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Abstract The correct simulation of moored floating objects
is key to save time and money in the design stage of new off-
shore devices. DualSPHysics is a graphics processing unit
implementation of the weakly compressible smoothed par-
ticle hydrodynamics (SPH) method successfully validated
with different free-surface problems and already applied to
real engineering problems with accuracy, reliability and high
performance. A new implementation to simulate the behav-
iour of moored lines is presented for SPH models. This new
approach allows reproducing the forces on floating bodies,
such as vessels, boats, wave energy devices and other off-
shore structures moored to the seabed. More precisely, the
implementation is focused on continuous ropes and wires that
can be described by the catenary function. Some validations
are provided for floating bodies and moored lines showing
good agreement with experiments and other numerical solu-
tions. Finally, a working case of a wind turbine base moored
by three lines is simulated to show the capabilities of the
code.

Keywords SPH - Moorings - GPU - Off-shore -
Floating objects
1 Introduction

Due to the increasing energy demand and the environmen-
tal awareness of today’s society, more renewable energy
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resources are exploited. Some of the energy harvesting
devices, such as wave and tide energy converters and float-
ing wind turbines, are located at sea. Some of these devices
are fixed to the sea bed but in other cases, due to sea depth,
sea conditions or the nature of the device, they are moored. A
proper implementation of mooring lines in a numerical model
with high performance will help engineers and scientists to
design energy converters and its platforms.

Numerical modelling is employed as a very useful tool
in the engineering and science fields to solve complex prob-
lems. The main advantage of using numerical methods is the
capability to simulate any scenario regardless its complexity.
This avoids the need to build multiple very expensive physi-
cal models. Also, numerical modelling may provide physical
data that could be very difficult, or even impossible, to mea-
sure in a real or scaled model. Numerical methods will not
replace physical modelling but will reduce the number of
scale models and these will be closer to the final design which
will save money and time for companies and administrations.

Traditional computational fluid dynamics (CFD) tech-
niques such as volume-of-fluid methods (VOF) have been
used in different aspects of coastal engineering such as
wave-structure interactions studies (Kleefsman et al. 2005)
and breakwater design (Higuera et al. 2013; Vanneste and
Troch 2012). However, Eulerian numerical methods usually
require expensive mesh generation and have severe techni-
cal challenges associated with the nonlinearities associated
with rapidly moving geometries. On the other hand, meshless
schemes provide an alternative to the most established mesh-
based methods and meshfree methods, such as Monte Carlo
methods (Geeraerts et al. 2009) or the particle finite element
method (PFEM) (Onate et al. 2011), are gaining popularity.
Within the meshless methods now available, smoothed par-
ticle hydrodynamics (Violeau 2012) is, possibly, the most
popular and is attaining the required level of maturity to be
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used for engineering purposes. Hence, SPH is an ideal tech-
nique to simulate free-surface flows.

SPH has been used to describe a variety of free-surface
flows (wave propagation over a beach, plunging breakers,
impact on structures and dam breaks). Monaghan (1994) pre-
sented the first attempt to study free-surface flows with the
SPH model. Monaghan also studied the behaviour of gravity
currents, solitary waves and wave arrival at a beach. Later
on, the model was applied to the study of the wave—structure
interaction such as in Colagrossi and Landrini (2003) that
considered the study of interfacial flows. The classical dam-
break problem is also studied in 3D by Gémez-Gesteira and
Dalrymple (2004). In the field of coastal engineering, SPH
has been employed to the study of the wave—breakwater inter-
action in Gotoh et al. (2004), to the prediction of wave impact
pressure due to sloshing waves in Khayyer and Gotoh (2009),
and to study floating bodies (Bouscasse et al. 2013; Ami-
carelli et al. 2015; Sun et al. 2015).

The DualSPHysics code has been developed to use SPH
for real engineering problems with software that can be run
on either CPUs or graphics processing units (GPUs with
powerful parallel computing). GPUs offer now a higher com-
puting power than CPUs and they are an affordable option to
accelerate SPH with a low economic cost. Thereby, the sim-
ulations can be performed using a GPU card installed on a
personal computer. DualSPHysics is open source and can be
freely downloaded from http://www.dual.sphysics.org. This
package includes pre-processing tools that allow creating any
type of complex geometry, loading actual topographies or
bathymetries and importing geometries directly from files
such as .cad, .3ds, .max, .stl, .dwg, etc Post-processing tools
are also provided to visualise data and to measure interesting
physical magnitudes such as vorticity, velocity and exerted
forces.

The firstrigorous validation of the GPU implementation of
DualSPHysics code was presented in Crespo etal. (2011) and
more details about the implementation of DualSPHysics can
be found in Crespo et al. (2015). Recently the DualSPHysics
code was applied to coastal engineering problems; the study
of the run-up on a real armour block coastal breakwater in
Altomare et al. (2014), the computation of forces exerted
by large waves onto coastal structures (Barreiro et al. 2013)
and the estimation of sea wave impacts on dikes (Altomare
et al. 2015) . In addition, numerical results in (Altomare et
al. 2015) are validated with a experimental campaign that
studied the response of new coastal defences proposed for
the Belgian coast.

Mooring line design is an important topic in coastal and
marine engineering. Faltinsen (1993) introduced the basic
mathematics for this kind of phenomena. Many approxima-
tions have been developed during the past years to solve
mooring dynamics, such as MDD (Dewey 1999), SEAWAY
(Journee and Adegest 2003), Orcina/OrcaFlex (Randolph
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and Quiggin 2009), Moody (Ferri and Palm 2015) and
MoorDyn (Hall and Goupee 2015). However, some of these
methods only model the mooring line and the do not solve the
dynamics of the moored floating object. On the other hand,
mesh-based models fail to study the survivability of float-
ing devices under extreme wave conditions (including also
overtopping and breaking waves). DualSPHysics is suitable
to deal with these problems but only implements, in a first
approximation, a basic approach of mooring lines. The quasi-
static approach proposed by Faltinsen (1993) is implemented
where the tension of the mooring line is properly solved but
the hydrodynamic and elastic contributions of the mooring
are neglected.

The implementation of the quasi-static mooring formu-
lation presents a novelty on the SPH methods implemented
on GPU. In this way, DualSPHysics allows reproducing the
forces on floating bodies moored to the seabed. The pre-
sented approach deals with continuous ropes and wires that
can be described by the catenary function. The formulation
presented here is a first step to a more complete implemen-
tation where the moored lines will present properties such as
elasticity, interaction with the fluid particles and more com-
plex mooring lines.

The paper is organised as follows: first the SPH formu-
lation and the equations implemented to simulate moorings
are described; then several validations show the agreement
between numerical and experimental results for the move-
ment of fluid-driven objects and tension experienced by
different mooring configurations; finally, a case of applica-
tion shows the capabilities of the implementation to deal with
interactions between waves and a wind turbine base moored
by three lines.

2 SPH method

Only the basic formulation is presented in this section; for a
more complete description of the equations and corrections
the reader is referred to Gomez-Gesteira et al. (2010, 2012).

Smoothed particle hydrodynamics is a meshless method
that describes a fluid by dividing it into a set of discrete
elements (named particles). Each particle has an area of influ-
ence over which its physical magnitudes are known. The
physical quantities of a particle can be computed as an inter-
polation of the values of the nearest neighbouring particles.
Mathematically, the contribution of the neighbouring par-
ticles is weighted according to their distance for particle a
using a kernel function and a smoothing length.

2.1 Interpolant

SPH is based on the interpolant theory. This principle states
that any given function A(r) can be approximated by
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A(r) = / A@XYW(r —r', h)dr/, (D

Q

where r is the position vector; W the weighting function or
kernel; h is a measure of the radius of the kernel.

The Eq. 1, in discrete notation, leads to the following
approximation function at a particle a:

Ap
Ag = Zmbp—bwab, )
b

where the summation is carried out over all the neighbour
particles, b, that can be found in the region where the kernel is
non zero. The mass and density of the neighbour particles are
denoted as my, and pp, respectively, and W, = W(r,—rp, h)
is the weighting function or kernel.

One advantage of using the SPH kernel is that the function
derivative is calculated analytically, and the derivatives can
be obtained by ordinary differentiation:

A
VALr) = Zmbp—:vwab 3)
b

2.2 Kernel function

The efficiency of the SPH technique (in terms of compu-
tational time) depends on the selection of the weighting
functions. These functions have to satisfy different condi-
tions such as positivity, compact support and normalization.
Also, W,;, must be monotonically decreasing with increasing
distance from the particle a and behaves like a delta func-
tion as &, the smoothing length, tends to zero. The kernel
function depends on the smoothing length, /, and the nondi-
mensional distance between particles given by g =rap/h,
where ryp is the distance between particles aand b, (rap=r,-
). There is a wide variety of kernel functions. In general, the
accuracy of the SPH interpolation increases with the order
of the polynomials used to define the kernel. The kernel
functions implemented in DualSPHysics are the cubic-spline
(Monaghan and Lattanzio 1985) and the Wendland kernel
(Wendland 1995).

2.3 Momentum equation

The equation of momentum conservation in a continuous
field can be expressed as

dv, 1
=——VP+g+T, 4)
dt 0

where v is the velocity and P and p are pressure and density,
respectively, g = (0,0, —9.81) ms~2 is the gravitational
acceleration and @ represents the diffusion terms.

The gradient term of pressure in symmetrical form is
expressed in SPH notation as

- —VP = Zmb(

where P, and p;, are pressure and density of neighbour parti-
cles b. I represents viscous and dissipative terms. Therefore,
the equation of the momentum conservation will be written
in SPH notation as (Monaghan 1992):

dva _ _Zmb(

Different approximations, based on existing formulations
of diffusive terms, may be considered in the SPH method
to describe I' in the momentum equation. The viscosity in
DualSPHysics is treated as an artificial viscosity proposed
by Monaghan (1992) or as Laminar with SPS turbulence
(Morris et al. 1997; Gotoh et al. 2001; Lo and Shao 2002).
The artificial viscosity treatment is used in this work.

+ ) + r Va Wah’ (5)
oi

+—+F VaWar + 8 (6)
Pb

2.4 Continuity equation

The changes on the fluid density are calculated by

dpa
dr

Z mpVapVaWap (N

A time differential is used instead of a weighted summa-
tion of the mass terms (Monaghan 1992) since the weighted
summation results in a decrease of the density in the interface
between fluids, near the free surface and in the proximity of
the boundaries.

2.5 Equation of state and compressibility

The fluid in the standard SPH formalism is treated as com-
pressible, which allows the use of an equation of state to
determinate fluid pressure. However, the compressibility is
adjusted to slow the speed of sound so that the time step
in the model (dependent of the speed of sound) has a rea-
sonable value. This facilitates the use of an equation of
state to determinate the pressure of the fluid since this is
faster than solving the Poisson’s equation that appears in the
incompressible approach. Following Monaghan (1992) and
Batchelor (1974), the relationship between pressure and den-
sity follows the Tait’s equation of state. It should be noted that
a small oscillation in density will generate a large variation
in pressure.

el -
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The parameter B is related to the compressibility of the
fluid; pg = 1000.0 kgm™3 is the reference density, taken as
the density of the fluid at the surface, and y is the polytrophic
constant that usually ranges from 1 to 7.

The choice of B plays a key role since it determines the
speed of sound. Using a value corresponding to the real
value of the speed of sound in water, a very small time
step must be chosen for numerical modelling, based on
the Courant—Friedrichs—Lewy condition. Monaghan showed
that the speed of sound could be slowed significantly in an
artificial way for fluids without affecting the fluid motion;
however, Monaghan (1994) suggests that the minimum
sound speed should be about ten times greater than the max-
imum expected flow speeds.

2.6 Boundary conditions

Dynamic boundaries were first introduced by Dalrymple and
Knio (2000) and further studied by Crespo et al. (2007).
Dynamic boundaries consist of a set of boundary particles
that satisfies the same continuity equation, Eq. 7, as the fluid
particles; thus their density and pressure also evolve creat-
ing a repulsive mechanism when a fluid particle approaches
a boundary particle. However their position is not given
by integrating velocity in time; a static boundary will have
zero velocity and a moving boundary will have a prescribed
motion.

Validations with dam-break flows have been published
with good results (Crespo et al. 2011) and these BCs have also
been shown to be suitable to reproduce complex geometries
(Altomare et al. 2014).

2.7 Fluid driven objects

Not all the bodies and boundaries in DualSPHysics are fixed
or have an imposed movement. It is also possible to derive
the movement of an object by considering its interaction with
fluid particles and using these forces to drive its motion. This
can be achieved by summing the force contributions for an
entire body. By assuming that the body is rigid, the net force
on each boundary particle is computed according to the sum
of the contributions of all surrounding fluid particles accord-
ing to the designated kernel function and smoothing length.
Each boundary particle k, therefore, experiences a force per
unit mass given by

fi= > fra )

aeWPs
where the summation only considers the contribution of fluid

particles (WPs), f,, is the force per unit mass exerted by the
fluid particle a on the boundary particle k, which is given by
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Mk fra = —Ma fak (10)

For the motion of the moving body, the basic equations of
rigid body dynamics can then be used:

dv
M- = > mify (11)
keBPs
de
1= = 2 mri—Ro) x fi, (12)
keBPs

where M is the mass of the object, I the moment of inertia,
V the velocity, §2 the rotational velocity and Ry the centre of
mass; in this case the summation only is conducted over the
boundary particles (BPs). Equations 11 and 12 are solved
at each time step to predict the values of V and 2. Each
boundary particle within the body then has a velocity given
by

ug=V+Qxrr—Ro) (13)

Finally, the boundary particles within the rigid body are
moved by integrating Eq. 13 in time. The work of Monaghan
(2005) and Monaghan et al. (2003) shows that this technique
conserves both linear and angular momentum.

3 Mooring implementation

This section describes the implementation of the quasi-static
mooring solver.

Moorings are defined as the lines that hold in position a
vessel or any kind of floating object. More precisely, this
implementation is focused on continuous ropes and wires.
The shape of this kind of lines, hanging between two points,
can be described by the catenary function y = écosh(%)
where y and x are vertical and horizontal coordinates, respec-
tively, and & is a parameter that defines the curvature of the
line.

3.1 Static approach

Figure 1 presents an element of a mooring line and all the
forces acting on it.

The different quantities shown in Fig. 1 need to be defined:
T is the line tension, A is the cross-section area of the line, E
represents the elasticity modulus, F and D correspond to the
drag or mean hydrodynamic forces both normal and tangen-
tial direction, respectively, and w is the submerged weight per
unit length. Also the quantities in Fig. 2 must be explained:
s is the length of the chain in the point of study, ¢ is the
angle at the study point, (¢ = 0 is assumed at the bottom,
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Fig. 1 Diagram of the different
forces acting on an element of a
mooring line

T +dT — pgzA — pgAdz

¢ +do T
dsS + 1 ds
A
wdS
dz
F
D
v
¢
< > S 7o pgzA
dx
Fig. 2 Definition of the
symbols of the mooring line /Z(pw
= 7 ™
z
X ¢
S

Anchor

77 |
Xg (P0=0

¢y, represents the angle at the water surface), h,, is the water
depth and xp is the portion of the line resting in the sea bed
(dashed line).

In the following section the basic mathematics of the
mooring implementation are presented. This implementation
will relate the relative position of anchoring point, fairlead
point and cable properties with the force exerted by the
moored line on the floating body. Following the work of
Faltinsen (1993),

dT — pgAdz = [wsin ¢ — F (1 + T/(AE)]ds  (14a)

Tdy — pgAzdy = [wcos ¢ + D(1 + T/(AE))]ds
(14b)

These equations are non-linear and do not have an explicit
solution. To simplify the analysis some approximations were
taken: neglecting the effect of the current forces (D and F

both equal to 0), the chain has no elasticity (E = 0), and the
weight per unit of length remains constant in the entire chain
(w constant).

Thus, the solution for the inelastic catenary equations is
presented. First, it is important to make some assumption,
such as constant weight per unit of length, elasticity effects
and forces on the chain are neglected, and the definition of
T’ as:

T' =T — pgzA (15)
using Eq. 15 in Eqgs. 14a and 14b, the following expressions
can be written

dT' = wsing ds (16)

T'dgp = wcos ¢ ds (17)
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by dividing Egs. 16 by 17, these two equations become

dar’ i
_ sing dg (18)
T’ cos ¢

which integrating gives

COs @g
cos @

T'=T; (19)

by integrating 7’dgp = w cos ¢ds, note that ¢q is defined
as the angle at the contact point between the line and the sea
bed,

/
} so—l ¢ T, cos<p0d,:
Sy — - — - 4o
 Jy, COS E cos B

T/ cos
= 20°9%%0 1an o — tan go] (20)
w

with dx = cos ¢ ds

1 [¢ T cos g
X —x0 =~ -
%0

T/ cos 1
=20 il (ln ( + tan (p)
w Cos @

1
—ln( —l—tan(po)); 21
cos ¢

also it is known that dz = sin ¢ ds

1 [% T!cosggsin®
Z—Zoz—/ #d

AN
COS &

1]

o Jy, cos? B
_ Tgcosgo [ 1 1 22)
T cosp cosgp |’

where ¢ is defined as the contact point of the moored line
with the seabed (¢ = 0), so Eq. 19 can now be rewritten as

Ty =T cosg (23)

The horizontal tension at the contact point with the floating
body, usually at water surface, can be written as

Ty = T cos ¢y, (24)
where ¢,, is the angle of the moored chain with the water
surface.
By merging Eqs. 15, 23 and 24 at the water surface
Ty =Ty (25)
Other assumptions were xo = 0 and zg = - &. In addition,

so = 0 — ¢o = 0; the angle ¢ can be eliminated from Eqs.
20, 22 by Eq. 21 which now can be written as
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|+ si
O (—+ Sm‘p), (26)
Ty cos ¢

that is

. xXw 1 (1+sing cos ¢
sinh{ — ) = - — - =tang
Ty 2 cos 1 +sing
1 (1 +si 1
cosh (22 = = +sing TR (27)
Ty 2 cos ¢

l+sing)  cosg
Equations 20 and 22 can be now written as

Ty . w
s = — sinh { —x (28)
w TH
Ty w
z+hy=—|cosh|{ —x|)—1], (29)
w TH

so the line tension can be found as the combination of Egs.
15, 22, 23 and 25.

T

T — pgzA = — =Ty + w(z +h), (30)
Cos @

i.e.

T =Ty + oh+ (0+ pgA)z (€2))

dT] = d(T'sing) = dT"sing + T’ cos ¢ dg
= wsin’ pds + w cos® @ ds; 32)

this translates as TZ/ = ws, and at the water surface is
T, = ws (33)

In order to simulate properly the moorings, a function is
needed to determine the horizontal tension (77) generated
by the moored line. This function will depend on the relative
position of the link point in the floating body and the anchor-
ing point in the sea bed. Parameters to define a moored line
are presented in Fig. 3.

Defining

a =2 (34)

Equations 30 and 31 are rewritten as
X
I =asinh (%) (35)
a
by =acosh (%) = 1], (36)
a

where [, is the lifted chain length, combining Eqs. 35 and 36

> = h% +2hya (37)
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Fig. 3 Diagram with the
parameters that define a
mooring line

Anchor point

Fig. 4 Zenith view of a spread mooring system on a vessel

According to Fig. 3, horizontal distance, X, can be written
as

X=1—-1I+x, (38)

wherel; is expressed as shown in Eqs. 35 and 36 is used to
express x, and  —I; is the portion of the line resting in the bed.

1
2 h
X=1—hy (1 + Zhi) +acosh™! (1 + —w) (39)
a

w
the relationship between X and Ty is obtained asa = Ty /w.

Now a spread mooring system is described. Usually ves-
sels, ships and other floating devices are not held in position
by a single line. The implementation can be generalized for
multiple lines. Thus, the total effect of multiple lines will be
the summation of each one of them separately acting on the
same body. Forces cannot be aligned with the Cartesian axis
as Fig. 4 shows. All the forces affecting a floating body must
be referred to the Cartesian coordinate system to calculate
the movement.

Since both link and anchor point are known, the direc-
tion of the moored lines and Tp; projection are easy to
find. Therefore, the forces in x and y axes can be written
as Fy = Ty; cos ¥; and Fy, = Ty; sin ¥;; these forces will
be applied to the link point in the body. The floating body
will move as the result of summation of buoyancy force, wave
forces and the forces of all the moored lines. The force of the

mooring lines must be properly applied to mimic the pulls
and spins that the cables can cause.

3.2 Mooring classification

Normal conditions for moorings are already covered (panels
b and ¢ of Fig. 5) but there are two different states of the
moored chain not covered yet. These two states are the resting
chain, and the fully extended chain (panels a and d of Fig. 5).

In the non-extended case (panel a in Fig. 5), the horizontal
force will be zero and the vertical force will be proportional
to the mass of the chain hanging towards the sea bed.

The fourth case consists of the moored line totally
extended (panel d of Fig. 5). The main force exerted by the
chainis areaction force; this force is equal to the main force of
the floating object, but in the opposite direction. The reaction
force will have the chain direction and the modulus of the pro-
jection in the direction of the chain. This force will prevent the
body from going any further from the anchoring point but will
not prevent spins and rotations around the anchoring point.

This is simple for only one moored line but for a set
of moored lines in a totally extended disposition is not
straight-forward. In order to solve properly this situation, the
summation of the forces generated by all the fully extended
moored lines must cancel the forces acting on the body. The
projections and angles must be defined in the Cartesian coor-
dinate system as can be seen in Fig. 6. A new set of equations
must be solved:

Fr=Fi+FBK+F+F- -
Fry = Fr - cosfOr - cos g1
Fry = Fr - cosfr - singr

Fr, = Fr -sinfr

Fry - cosg;

S S

| cos g;

Fry - sing;

Force for i mooring 1 Fiy = —=5—— (40)

g1 Z;’ sing);

Fr, -sin0;

Fip = ——— 2
2. sinb;
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Fig. 5 Different states of a (a)
moored line, a totally resting, b
partially lifted, ¢ totally lifted
and d totally extended

Anchor point

(o) d)

Fig. 6 Definition of angles and projections

where Fr is the total force, Fry, Fry, Fr;, are the forces
projections, ¢ and 6 are the angles with X-axis and XY plane,
respectively, and Fj., Fjy, Fi, are the total forces in each
direction for each i mooring.

Once solved, the formulation for the moored lines is com-
plete and covers all the range of cases that can be found both
in normal conditions and most extreme cases.

4 Model validation
4.1 Validation of floating bodies

Two validation cases are presented in this section to prove
the correct behaviour of the floating objects.

In the first case the buoyancy-driven motion of a floating
cylinder is validated. DualSPHysics simulates the 2-D sys-
tem of a sinking cylinder with a » = 1 m radius and density
p = 1200 kg m™3 that is half submerged. Figure 7 shows
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the case at different instants where the colour of the particles
corresponds to the velocity magnitude.

Fekken (2004) compared these results with those of a
numerical model based on a volume of fluid (VOF) dis-
cretization technique. Figure 8 plots the vertical displacement
and velocity of the cylinder. The SPH results are close to the
VOF solution, particularly in the initial instants.

More validations about buoyancy-driven motion are per-
formed in Canelas et al. (2015), where the model is tested
for solid objects larger than the smallest flow scales and with
various densities. Simulations are compared with analyti-
cal solutions, other numerical methods (Fekken 2004) and
experimental measurements.

The second validation studies a floating body under the
action of wave packet. The floating body is a rectangular
prism 10 cm long, 5 cm high and 29 cm wide, with density
relative to water being 0.68 (680 kg m~>). The mass of the
body is 0.986 kg in 3D, but the simulation is performed in
2D. The setup of the experiment is shown in Fig. 9. The
experiment is fully described in Haddzi¢ et al. (2005).

The time history of the flap wavemaker angle used to gen-
erate the wave packet is plotted in the first row of Fig. 10.
At the focusing point the wave packet is quite steep and
has a height equal to the body. Then, a nonlinear behav-
iour is observed in both the resulting wave evolution and the
body motion. During the experiments the wave elevation was
recorded by two fixed probes; one before the location of the
body (x = 1.16m) and other after the body (x = 2.66 m)
and the comparison with numerical results is also shown in
Fig. 10, confirming the correct generation and propagation
of the wave packet.

Figure 11 presents the experimental time series of the
floating body motions, heave and sway, compared with
numerical results obtained with DualSPHysics, and a good
agreement is also observed.
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Fig. 7 Different instants of the Time: 0.25s Time: 1.50's Time: 2.75's

(

sinking cylinder

Time: 525s Time: 6.50 s

Fig. 8 Comparison of 0 T T T T
numerical data of Fekken (2004) | TS Fekken, 2004
and DualSPHysics results for -r DualSPHysics
displacement of the sinking
cylinder (top panel) and vertical 2 2F
velocity (bottom panel) Nt 5
4
-5 1 1 1 1 1
0 05 1 15 2 25 3
Time (s)
0 N T T T T T
————— Fekken, 2004
DualSPHysics
05F
E af
i
-
151
2 1 1 1 1 1
0 0.5 1 15 2 2.5 3
Time (s)
4.2 Validation of the mooring implementation validations are taken from Johanning et al. (2006, 2007) and
provide different scenarios, different scales and multiple line
In this section three different validations are presented to ver- ~ problems.

ify the implementation carried out in DualSPHysics. These
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4.2.1 Validation of one-line problems

Experimental data from Johanning et al. (2007) are used to
validate the one line case. This publication provides data for a
single moored line in stationary conditions. The experimental
set-up is described in Johanning et al. (2007) but the main
parameters of the moored line are summarised in Table 1. The
experiment consists of a body with a line attached. The body
is moved to 16 different positions relative to the anchoring
point in the x direction, all of them at water surface level, and
acharge cell provides the value of the tension for the different
positions. Figure 12 represents the experimental set-up; the

Table 1 Moored line configuration in Johanning et al. (2007)

mooring is anchored at x = 0 m and moved from the initial
position at x =5.5mto x = 6.4 m.

InFig. 13 theresults of horizontal tension experimented by
the mooring from Johanning et al. (2007) are compared with
the tensions provided by DualSPHysics. The axial loading
data come from other numerical model presented in Johan-
ning et al. (2006).

Numerical results are in good agreement with experimen-
tal data. Small differences are observed and the point where
the three lines begin to separate match with the point where
the chain transitions from part resting in the bottom of the
tank (panel b in Fig. 5) and totally lifted (panel ¢ in Fig. 5).
The divergence can be caused for two different reasons, the
lack of the elasticity treatment in the Quasi-Static formula-
tion and the algorithm used to obtain the solution since the
equation for the tension (Eq. 39) has not a straightforward
solution and numerical methods must be employed.

Another single mooring line test validation was per-
formed. The configuration of the moored line is presented
in Johanning et al. (2006) and the line configuration is
summarised in the Table 2. This new configuration has a
completely different scale and this new scenario is closer to
a real situation. The experimental set-up is similar to the one

/ / Vat /

Validation against Experimental and Numerical data

Parameter Value
hy 2.651 m
o 1.036 Nm~!
l 6.98 m
Minimum extension 5.735m
Maximum extension 6.367 m
Fig. 12 Experimental set up
for one line mooring validation

77777 7
Fig. 13 Comparison of
experimental data, axial loading T
data and DualSPHysics results
for horizontal tension 14

Experiment (Johanning, 2006)
D Numerical Model (Johanning, 2006)
DualSPHysics

Tension (N)

55 56

5.7 5.8 5.9 6 6.1 6.2 6.3
Position (m)
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Table 2 Moored line configuration in Johanning et al. (2006)

Table 3 Configuration of chains for two moored lines experiment

Parameter Value Parameter Value
hy 50 m h 50 m
10 918.75N m™! THo 50 kN
l 150 m l 75 m
Minimum extension 102 m Minimum extension from resting point —15m
Maximum extension 140 m Maximum extension from resting point I15m

in Fig. 12; the only difference is the scale, and this time the
anchor point is still at x = 0 m but the body is at x = 103 m
and moved to x = 138 m.

Figure 14 shows the horizontal tension obtained with
DualSPHysics and the experimental data and it can be
observed how both data are in good agreement.

4.2.2 Validation of problems with two lines

The last case is used to validate the force exerted on a floating
body by two mooring lines. The configuration of the chains,
the set-up, and the reference data are taken from Johanning
et al. (2006) and summarised in Table 3. Figure 15 repre-
sents the initial configuration (left panel) and the evolution
of the experiment (right panel). One of the chain transitions
forms a semi-extended position to a fully lifted position and
the opposite chain increases its resting portion. The resting
position of the object is at x = 0 m and chains are anchored
at x = —55 m and x = 55 m. These two chains have the
same physical properties.

Figure 16 compares experimental data with numerical
results obtained by the Quasi-Static mooring approach that
has been implemented in DualSPHysics. Results for vali-
dation are the horizontal tension for Line A and B and the
resultant tension from both chains exerted on the body when
itis moved from equilibrium position (towards the anchoring
point of Line B). The x = 0 in Fig. 16is referred to the resting
position of the floating body. Once again, a good agreement
with the data from Johanning et al. (2006) is achieved with
the quasi-static approach implemented in DualSPHysics.

S Application

A case of application of the new implementation in Dual-
SPHysics is presented here; the case represents a base of
an off-shore wind turbine. This floating object is secured to
the bottom of the sea by 3 moored lines and exposed to the
interaction with waves that force the moorings to work in
extreme regimes. The main parameters of the three mooring

Fig. 14 Comparison of x10° Validation I
experimental data and 16 — \ —— T T T
DualSPHysics results for the || Experiment (Johanning, 2006)
horizontal tension of a moored DualSPHysics
line 4r T
12} .
10+ B
€
S st 1
17}
=]
(0}
[_1
6 .
4+ ,
2+ -
0 1 1 1 1 1 1
100 105 110 115 120 125 130 135 140
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Fig. 15 Case evolution for two
mooring line validation

Validation 1T

Fig. 16 Comparison of x10°
experimental data with 3.5
numerical results from
DualSPHysics; horizontal .
tension for Line A and B, and 3k,
the resultant tension exerted on
the body. DualSPHysics Merge
represents the summation of the
forces of both mooring lines
acting on the floating body

Tension (N)

T T T T T
Experiment (Johanning, 2007)Line A
----------- Experiment (Johanning, 2007)Line B
--------- Experiment (Johanning, 2007) Merge
DualSPHysics Line A -

............. DualSPHysics Line B
--------- DualSPHysics Merge

Table 4 Mooring parameters of the three lines simulating a wind tur-
bine base

Parameter Value

hy 20 m

w 442 kg m~!
Break load 1400 kN

l 45 m
Submerged density 7850 kgm ™3

lines are described in Table 4. The dimensions of the object
(with a mass of 16,000 kg) and the numerical tank are shown
in Fig. 17. Note that the anchoring points of the mooring are
at outside the numerical domain to reduce the domain size.
The movement of the wavemaker generates regular waves
with height H = 0.7 m and period T = 20 s.

In order to analyse the behaviour of the mooring lines,
some quantitative results are numerically computed. The
numerical time histories of the motions of the floating
structure are shown in Fig. 18. The surge and heave com-
ponents present simple harmonic oscillations, while small
sway motion in the lateral direction can be seen. This is
thanks to the role of the catenary moorings that limit the

Position (m)

displacement of the floating base. The device is always
aligned with the direction of the incident waves (roll and
yaw angles presents very low values). Therefore, the moor-
ing lines work to keep the vertical position of the wind turbine
base.

Different instants of the simulation can be observed in
Fig. 19. Colour of the surface indicates the velocity field.
It can be seen how the two front moored lines are totally
extended at 71.10 and 81.10 s. This state matches panel d
of Fig. 5. In this way, the summation of both front mooring
forces cancel the wave drag.

6 Conclusions

New functionalities have been implemented in the SPH
code DualSPHysics to simulate floating moored structures.
The new implementation is able to reproduce the tension
of the chain and the movement of floating bodies that are
moored with different configurations. The approach cov-
ers all the possible states of a moored line, taking into
account parameters such as relative position of anchoring
and link points, moored line weight and shape of the catenary
function.
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Fig. 18 Time series of the numerical motions (surge, sway and heave) and angles (roll, pitch and yaw) of the wind turbine base

The buoyancy of the floating bodies was first validated
against numerical data from VOF showing a really good
agreement. The interaction of non-linear waves with a float-
ing body was also validated with experimental data. Then
the mooring implementation was validated with experi-
ments also including configurations with multiple lines.

@ Springer

Numerical results
agreement.

A case of application was presented to prove that the pro-
posed implementation is capable of dealing with interactions
between extreme waves and moored floating structures and

it can also reproduce a configuration with multiple mooring

and experimental were in good
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Fig. 19 Different instants of an
off-shore wind turbine base
moored with three spread lines
under the action of waves

Time: 7.80 s

Time: 21.60 s

Time: 81.90 s

lines. The working case consists of a wind-turbine base with
three moorings under the effect of extreme waves where the
catenary moorings help to reduce the heave, surge and roll
motion of the floating device. Hence, this new functionality
extends the application range of the DualSPHysics code to a
whole new set of scenarios.

References

Amicarelli A, Albano R, Mirauda D, Agate G, Sole A, Guandalini R
(2013) A smoothed particle hydrodynamics model for 3D solid
body transport in free surface flows. In: Computers & fluids, vol
116, pp. 205-228, 15 August 2015

Altomare A, Crespo AJC, Rogers BD, Dominguez JM, Gironella X,
Gémez-Gesteira M (2014) Numerical modelling of armour block
sea breakwater with smoothed particle hydrodynamics. Comput
Struct 130:34-45. doi:10.1016/j.compstruc.2013.10.011

Altomare C, Crespo AJC, Dominguez JM, Gomez-Gesteira M, Suzuki
T, Verwaest T (2015) Applicability of smoothed particle hydro-
dynamics for estimation of sea wave impact on coastal structures.
Coast Eng 96:1-12. doi:10.1016/j.coastaleng.2014.11.001

Time: 18.00 s

Time: 71.10 s

Time: 88.80 s

Barreiro A, Crespo AJC, Dominguez JM, Gémez-Gesteira M (2013)
Smoothed particle hydrodynamics for coastal engineering prob-
lems. Comput Struct 120(16):96-106. doi:10.1016/j.compstruc.
2013.02.010

Batchelor GK (1974) Introduction to fluid dynamics. Cambridge Uni-
versity Press, Cambridge

Bouscasse B, Colagrossi A, Marrone S, Antuono M (2013) Nonlinear
water wave interaction with floating bodies in SPH. J Fluids Struct
42(2013):112-129

Canelas RB, Dominguez JM, Crespo AJC, Gémez-Gesteira M, Ferreira
RML (2015) A smooth particle hydrodynamics discretization for
the modelling of free surface flows and rigid body dynamics. Int J
Numer Meth F1 78:581-593. doi:10.1002/1d.4031

Colagrossi A, Landrini M (2003) Numerical simulation of interfa-
cial flows by smoothed particle hydrodynamics. J Comput Phys
191:448-475

Crespo AJC, Gomez-Gesteira M, Dalrymple RA (2007) Boundary
conditions generated by dynamic particles in SPH methods. Cmc-
Comput Mater Con 134:313-320

Crespo AJC, Dominguez JM, Barreiro A, Gémez-Gesteira M, Rogers
BD (2011) GPUs, a new tool of acceleration in CFD: efficiency
and reliability on smoothed particle hydrodynamics methods. Plos
One 6(6):20685. doi:10.1371/journal.pone.0020685

@ Springer


http://dx.doi.org/10.1016/j.compstruc.2013.10.011
http://dx.doi.org/10.1016/j.coastaleng.2014.11.001
http://dx.doi.org/10.1016/j.compstruc.2013.02.010
http://dx.doi.org/10.1016/j.compstruc.2013.02.010
http://dx.doi.org/10.1002/fld.4031
http://dx.doi.org/10.1371/journal.pone.0020685

396

J. Ocean Eng. Mar. Energy (2016) 2:381-396

Crespo AJC, Dominguez JM, Rogers BD, Gémez-Gesteira M, Long-
shaw S, Canelas R, Vacondio R, Barreiro A, Garcia-Feal O (2015)
DualSPHysics: open-source parallel CFD solver on smoothed par-
ticle hydrodynamics (SPH). Comput Phys Commun 187:204-216.
doi:10.1016/j.cpc.2014.10.004

Dalrymple RA, Knio O (2000) SPH modelling of water waves. Coast
Dyn 01:779-787

Dewey R (1999) Mooring desing & dynamics-a matlab package for
designing and analyzing oceanographic Moorings. Marine Models
1(1999):103-157

Faltinsen OM (1993) Sea loads on ships and offshore structures. Cam-
bridge University Press, Cambridge (1993)

Fekken G (2004) Numerical simulation of free surface flow with moving
rigid bodies. PhD Thesis. University of Groningen

Ferri F, Palm J (2015) Implementation of a dynamic mooring solver
(MOODY) into a wave to wire model of a simple WEC: deliverable
D4.6. Department of Civil Engineering, Aalborg University. (DCE
Technical Reports; No. 185), Aalborg

Geeraerts J, Kortenhaus A, Gonalez-Escriva JA, De Rouck J, Troch P
(2009) Effects of new variables on the overtopping discharge at
steep rubble mound breakwaters—the Zeebrugge case. Coast Eng
56:141-153. doi:10.1016/j.coastaleng.2008.03.013

Goémez-Gesteira M, Dalrymple RA (2004) Using a 3D SPH method for
wave impact on a tall structure. ] Waterw Port C-ASCE 130(2):63—
69

Gomez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJC (2010)
State-of-the-art of classical SPH for free-surface flows. J Hydraul
Res 48(Extra Issue):6-27

Goémez-Gesteira M, Rogers BD, Crespo AJC, Dalrymple RA,
Narayanaswamy M, Dominguez JM (2012) SPHysics
development of a free-surface fluid solver—part 1: theory
and formulations. Comput Geosci 48:289-299. doi:10.1016/j.
cageo.2012.02.029

Gotoh H, Shibihara T, Hayashii M (2001) Subparticle-scale model for
the MPS method-lagrangian flow model for hydraulic engineering.
Comput Fluid Dyn J 9:339-347

Gotoh H, Songdong S, Tetsu M (2004). SPH-LES model for numerical
investigation of wave interaction with partially immersed breakwa-
ter. Coast. Eng. J. 46:39 (2004). doi: 10.1142/S0578563404000872

Haadzi¢ I, Hennig J, Peric M, Xing-Kaeding Y (2005) Computation
of flow-induced motion of floating bodies. Appl Math Modell
29:1196-1210

Hall M, Goupee A (2015) Validation of a lumped-mass mooring line
model with DeepCwind semisubmersible model test data. Ocean
Eng 104:590-603. doi:10.1016/j.oceaneng.2015.05.035

Higuera P, Lara JL, Losada 1J (2013) Simulating coastal engineering
processes with OpenFOAM. Coast Eng 71:119-134. doi:10.1016/
j-coastaleng.2012.06.002

@ Springer

Johanning L, Smith GH, Wolfram J (2006) Mooring design approach for
wave energy converters. Proceedings of the Institution of Mechan-
ical Engineers, part M. J Eng Marit Environ 220(4):159-174

Johanning L, Smith GH, Wolfram J (2007) Measurements of static and
dynamic mooring line damping and their importance for floating
WEC devices. Ocean Eng 34:1918-1934

Journee JMJ, Adegest LIM (2003) Theoretical manual of strip the-
ory program “SEAWAY” for Windows Report 1370 Sept. 2003,
Delft University of Technology. http://www.shipmotions.nl/DUT/
PapersReport/1370-StripTheory-03.pdf

Khayyer A, Gotoh H (2009) Modified moving particle semi-implicit
methods for the prediction of 2D wave impact pressure. Coast Eng
56(4):419-440

Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner
B (2005) A volume-of-fluid based simulation method for wave
impact problems. J Comput Phys 206(1):363-393

Lo E, Shao S (2002) Simulation of near-shore solitary wave mechanics
by an incompressible SPH method. Appl Ocean Res 24:275-286

Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev
Astron Appl 30:543-574

Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput
Phys 110:399-406

Monaghan JJ, Lattanzio JC (1985) A refined particle method for astro-
physical problems. Astron Astrophys 149:135

Monaghan JJ, Kos A, Issa A (2003) Fluid motion generated by impact.
J Waterw Port C-ASCE 129:250-259

Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys
68:1703-1759

Morris J, Fox P, Zhu Y (1997) Modeling low Reynolds number incom-
pressible flows using SPH. J Comput Phys 136:214-226

Onate E, Celigueta MA, Idelsohn SR, Salzar F, Suarez B (2011) Possi-
bilities of the particle finite element method for fluid—soil-structure
interaction problems. Comput Mech 48(3):307-318

Randolph M, Quiggin P (2009) Non-linear hysteretic seabed model for
catenary pipeline contact. In: OMAEO Committee (ed) Proceed-
ings of the ASME 2009 28th international conference on ocean,
offshore and arctic engineering (OMAE2009), vol CD. ASME
Press, Hawaii, pp OMAE2009-79259

Sun P, Ming F, Zhang A (2015) Numerical simulation of interactions
between free surface and rigid body using a robust SPH method.
Ocean Eng 98:32-49. doi:10.1016/j.0oceaneng.2015.01.019

Vanneste D, Troch P (2012) Validation of a numerical model for wave
interaction with a rubble-mound breakwater. In: 33rd international
conference on coastal engineering, ASCE

Violeau D (2012) Fluid mechanics and the SPH method: theory and
applications (1**, ed edn. Oxford University Press, Oxford

Wendland H (1995) Piecewise polynomial, positive definite and com-
pactly supported radial functions of minimal degree. Adv Comput
Math 4:389-396


http://dx.doi.org/10.1016/j.cpc.2014.10.004
http://dx.doi.org/10.1016/j.coastaleng.2008.03.013
http://dx.doi.org/10.1016/j.cageo.2012.02.029
http://dx.doi.org/10.1016/j.cageo.2012.02.029
http://dx.doi.org/10.1142/S0578563404000872
http://dx.doi.org/10.1016/j.oceaneng.2015.05.035
http://dx.doi.org/10.1016/j.coastaleng.2012.06.002
http://dx.doi.org/10.1016/j.coastaleng.2012.06.002
http://www.shipmotions.nl/DUT/PapersReport/1370-StripTheory-03.pdf
http://www.shipmotions.nl/DUT/PapersReport/1370-StripTheory-03.pdf
http://dx.doi.org/10.1016/j.oceaneng.2015.01.019

	Quasi-static mooring solver implemented in SPH
	Abstract
	1 Introduction
	2 SPH method
	2.1 Interpolant
	2.2 Kernel function
	2.3 Momentum equation
	2.4 Continuity equation
	2.5 Equation of state and compressibility
	2.6 Boundary conditions
	2.7 Fluid driven objects

	3 Mooring implementation
	3.1 Static approach
	3.2 Mooring classification

	4 Model validation
	4.1 Validation of floating bodies
	4.2 Validation of the mooring implementation
	4.2.1 Validation of one-line problems
	4.2.2 Validation of problems with two lines


	5 Application
	6 Conclusions
	References




