
of 0.01 was allowed. It is unrealistic to allow devices to be
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positioned within 1 % of the total array length of each other,
as the devices will be touching/intersecting for all but very
large array lengths. A 5 % constraint was chosen here as it
is a more feasible scenario. This value also avoided poten-
tial calculation difficulties due to numerical inaccuracies and
poor behaviour of the objective function caused by small
non-dimensional separation arguments.

The best optimal arrays found for each value of β0 =
0, π

4 , π
2 are presented inTables 2, 3 and4.Within these tables,

arrays that were found to be similar to those presented, either
by symmetry or by a negligible change in layout or perfor-
mance, are omitted for brevity. For the best layout in each
case, the behaviour of the optimal interaction factor is shown
with respect to changes in kL and β in Figs. 2 and 3, respec-
tively. For comparison, the reader is referred to Thomas and
Evans (1981) for results relating to a uniform linear array
layout. Note that Thomas and Evans analyse the arrays with
respect to the uniform spacing between the devices kd, not
the length of the array kL; the relation between these is
kL = 4 kd. The average interaction factors for a uniform
array are given in Table 1 for β0 = 0, π

4 , π
2 .

3.1 Head seas β0 = 0

Table 2 shows the optimal arrays determined by the algo-
rithm, in descending order of performance. A diagram of the
best array found for head seas is shown in Fig. 4, which is
comprised of four devices grouped closely together at one
side of the array, with a relatively isolated device at the
other end. This array achieves an average interaction factor of
I = 1.48, which is considerably greater than unity; this is the
best average value obtained for all the optimal linear arrays.
From Fig. 2, it is clear that good performance is achieved

Fig. 2 Plots of optimal interaction factor q vs non-dimensional length
kL for the best linear arrays found for β0 = 0 (solid curve), β0 = π

4
(dashed curve) and β0 = π

2 (dot-dashed curve). q = 1 is shown by the
thin dotted line

Fig. 3 Plots of optimal interaction factor q vs incident wave angle β

for the best linear arrays found for β0 = 0 (solid curve), β0 = π
4

(dashed curve) and β0 = π
2 (dot-dashed curve) with kL = 10. q = 1

is shown by the thin dotted line

Table 1 Average interaction factors I for uniform linear array (n1 =
n2 = n3 = n4 = 0.25)

β0 I

Head seas 0 1.0541

Intermediate seas π
4 0.9049

Beam seas π
2 1.3230

Table 2 Optimal linear array parameters for β0 = 0

n1 n2 n3 n4 Iopt

0.05 0.05 0.05 0.85 1.4802

0.05 0.85 0.05 0.05 1.3501

0.05 0.45 0.45 0.05 1.2058

Table 3 Optimal linear array parameters for β0 = π
4

n1 n2 n3 n4 Iopt

0.05 0.85 0.05 0.05 1.1431

0.05 0.45 0.45 0.05 1.1049

0.05 0.05 0.05 0.85 0.8662

over the entire domain considered, with q ∈ [1.42, 1.64] for
kL ∈ [5, 15], and the plot of q can be seen to perform small
oscillations about the average value of q = 1.48. The range
of variability of q is also surprisingly small and this may be
desirable so as to provide more certainty for a given WEC
array developer.

Figure 3 shows that there is a range of approximately ±π
8

around β = 0 where q remains greater than unity; outside
this range, the array moves into areas of poor performance,
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Table 4 Optimal linear array parameters for β0 = π
2

n1 n2 n3 n4 Iopt

0.0500 0.2252 0.3859 0.3359 1.3643

0.3419 0.1581 0.1581 0.3419 1.3437

Fig. 4 Diagram of most optimal linear array found for β0 = 0

as poor as q ≈ 0.7. This behaviour is quite similar to that
observed by McGuinness and Thomas (2015), for some of
the arrays optimised in head seas. In this case, however, a
greater peak in q is obtained, which is also accompanied
by larger troughs at non-optimal wave angles, most likely
due to the increased freedom of the array layout within the
optimisation routine.

Figure 5 shows the optimal displacements of the WECs,
given by Eq. (4), within the optimal array for β0 = 0. As
expected, the optimal displacements are unacceptably large
(D > 100) for the grouped devices, agreeing with the results
of McGuinness and Thomas (2015) and earlier authors. This
is enhanced for the smaller non-dimensional array lengths,
where the predicted optimal displacements increase with
decreasing kL. The isolated device exhibits more reasonable
motions of D ≈ 3 for the entire domain.

It should be noted that the array layout obtained here is
highly dependent on the constraints and consistency rela-
tions imposedwithin the calculations. First, all of the optimal
separation parameters are at their maximum or minimum
allowable values. This suggests that if these variable con-
straints were altered, the resulting optimal array layout and
performance would also change. Calculations have been per-
formed with different minimum values of n j and in each
case the optimal array tended to the same optimal layout,
or an equivalent one due to symmetry, with n1, n2 and n3
at the minimum allowed values. Second, the isolated device
in these optimal array layouts is an artefact of the formula-
tion employed, particularly via (16). In the optimal case, this
consistency forces one of the separations to be considerably
larger than the others to preserve the total length of the array.
It may be the case that allowing the fifth device to be closer

(b)

(a)

Fig. 5 Optimal displacements for best optimised linear array with
β0 = 0. The displacements of WECs 3 and 4 are very similar to WECs
2 and 1 respectively and are thus omitted from this figure for clarity

to the group may give improved performance, although it is
acknowledged that this would cause deployment difficulties.

In the case of head seas, the incident wave direction is
parallel to the line of devices and the optimisation pushes all
the devices as close together as possible, with one device pre-
serving the total length of the array. This is likely due to the
fact that the radiating wave amplitude decreases as it moves
away from the originating WEC. Therefore, since optimal
unconstrained device motions are assumed, the optimisation
wants to place the WECs as close as possible to maximise
the constructive interference due to the radiated wave field.
This physical interpretation applies to linear arrays in head
seas since the wave direction and the interaction direction are
the same.

3.2 The intermediate angle β0 = π
4

The optimisation results for β0 = π
4 are shown in Table 3.

The best array in this case involves two separated groups of

123



446 J. Ocean Eng. Mar. Energy (2016) 2:439–457

Fig. 6 Diagram of most optimal linear array found for β0 = π
4

Fig. 7 Predicted optimal displacements of WECs for best linear array
optimised for β0 = π

4

two and three devices at either end of the array, as shown in
Fig. 6.

It can be seen from Fig. 2 that, for β = π
4 , this array

achieves q > 1 for the majority of the domain, with the
exception when kL < 7.7. A maximum value of q ≈ 1.29 is
achieved at kL ≈ 12.5, while theminimumvalue is q ≈ 0.93
at kL ≈ 6. The average performance obtained is I = 1.1431,
which is considerably less than the corresponding optimal
array for head seas. Comparing the β-variation in Fig. 3 with
that of the β0 = 0 case: there also exists a much smaller
range around the optimal value of β = π

4 where q is greater
than unity.

The displacements of this optimal array are shown in
Fig. 7. Similar to the previous case, large motions of D > 10
are required for all values of kL, with the general trend
that the displacement amplitudes increase for decreasing kL.
Although the motions are smaller overall than the optimal
β0 = 0 case, these displacements are still unacceptably
large. This, combined with the more modest performance,
suggests this may not be the best choice of array layout.

A similar physical explanation to that in Sect. 3.1 can be
applied to the optimal layout in this case. However, due to

Fig. 8 Diagram of most optimal linear array found for β0 = π
2

the intermediate wave angle, the interaction is not as sim-
ple, since the wave direction and interaction direction are
no longer collinear. More spacing between devices, albeit
in two groups at either end of the array, performs better
than pushing all devices together. This may be because an
increased frontage becomes important for non-head seas and
both groups interact well while spanning the length of the
array.

3.3 Beam seas β0 = π
2

The optimisation results for β0 = π
2 are shown in Table 4. In

this case, only two unique optimal array layouts were discov-
ered by the exhaustive search and the optimisation algorithm.
The premier optimal array is shown in Fig. 8, which consists
of a group of two devices accompanied by three relatively
separated devices. It is interesting that despite the array ori-
entation to the incoming wave, the optimal layout is not
symmetric as may have been expected in this case.

Figure 2 shows that at the optimal wave angle (β =
β0 = π

2 ), this array achieved q > 1 for the entire range
of kL ∈ [5, 15]. An average interaction factor of I = 1.3643
is achieved along with an impressive maximum of q ≈ 1.7
around kL = 13.7. The interaction factor appears to increase
with increasing kL until it reaches this maximum value,
where it begins to decrease with increasing kL. Although
this is the highest peak in q achieved by any of the optimal
arrays thus far, the average value of I = 1.3643 falls below
that of the best β0 = 0 array.

Figure 3 shows that there is a surprisingly large range
of approximately ± 3π

16 around the optimal value of β = π
2

where q remains greater than unity. Comparing all the curves
of q vs β for the different optimal arrays, it is clear that the
shape of the q vs β curve is altered so as to achieve good per-
formance at π

2 , which results in poorer performance at other
wave angles. It is interesting to compare the curves in Fig. 3
and note the change in behaviour as different optimal wave
angles are considered. As the incident wave angle changes,
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Fig. 9 Predicted optimal displacements of WECs for best linear array
optimised for β0 = π

2

the plot of q vs β alters to increase at the desired value of
β = β0; this necessarily results in poorer performance at
other angles.

The displacements for this optimal array are shown in
Fig. 9. These are unacceptably large (D > 5) for the entire
domain of kL ∈ [5, 15] for all but WEC 4, whose displace-
ments approach zero only in the close vicinity of kL ≈ 7. In
general, larger displacements are predicted for smaller kL.
All devices have D < 20 for kL ∈ [10, 15], suggesting that
this region may not be as much affected by imposition of
motion constraints than the other optimal linear arrays. As
expected, the grouped devices exhibit larger motions than
the relatively isolated WECs. It is interesting that, in the
optimal scenario, WEC 4 has D = 0 near kL ≈ 7.1. The
combination of high q-factor, large range of β stability and
relatively low displacements in the region kL ∈ [10, 15]
indicate this array may be an ideal candidate for WEC array
design.

Due to the normal wave incidence onto the array (wave
direction and interaction direction are perpendicular), it
stands to reason that greater frontage would result in bet-
ter overall performance as opposed to groups of WECs. It
may be that groups of devices with large spaces between
these groups would not be ideal in this case, as much of
the power incident on the spaces may escape through the
array. This is a tentative explanation of the more spread-out
layout obtained here. However, one closely spaced pair is
still present at one side, indicating that uniform spacing is
not optimal. It is unclear why this layout is not symmetric;
perhaps this is due to the fact that the optimisation is max-
imising the mean of q over kL ∈ [5, 15]. Another possible
explanation is that there exists a symmetric optimum which
is very unstable, such that a small change in array parame-
ters destroys this optimum and thus the optimisation failed
to converge to it.

4 Optimisation of circular arrays

Two cases of circular arrays are considered and com-
pared in this section. The first is an array with six devices
constrained to lie on a circle circumference of radius r .
The second case is an array of N = 7 devices, with
the extra device fixed in the centre of the circle. Clearly,
the optimisation of each array involves the same num-
ber of variables, although the calculation of the objective
function and hence the optimisation is expected to be
somewhat longer in the second case. A diagram of the
array without a central device is shown in Fig. 10 for
clarity.

For comparative purposes, the performance of the uniform
versions of these arrays (θ1 = · · · = θ5 = π

3 ), both with and
without the central WEC are presented. Figures 11 and 12
show the variation of the q-factor for the uniform array with
changes in kL and β, respectively. Table 5 shows the average
interaction factor for these arrays for several wave angles.
Since the performance of the uniform array is π

3 periodic
and symmetric about multiples of π

3 , only β0 = 0, π
6 are

shown.
Overall, the uniform layouts do not perform well over the

entire range of kL ∈ [5, 15], and performance is very oscil-
latory for changes in β. The inclusion of a central device
improves performance only in some cases and decreases per-
formance slightly in others. The interaction factor (and its
mean) appear to be highly dependent on the incident wave
angle for the uniform cases.

Fig. 10 Diagram of general six-device circular array, without central
device
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Fig. 11 Interaction factor q against non-dimensional radius kr for uni-
form six and seven WEC arrays, with β = 0

Fig. 12 Interaction factor q against incident wave angle β for uniform
six and seven WEC arrays, with kr = 10

Table 5 Average interaction factors I for uniform circular arrays (θ1 =
· · · = θ5 = π

3 )

β0 I

No central device 0 0.890253
π
6 1.0654

With central device 0 0.883032
π
6 1.12195

4.1 Circular arrays without central device

The angular position of one device (WEC 1) is fixed and
is arbitrarily forced to lie at the top of the array, so α1 =
π
2 . These arrays have five optimisation variables, namely
θ1, . . . , θ5, which define the positions of the WECs on the
circumference as seen in Fig. 10. The array is optimised as
in the previous section about the target value of kr = 10,

and it is assumed that the sea state in question is such that
[krl , kru] = [5, 15]; this is arbitrarily chosen to represent a
typical case although themethod is applicable for any values.
As before, constraints on the devicemotions are not imposed.

Intuitively, it can be assumed that symmetry exists about
β = π

2 , since an optimal array found for an angle β =
β0 < π

2 is equivalent to an analogous reflected array with
β = π

2 + β0. Therefore, results are presented only for β0 ∈
[0, π

2 ]. The optimisation was conducted in intervals of π
8 ; for

brevity, detailed results are only shown for intervals of π
4 .

In order to enforce similar spacing restrictions to the pre-
vious section, each angular parameter was limited to remain
within 0.1 ≤ θ j ≤ 2π − 0.5, and the consistency con-
straint Eq. (18) was also enforced. This minimum bound of
θ j ≥ 0.1 is slightly more restrictive than that in Sect. 3, as it
corresponds to a minimum separation between consecutive
devices of approximately 0.1kr. However, this was found to
be necessary to avoid calculation difficulties when calling the
objective function, particulary in those cases involving a cen-
tral device in the array. The upper constraint of θ j ≤ 2π−0.5
is to allow the possibility that all but one of the variables are
at their minimum allowed value of 0.1, while retaining con-
sistency.

A search routine similar to the linear array case is run over
the search space of possible starting values of the parame-
ters, in an attempt to ensure that the best optima are found.
All possible allowed combinations of θ j = {π

5 , 2π
5 , . . . π}

for j = 1, . . . , 6 were investigated as starting points for
the optimisation routine, with some combinations omitted
due to consistency considerations. It was noticed for circular
array geometries that the objective function was not as well
behaved as the linear array case. This is perhaps due to the
increased number of variables or the increased complexity
of the interaction factor (and hence its mean) due to the array
geometry. It is thus acknowledged that the above selection of
starting points may not result in the optimisation finding all
the possible optimal solutions. Preliminary results show that
increasing the number of starting points, by subdividing the
range further, results in improvements of optimal values of
I of the order of 2–5 %. This also results in a considerably
longer run time for the optimisation, which renders it unfea-
sible in the short term. The above set of starting points was
chosen as the best practical case.Therefore, unlikeSect. 3, the
results presented in this section are not advertised as globally
optimum, but rather the best cases found by the optimisation
outlined.

The resulting optimal parameter values are presented in
Tables 6, 7 and 8 for β0 = 0, π

4 , π
2 . These provide the val-

ues of the optimal mean interaction factor I and the optimal
layout variables θ1, . . . , θ5 in radians, with the remaining
angular separation given by (18). The top four cases discov-
ered by the routine are given for each angle of incidence. The
best performing arrays for β0 = 0, π

4 , π
2 are analysed with
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Table 6 Optimisation results for the six-device circular array (without
middle device) with β0 = 0

θ1 θ2 θ3 θ4 θ5 Iopt

0.1 1.4707 1.4153 0.1000 3.0972 1.5907

0.1 0.1000 1.0850 0.3233 0.3529 1.5877

0.1 1.4669 1.4984 0.1000 1.5424 1.5809

0.1 1.1992 0.3233 0.3531 4.2076 1.5791

Table 7 Optimisation results for the six-device circular array (without
middle device) with β0 = π

4

θ1 θ2 θ3 θ4 θ5 Iopt

0.1000 0.6512 1.5252 0.1000 0.1000 1.5101

2.3500 0.1000 0.1000 1.1174 0.3102 1.4882

2.2626 0.1000 0.1000 0.1000 1.1117 1.4516

0.7981 1.4109 0.1000 0.1000 0.1000 1.4453

Table 8 Optimisation results for the six-device circular array (without
middle device) with β0 = π

2

θ1 θ2 θ3 θ4 θ5 Iopt

1.5208 0.1000 1.5208 1.5208 0.1000 1.5824

0.3097 0.8228 0.1000 3.6801 0.1000 1.5472

0.2863 1.0837 0.1000 0.1000 2.6281 1.5309

0.2957 1.0793 0.1000 0.1000 0.1000 1.5216

Fig. 13 Interaction factor q against non-dimensional radius kr for best
six WEC circular array for β0 = 0, π

4 , π
2

respect to the array layout and optimal displacements in the
following subsections. A diagram of the top four layouts is
presented for the β0 = 0 case. For brevity, only the best array
layout is presented for other wave angles. The variation of
the interaction factor of all the best arrays with changes in kr
and β are shown in Figs. 13 and 14, respectively.

4.1.1 Angle of incidence β0 = 0

Table 6 shows the optimisation results for the six-device
circular array for β0 = 0. The best array layouts are
shown in Fig. 15. These layouts differ from each other;
however, all involve closely spaced groups of at least two
devices.

Fig. 14 Interaction factor q against incident wave angle β for best six
WEC circular array for β0 = 0, π

4 , π
2 with kr = 10

Fig. 15 Diagram of best six-device circular arrays found for β0 = 0.
The best performing array (I = 1.5907) is shown by the solid blue
circles, the second best (I = 1.5877) by the hollow red squares, and
the third best (I = 1.5809) by the hollow black triangles. The fourth
best (I = 1.5791) array is very similar to the second and is omitted for
clarity. WEC 1 is marked and WECs 2–6 are numbered in a clockwise
order’ (colour figure online)
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Fig. 16 Optimal displacements for best six-device circular array opti-
mised for β0 = 0

The best layout occurs with groups of two and three
devices at the bottom and top of the array, respectively, and an
isolated device to the right. Note that the devices can almost
be considered to be arranged within a semicircle orientated
opposite to the incident wave direction. This array achieves
an average interaction factor of I = 1.5907 andFig. 13 shows
that it achieves a peak value of q ≈ 1.8 around kr ≈ 6.2 and
kr ≈ 8.2. Above these values of kr, q steadily decreases to
the minimum value of q ≈ 1.26 at kr = 15.

Figure 14 shows that there is a relatively large range of±π
5

approximately about β = 0, where q remains greater than
unity. Away from this range, it is also evident that quite poor
performance occurs at other wave angles and which would
be expected.

The non-dimensional displacements of each device in
this array are shown in Fig. 16. In keeping with previous
results, the grouped devices exhibit relatively large motions
compared with the isolated device. The displacement of the
isolated device (WEC 3) is maintained around D ≈ 5 for
the entire domain of kr. All other devices have D > 6 for
all kr ∈ [5, 15], with the group of three devices at the top
of the array (WECs 1, 2 and 6) having considerably larger
displacements, especially for lower kr.

A similar physical interpretation of the optimal layout
to Sects. 3.2 and 3.3 may apply here, with the two groups
interacting well at either end of the array, with the WEC 3
capturing power incident through the middle of the array.
The semicircular arrangement may be due to a need to avoid
“rows” of devices, i.e. devices stacked behind one another,
unless these device are within an interacting group.

4.1.2 Angle of incidence β0 = π
4

The optimisation results for β0 = π
4 are presented in Table 7

and a diagram of the best layout in this case is presented in
Fig. 17. This exhibits similar features to the previous array,

Fig. 17 Diagram of best six-device circular array found for β0 = π
4

with groups of two and three WECs and a relatively isolated
device between them. Again, all theWECs lie within a semi-
circle that is almost opposite the incident wave direction.

This array achieves a mean interaction factor of I =
1.5101 and maximum value of q ≈ 1.8 near kr ≈ 7.7, as
seen in Fig. 13. The overall behaviour of q is more oscilla-
tory than the optimal β0 = 0 case and results in a reduced
average value. From Fig. 14, the behaviour of this array for
variation in β is not dissimilar to the β0 = 0 case, except that
the peak value is centred around β = π

4 , instead of β = 0.
A broadly similar behaviour of the WEC displacements

is also observed in Fig. 18. Once more the isolated device
(WEC3) has the smallestmotion amplitudes of D ≈ 5 for the
entire range, and the grouped devices exhibit larger motions,
especially for the group of three devices (WECs 4, 5 and
6). This behaviour is most evident for smaller kr, with the
relative differences decreasing for larger kr. For kr > 9 the
isolated device and the group of two devices (WECs 1 and
2) have very similar motions.

A similar physical explanation to the previous array in
Sect. 4.1.1 can be applied to this array layout,with twogroups
at either end of the array, with respect to the incident wave
direction, and a single WEC bridging the gap between these
groups. The performance of this array is less than that in
Sect. 4.1.1, presumably due to the fixed position of WEC 1
and the associated lack of freedom.

4.1.3 Angle of incidence β0 = π
2

Table 8 shows the optimisation output for β0 = π
2 . Figure 19

shows that the best array discovered is symmetric, with
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Fig. 18 Optimal displacements for best six-device circular array opti-
mised for β0 = π

4

Fig. 19 Diagram of best six-device circular array found for β0 = π
2

groups of two devices at the left and right and with two iso-
lated devices at the top and bottom. It is interesting that,
despite not enforcing symmetry, the optimisation converged
to a symmetric array layout.

The average interaction factor achievedby this array is I =
1.5824, which is similar to the β0 = 0 case, although slightly
lower. The maximum value of q ≈ 1.96 attained at kr ≈
8.5 is considerably higher than previous arrays. The overall
behaviour of q is more oscillatory than the other arrays of
this type, as seen in Fig. 13. This may be undesirable as it
would cause variability in performance over the range of kr.
For the β-variation, a similar performance to the β0 = 0 case
is seen for this array in Fig. 14, with the performance peak
centred instead at β = π

2 .

Fig. 20 Optimal displacements for best six-device circular array opti-
mised for β0 = π

2

The corresponding optimal motions are given in Fig. 20.
Due to symmetry, WECs 1 and 4 (isolated) and WECs 2,
3, 5 and 6 (pairs) exhibit the same motions. As with other
arrays, the isolated devices maintain D ≈ 5 for all kr, while
the pairs have larger motions, particularly for smaller kr.
The displacement amplitudes of the pairs are within [5, 20],
which is less than the largest motions for other arrays. This
suggests that the imposition of motion constraints may not
be as detrimental to this array.

This optimal array layout is a special case, since the fixed
device (WEC 1) is in line with the incoming wave direction.
This is likely why a symmetric optimal layout was converged
to here, while in other cases this is less likely due to the
fixed position of WEC 1 at the top of the array. Also, similar
physical arguments to previous arrays can be applied here,
with groups at either side of the array and isolated devices in
the middle. In this case, the distance between these central
devices (WECs 1 and 4, along the y axis) is 2 kr ∈ [10, 30].
Therefore, interaction would be small between these devices
and the argument against stacked devices or rows would not
apply.

4.2 Circular arrays with central device

The configuration of the last section is extended to a circular
array of seven devices,with the additional device in the centre
of the circle. In this way, one device is fixed at the origin,
which is denoted as WEC 7 with (d7, α7) = (0, 0), and
the angular position of one device (WEC 1) is fixed at the
top of the array with α1 = π

2 . The number of optimisation
variables is, therefore, the same as the previous case and the
process follows in a similarmanner to Sect. 4.1, with all other
optimisation parameters the same.

Optimal parameter values are presented in tabular form
for β0 = 0, π

4 , π
2 in Tables 9, 10 and 11, respectively. The

behaviour of the interaction factor is shown for variation
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Table 9 Optimisation results for the seven-device circular array
(including a middle device) with β0 = 0

θ1 θ2 θ3 θ4 θ5 Iopt

0.1000 0.1000 2.8284 0.1000 0.1000 1.5408

0.1000 1.4838 1.2789 0.1000 3.2204 1.5366

0.1000 1.4738 1.4706 0.1000 0.1000 1.5146

1.6028 1.4005 0.1000 0.1000 2.9799 1.5067

Table 10 Optimisation results for the seven-device circular array
(including a middle device) with β0 = π

4

θ1 θ2 θ3 θ4 θ5 Iopt

0.7534 1.4852 0.1000 0.1000 3.702 1.4957

0.7891 1.4185 0.1000 0.1000 0.1000 1.4264

0.8021 1.4239 0.1000 0.1000 2.8824 1.4184

0.1000 0.6148 0.3467 1.0625 0.1000 1.4024

Table 11 Optimisation results for the seven-device circular array
(including a middle device) with β0 = π

2

θ1 θ2 θ3 θ4 θ5 Iopt

1.3060 0.1000 3.2065 0.1000 0.1000 1.5361

1.4453 0.1000 0.1000 2.8821 0.1000 1.5055

0.3020 0.8243 0.1000 3.8186 0.1000 1.4677

1.3198 1.9006 1.3732 0.1000 0.1000 1.4528

Fig. 21 Interaction factor q against non-dimensional radius kr for best
seven WEC circular arrays for β0 = 0, π

4 , π
2

in kr in Fig. 21 and for variation in β in Fig. 22. Dia-
grams of the best array layouts and plots of the predicted
optimal displacements are also provided for each case. The
top four layouts are shown for the β0 = 0 case while, for
brevity, only the best array is presented for other angles of
incidence.

4.2.1 Angle of incidence β0 = 0

Table 9 shows the optimisation results for the seven-device
circular array with β0 = 0 and the top four array layouts
are presented in Fig. 23. As in previous cases, although these
arrays differ from each other, all contain groups of two and/or
three devices. The second and third best arrays are nearly

Fig. 22 Interaction factor q against incident wave angle β for best
seven WEC circular arrays for β0 = 0, π

4 , π
2 with kr = 10

Fig. 23 Diagramof best seven-device circular arrays found forβ0 = 0.
The best performing array (I = 1.5408) is shown by the solid blue
circles, the second best (I = 1.5366) by the hollow red squares, and
the third best (I = 1.5146) by the hollow black triangles. The fourth
best (I = 1.5067) array is very similar to the third and is omitted for
clarity. WECs 1 and 7 are marked and WECs 2–6 are numbered in a
clockwise order (colour figure online)
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mirror images of each other about the x axis; hence their
similar performance is due to (12).

The premier array is an almost symmetric layout, with
groups of three devices at the top and bottom of the array.
Once more, the array members are almost contained within
a semicircle opposite the incident wave direction. This array
achieves an average interaction factor of I = 1.5408, with
a maximum of q ≈ 1.8 around kr ≈ 8. Overall, the behav-
iour of q is quite stable, with q ∈ [1.4, 1.8]; the sharpest
change in q is found around the maximum, where q drops
from the maximum value to q = 1.43 for a unit change in
kr. As with most other optimal arrays, Fig. 22 shows that
q remains greater than unity for a change of approximately
±π

5 in incident wave angle around the optimal angle β0 = 0.
Also, a double peak can be seen around this optimal value,
so for a small change in β, a small increase in q can in fact
be achieved. This also results in a wider peak performance
with respect to local β variation around β0 = 0.

As with previous results, the displacements are unaccept-
ably large for the grouped devices, while the isolated device
(WEC 7) exhibits reasonable motions, see Fig. 24. Again
for grouped devices, D > 10 for all kr considered, with D
generally increasing for decreasing kr.

A similar physical interpretation to that in Sect. 4.1.1 can
be applied to the optimal layout presented here, since these
layouts are quite similar. In this case, WEC 7 is forced to
be in the centre of the array so that another WEC is not
needed along the x axis to absorb power in the gap between
the groups. This results in the two groups containing three
devices, presumably to maximise the constructive interfer-
ence. It should be noted that although the best array presented
here has a slightly lower value of I than that in Sect. 4.1.1,
it is likely that more power is absorbed by this array due to
the extra device.

Fig. 24 Optimal displacements for best seven-device circular array
optimised for β0 = 0. The curves for WEC numbers in brackets are
very similar and are omitted for clarity

4.2.2 Angle of incidence β0 = π
4

The top four array layouts discovered by the optimisation
routine are presented in Table 10, and a diagram of the best
array is given in Fig. 25. This layout is very similar to the
corresponding array in Sect. 4.1.2, with groups of two and
three devices along with a relatively isolated device between
these groups. Similarly, this array is also positioned within a
semicircle opposite the incident wave direction. The average
interaction factor of I = 1.4957 is slightly lower than the
corresponding six-WEC array and considerably lower that
the seven WEC β0 = 0 case.

Figure 21 shows that the variation of q with kr is more
oscillatory than the other arrays. A larger than average range
of ± 3π

16 for β-variation around β0 = π
4 exists, where q > 1

for this array. The optimal device motions, shown in Fig. 26,
are unacceptably large (D > 5) formost devices, particularly
the group of three devices (WECs 3, 4 and 5). The central
device has D ≈ 4–5 for all kr ∈ [5, 15] and similarly the
paired (WECs 1 and 6) and isolated device (WEC 2) have
D ≈ 6–10 for the entire range.

A similar physical explanation to previous arrays is given
for the best layout presented here. Again, the two groups
at the sides of the array presumably maximise constructive
interference by the radiated wave field. WECs 2 and 7 may
be located in the middle of the array to absorb the power
that would otherwise escape through the gap between these
groups.

Fig. 25 Diagram of best seven-device circular array found for β0 = π
4
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Fig. 26 Optimal displacements for best seven-device circular array
optimised for β0 = π

4

Fig. 27 Diagram of best seven-device circular array found for β0 = π
2

4.2.3 Angle of incidence β0 = π
2

Table 11 shows the optimisation results for β0 = π
2 and the

best array layout is shown in Fig. 27. Again, the familiar
pattern of groups of two and three devices with an isolated
device between them can be recognised, almost lying in a
semicircle opposite the incident wave direction. The average
performance of this array is I = 1.5361, and Fig. 21 shows
that a maximum of q = 1.9 is achieved around kr = 8.
The overall performance within kr ∈ [5, 15] is relatively
stable, except near this maximum where q drops to 1.4 as

kr approaches 10 and towards the upper bound of the range,
where q drops to less than 1.25.

Figure 22 shows a large range of±π
4 in β-variation where

constructive interference remains present. This is due to an
offset double peak in q vs β. The array necessarily performs
very poorly for other wave angles away from β0 = π

2 , where
the lowest value attainted is q ≈ 0.51.

Figure 28 shows that the central device exhibits relatively
reasonable motions for certain values of kr, but in general
most devices have D > 5 for the majority, if not all, of
kr ∈ [5, 15]. As with previous results, optimal displacements
are shown to be very large for the group of three devices,
particularly for smaller kr. Thepaired devices have somewhat
smaller motions, but are still unacceptably large.

The physical justification behind the optimal layout here
is similar to that in the previous section. The array contains
two groups at either end of the array to maximise interfer-
ence, while two devices are present in the centre of the array
(along the y axis) to bridge the gap between these groups.
It is unclear why the best layout found here is not symmet-
ric, analogous to that in Sect. 4.1.3. This may be because the
optimisation did not converge to a global optimum, due to
the relatively small range of starting points chosen to allow
the optimisation to run in a reasonable time, as mentioned.

5 Discussion and conclusion

This paper describes an optimisationmethod for arrays of five
to seven WECs, constrained to linear or circular geometries,
such that the optimal array layouts are stable to changes in
non-dimensional parameters. This is an extension of previous
work, which did not necessarily optimise arrays with the
explicit examination of stability. It has been shownhere that it
is possible to obtain arrays that performwell over a relatively
large range of non-dimensional length or radius (kL ∈ [5, 15]
or kr ∈ [5, 15]) for fixed incident wave angle. The work
of McGuinness and Thomas (2015) has been extended to
more general linear arrays without enforced symmetry and
is extended further to examine circular array geometries.

Prior to the presentwork, the array layout parameterswere
optimised with respect to the interaction factor, which often
resulted in a large peak value of q, when constructive inter-
ference is achieved but this peak was often surrounded by
large troughs of destructive interference. By optimising with
respect to the mean of the interaction factor over a certain
non-dimensional length, layouts are obtained which perform
well on average in this range and not just at a specific value.
In most cases, the optimal arrays achieved q > 1 for the
entire range of non-dimensional length/radius considered. It
has also been shown that this performance was maintained
for large ranges of incident wave angle of up to β0 ± π

5 ,
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Fig. 28 Optimal displacements for best seven-device circular array
optimised for β0 = π

2

so that a small change in β does not result in destructive
interference between the array members.

It should be stressed that the results presented in this paper
are valid only for ka = 0.4, kL ∈ [5, 15] or kr ∈ [5, 15],
β = β0 and optimal hydrodynamic motions. Movement
away from these parameter values or ranges would likely
result in poorer performance, particularly for large changes
in β. The imposition of motion constraints and the resulting
non-optimal motions would also have a considerable effect
on performance. Power take-off is also assumed ideal and
inefficiencies are not accounted for.

One major problem with the optimal arrays obtained in
this work is the magnitude of the associated device motions.
Previous research, such as Thomas and Evans (1981) and
Fitzgerald (2006), suggest that an upper limit of device
motions should be at most three times the incident wave
amplitude. This limit was exceeded by the majority ofWECs
in all the optimal arrays discovered. These motions are pre-
dicted using linear wave theory, which assumes all motions
are at most of the same order as the wave motion and is
assumed to be small in some sense. Large device motions
violate this approximation and thus invalidate the underly-
ing linear wave theory. Therefore, nonlinear effects will tend
to damp these large motions, which in turn will affect device
interaction and hence array performance.

In general, better performing arrays are expected to
involve larger device motions. In some cases presented here,
better performance was achieved relative to other optimal
arrays, despite smaller predicted device motions. This may
indicate that the imposition of devicemotion constraints may
not be as limiting in these cases and it is possible that good
performance can be maintained, though this is yet to be con-
firmed.

Many optimal array layouts presented here include closely
spaced groups of two, three or four devices. These groups of
WECs are predicted to exhibit the largestmotions,with larger
motion amplitudes for larger groups. Placing WECs in such
close proximity identifies other possible difficulties, such as
collisions between devices. In addition, the point absorber
approximation may no longer be valid in this case, as it may
be unreasonable to neglect the scattered wave field if the
WECs are in such close proximity to each other.

One possible solution to this problem may be to replace
these groups of devices with an appropriately sized larger
device. These arrays would then contain devices of different
sizes, a possibility previous research seems to have neglected.
These arrays could then be considered as “satellite” arrays,
since one could often describe such arrays as involving sev-
eral smaller devices “orbiting” a larger device. This idea
was initially suggested by McGuinness and Thomas (2015),
where it was mentioned that larger devices did indeed reduce
device motions. It is not known what the effect on power
absorption and array performance would be. Another pos-
sibility would be to replace these groups of devices with a
single device that absorbs power (oscillates) in two modes of
motion, thereby recreating the dipole effect often exhibited
by the pairs of devices in optimal layouts. It is hoped that
either a larger device or one that operates in two (or more)
modes would recreate the constructive interference pattern
without the issues of close deployment and large motions.

The results for linear arrays in this paper agree with
those of McGuinness and Thomas (2015), although these are
improved upon due to the increased generality of this work.
As mentioned previously, other values of β0 were investi-
gated but omitted here for brevity. Similar to McGuinness
and Thomas (2015), it was found that for β0 = π

8 , in the
general case considered here, linear arrays performed poorly
with I < 0.9 in even the optimal case. This suggests that this
wave angle should be avoided.

In general, this work shows that optimal six and seven
WEC circular arrays can perform better than optimal five
WEC linear arrays, as seen by the higher values of I obtained
in Sect. 4. This may be due to the enforced geometry per-
forming better in the circular case, or it may be due to the
increased freedom in the optimisation due to the larger num-
ber of variables. It should also be noted that the optimisation
calculation took considerably longer time to execute for the
circular arrays and the arrays found are not guaranteed to be
globally optimal, as mentioned in Sect. 4. Again, this was
likely due to a combination of increase in complexity of the
objective function due to the geometry or to the increased
number of variables.

As mentioned in Sect. 4, a search of the variable space for
starting points of the optimisationwas conducted; however, it
was found that a prohibitively long run time resulted when an
exhaustive search was performed. Therefore, a more sparse
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search of the variable space was conducted, which produced
results in a reasonable time. It was acknowledged that the
results presented pertaining to circular arrays are not globally
optimum. A preliminary comparison indicated that a 2–5 %
improvement can be achieved for a more exhaustive search,
with a 20- to 50-fold increase in run time.

As mentioned, symmetry would be expected in the opti-
mal arrays about β0 = π

2 . However, this was not achieved for
the optimisations performed. This was due to the optimisa-
tion not finding a global optimum and converging to a local
maximum which was not necessarily analogous to the max-
imum found for the corresponding symmetric wave angle.
It was confirmed that symmetry was achieved for optimal
arrays with β0 = 0, π

2 and β = π
4 , 3π

4 when an exhaustive
search was preformed.

Comparing the results of Sects. 4.1 and 4.2, it is clear that
the addition of the seventh device in the centre of the circle
influences the array performance and optimal array layout,
even thought this does not add any extra variables to the
optimisation. The results shown here, particularly the opti-
mal values of I , suggest that the inclusion of an extra device
reduces the average optimum interaction factor. This is con-
trary to expectation, as preliminary results by C. Costigan
(Modelling Circular Arrays of Wave-Power Device, Project
Report, University College Cork, 2014), on similar sym-
metric arrays of one variable, suggested the opposite. This
work optimised circular arrays with different (a)symmetries
imposed, so that each array is described by just one variable.
The arrays were optimised by maximising the mean of the
interaction factor over the non-dimensional radius. It may be
that, due to the strict assumptions of array layouts (symmetry,
one variable etc.), the inclusion of a central device improved
performance in that special case and that this does not hold
for a more general layout. The work of Costigan also showed
that the optimal arrays tended to contain groups of devices,
albeit in a simpler optimisation regime. This agrees with the
results presented here and with those of McGuinness and
Thomas (2015).

For the circular arrays presented here, it was noted that the
arrays often converged to a layout that was approximately
contained in a semicircle facing in the same direction as the
incident wave angle. It is interesting that optimal interaction
and constructive interference seem to occur when all devices
are located in a semicircle, the orientation of which is depen-
dent on the incident wave angle. Future work will examine
this effect further and investigate the possibility of limiting
an optimisation to a semicircle, which would be computa-
tionally more efficient.

The best average interaction factor was achieved for the
six-device circular array, i.e. without middle device, with
β0 = 0, where I = 1.5907 was obtained. The behaviour
of the interaction factor was relatively stable to changes in
both kr and β. However, very large displacements were pre-

dicted in the optimal case, with D > 5 for most devices and
D ∈ [10, 75] for the group of three devices. The best over-
all array discovered within this work, which had a balance
between good performance and relatively smallmotions, was
the optimal linear array for β0 = π

2 , as discussed in Sect. 3.3.
Within the region of kL ∈ [10, 15], this array achieves
q ∈ [1.3, 1.7], while the non-dimensional displacement of
all the array members are D ∈ [5, 15]. These displacements
are considerably lower than WECs within other optimal
arrays. Since a motion constraint would have a lesser rel-
ative effect on these motions, it is reasonable to suggest that
this constraint would also have a less relative impact on array
performance, though this has yet to be confirmed and will be
examined in future work. The array also has a large range
(approximately ± 3π

16 ) of β variability, around the optimal
value of β0 = π

2 , where q > 1 is maintained.
Future research in this area will consider device motion

constraints and assess the effect on array performance and
optimal array layout. This will be done by including the
device displacements as variables in the objective function,
with upper limits imposed on the amplitudes. It is also
planned to examine other array geometries, such as triangular
and elliptical layouts. Note that in order to define the mean of
the interaction factor over some non-dimensional length, it is
necessary to define an array geometry as themean interaction
factor has no sensible definition for general two-dimensional
geometries. Further investigation into semicircular array lay-
outs will also be conducted and extended to semi-elliptical
arrays, as results in this paper suggest that this may be the
optimal case when devices are constrained to such geome-
tries. Investigation of an alternate objective function, where
the average is taken over a small range of incident wave
angle, instead of non-dimensional array length/size, is also
planned.
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