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Abstract The coupled-mode model developed by Belibas-
sakis and Athanassoulis (J Fluid Mech 531:221–249, 2005)
is extended and applied to the hydroelastic analysis of three-
dimensional large floating bodies of shallow draft lying over
variable bathymetry regions. The method is also applica-
ble to the problem of wave interaction with ice sheets of
small thickness. A general bathymetry is assumed, charac-
terized by a continuous depth function, joining two regions of
constant, but possibly different, depth. We consider the scat-
tering problem of harmonic incident surface waves, under
the combined effects of variable bathymetry and a float-
ing elastic plate of orthogonal planform shape. Under the
assumption of small-amplitude waves and plate deflections,
the hydroelastic problem is formulated within the context
of linearized water-wave and thin elastic-plate theory. To
consistently treat the wave field beneath the elastic float-
ing plate, down to the sloping bottom boundary, a complete,
local, hydroelastic-mode series expansion of the wave field
is used, enhanced by an appropriate sloping-bottom mode.
The latter enables the consistent satisfaction of the Neu-
mann bottom-boundary condition on a general topography.
Numerical results concerning floating structures over flat
and inhomogeneous seabed are presented, and the effects
of wave direction, bottom slope and bottom corrugations on
the hydroelastic responses are discussed.
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1 Introduction

Floating deformable bodies of large horizontal dimensions
are subjected to the action ofwaterwaves, and this constitutes
an interesting hydroelastic problem, especially in variable
bathymetry regions and in areas of intermediate and shallow
water depth. The case of very largefloating structures (VLFS)
and megafloats are examples of structures for which the
above problems find important applications. Furthermore,
the hydroelastic analysis of floating bodies is very relevant to
problems concerning the interaction of water waves with ice
sheets; see, e.g., the reviews presented by Kashiwagi (2000),
Watanabe et al. (2004),Wang et al. (2008) andWang and Tay
(2011), and by Squire et al. (1995) and Squire (2008) in the
case of wave–ice interaction. Also, a detailed description of
numerical techniques and computer codes for VLFS analysis
in constant depth is presented in Riggs et al. (2008).

Under the assumption of small wave amplitude and plate
deflection, most of the studies focus on the case of harmonic
wave excitation, which enables the calculation of the floating
body response in the frequency domain. In this case, a partic-
ular line of work is based on the modal expansion technique,
where the elastic deformation is deduced by the superposi-
tion of distinct modes of motion. The hydrodynamic forces
are treated primarily through the employment of the Green
function method or the eigenfunction expansion matching
method; see, e.g. Wang and Meylan (2002) and Belibassakis
and Athanassoulis (2005), where also a review is included
on various methods and techniques. Another line of works
concentrates on transient analysis of elastic floating bodies,
allowing non-harmonic wave forcing and time-dependent
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loads on the body. These attempts incorporate direct time
integration schemes, Fourier transforms, modal expansion
techniques and other methods; see for e.g. Watanabe et al.
(1998), Meylan and Sturova (2009) and Sturova (2009).
Details concerning the development and application of the
coupledmodemethod to treat the problem in the time domain
and in the case of variable bathymetry regions are pro-
vided in Belibassakis and Athanassoulis (2006). For the
time-dependent response of a heterogeneous elastic plate
floating on shallow water of variable depth, Sturova (2008)
has developed amethod based onmodal superposition.More
recently, Papathanasiou et al. (2015) developed a higher-
order finite element method for the time domain solution
of the hydroelastic problem composed of a freely floating
or semi-fixed body, while the nonlinear transient response is
examined in Sturova et al. (2009) by a spectral-finite differ-
ence method.

Numerical methods for predicting the hydroelastic
responses of VLFS in variable bathymetry regions have been
proposed, based on BEM in conjunction with fast multipole
techniques (Utsunomiya et al. 2001), and on eigenfunction
expansions in conjunction with a step-like bottom approx-
imation (Murai et al. 2003). In addition, Porter and Porter
(2004) have derived an approximate, vertically-integrated,
two-equation model for the problem of water-wave interac-
tionwith an ice sheet of variable thickness, lyingover variable
bathymetry, which is valid under mild-slope assumptions
bothwith respect to thewetted surface of the ice sheet and the
bottom boundary. In the case of the hydroelastic behaviour
of large floating deformable bodies in general bathymetry, a
new coupled-mode systemhas been derived and examined by
Belibassakis and Athanassoulis (2005) based on a local ver-
tical expansion of the wave potential in terms of hydroelastic
eigenmodes, and extending previous similar approach for the
propagation of water waves in variable bathymetry regions
(Athanassoulis and Belibassakis 1999). Similar approaches
with application to wave scattering by ice sheets of vary-
ing thickness have been presented by Bennets et al. (2007)
based on multi-mode expansion. An alternative formulation
is based on the mode superposition method, where the solu-
tion is expressed in terms of hydrodynamic deflectionmodes,
defined by plate eigenmodes or tensor products of beam
eigenmodes; see e.g. Newman (1994), Kyoung et al. (2005).

In the present work, the coupled-mode model developed
by Belibassakis and Athanassoulis (2005) is extended and
applied to the hydroelastic analysis of 3D large floating bod-
ies of finite extent and shallow draft or ice sheets of small
thickness, lying over variable bathymetry regions. A gen-
eral bathymetry is assumed, characterized by a continuous
depth function, joining two regions of constant, but possibly
different, depth. Following previous works for the propa-
gation and diffraction of water waves over 3D bathymetric
terrains (Belibassakis et al. 2001; Gerostathis et al. 2008),

we consider the scattering problem of harmonic, obliquely
incident surface waves, under the combined effects of vari-
able bathymetry and a floating elastic plate of orthogonal
planform shape. Under the assumption of small-amplitude
waves and small plate deflections, the hydroelastic problem
is formulatedwithin the context of linearizedwater-wave and
thin elastic-plate theory. To consistently treat the wave field
beneath the elastic floating plate, down to the sloping bot-
tom boundary, a complete, local, hydroelastic-mode series
expansion of the wave field is used, enhanced by an appro-
priate sloping-bottommode. The latter enables the consistent
satisfaction of the Neumann bottom-boundary condition on a
general topography. First numerical results concerning float-
ing structures lying over flat and inhomogeneous seabed are
comparatively presented, and the effects of wave direction,
bottom slope and bottom corrugations on the hydroelastic
responses are discussed.

2 Formulation of the problem

The studied environment consists of a water layer bounded
above partly by the free surface and partly by a large floating
elastic body that could be considered as a large shallow-draft
platform or an ice sheet of small thickness, and below by a
rigid bottom; see Fig. 1. It is also assumed that the bottom sur-
face exhibits an arbitrary variation in a bounded subdomain,
including into its interior the bottom inhomogeneity and the
floating plate, which will act as a localized scatterer. Outside
this area, the bathymetry is characterized by parallel, straight
bottom contours lying between two regions of constant but
different depth, h = h1 (region of incidence, corresponding
to x < a1) and h = h3 (region of transmission, correspond-
ing to x > a2). The horizontal plane is decomposed into the
plate region (E) and the water region (W) outside the floating
structure.

The wave field is excited by a monochromatic plane wave
of angular frequency ω, propagating with an oblique direc-
tion θ1 with respect to the bottom contours. A Cartesian
coordinate system is introduced, with its origin at some point
on the mean elastic-plate surface (in the variable bathymetry
region) and the z-axis pointing upwards. The function h =
h(x, y) represents the local depth, measured from the mean
water level. In this work, we consider the scattering prob-
lem of harmonic, obliquely incident, surface (gravity) plane
waves under the combined effects of variable bathymetry
and the floating elastic plate of small thickness, modelling
a shallow draft structure of orthogonal shape with length L
and breadth B, in the variable bathymetry region, as shown
in Fig. 1. However, our analysis can be further extended to
a floating elastic structure of more general shape. Under the
usual assumptions of linearized water-wave theory and thin-
(Kirchhoff) plate theory, the problem can be treated in the
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Fig. 1 Floating elastic body of length L and breadth B in the variable bathymetry region, modelled as thin plate

frequency domain. The wave potential is expressed in the
following form:

�(x, y, z;t) = Re {ϕ(x, y, z) exp(−iωt)} , (1a)

where i = √−1. The complex amplitude of the free-surface
elevation (η) is obtained in terms of the wave potential as
follows:

η(x, y) = i

ω

∂ϕ(x, y, z = 0)

∂z
= iω

g
ϕ(x, y, z = 0), (2a)

where g is the acceleration due to gravity. In the area of the
elastic plate, the deflection (w) is connected with the wave
potential by a similar relation derived from the kinematical
condition at the liquid–solid interface,

w(x, y) = i

ω

∂ϕ(x, y, z = 0)

∂ z
. (2b)

The differential formulation of the studied problem consists
of the Laplace equation in the water layer

(∇2+∂2z )ϕ=0, in −h(x, y)< z < 0, (x, y) ∈ W ∪ E,

(3a)

where∇ = (∂x , ∂y) denotes the horizontal gradient operator.
In the part of the horizontal plane associatedwith the free sur-
face, the wave potential satisfies the linearized free-surface
boundary condition

∂zϕ − μϕ = 0, on z = 0, (x, y) ∈ W, (3b)

where μ = ω2/g is the frequency parameter. Moreover, for
points on the plate, the wave potential satisfies the corre-
sponding dynamical equation forced by the water pressure

∇2(d∇2w)+(1−ε)w= iμ

ω
ϕ, on z=0, (x, y)∈E,

(3c)

where w is the plate deflection. The above equation is
obtained by combining the thin elastic-plate equation with
the linearized Bernoulli’s equation for the dynamic water
pressure on the elastic-plate surface and involves the (con-
stant) parameters d = D/ρg and ε = mω2/ρg, where
D = Et3/12(1 − ν2) denotes the flexural rigidity of the
elastic plate (the equivalent flexural rigidity of the platform),
in which t denotes the possible variable thickness and ν the
Poisson’s ratio. Moreover, ρ denotes the fluid density and m
is the mass per unit area of the plate.
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In addition, at the plate edges, the following two condi-
tions apply:

∂3w

∂n3
+ (2 − ν)

∂3w

∂n ∂s2
= 0, at (x, y) ∈ ∂W, (3d)

∂2w

∂ n2
+ ν

∂2w

∂s2
= 0, at (x, y) ∈ ∂W, (3e)

where n and s denote the normal and tangential vectors,
respectively. The above edge conditions state that the ends
of the plate are free of shear force and moment, respectively.

Finally, at the sea bottom, thewave potential should satisfy
the no-entrance boundary condition

∂zϕ + ∇h∇ϕ = 0, on z = −h(x, y), (x, y) ∈ W ∪ E .

(3f)

In the present work the above problem is solved by using
appropriate vertical local-mode expansions of the wave
potential, different in the water region and the fluid region
under the elastic plate. The latter representations should
match on the vertical interface separating these two subre-
gions, as a consequence of momentum and mass conserva-
tion, respectively. This result is obtained under the smallness
assumption concerning both thewave amplitude and the plate
thickness leading to the linearization of both the free-surface
boundary conditions (Eq. 3b) and the plate-boundary condi-
tions (Eq. 3c) on the mean level (z = 0).

3 Modal expansion of the wave potential

The studied problem, Eq. (3a, 3b, 3c, 3d, 3e, 3f), combines
the character of water-wave propagation and scattering in
inhomogeneous bathymetric terrains, under the additional
effects due to the presence of localized hydroelastic scatterer
(E). This type of problem has been extensively studied in a
series of works by the authors, starting with the linearized
water-wave problem in general bathymetry (Athanassoulis
and Belibassakis 1999; Belibassakis et al. 2001), where the
following local mode series expansion is used to consistently
represent the wave field in the water region:

ϕ(x, z) = ϕ−1(x)Z−1(z; x) +
∞∑

n=0

ϕn(x) Zn(z; x),

−h(x) < z < 0, x = (x, y). (4)

The major part of the set of vertical modes {Zn(z; x), n = 0,
1, 2, . . .} is dependent on x through h(x) and is obtained as
the solution of a vertical eigenvalue problem, formulated at
each horizontal position. Moreover, ϕ−1(x) Z−1(z; x) is an

appropriate term, called the sloping-bottom mode, account-
ing for the satisfaction of the bottom boundary condition
on the non-horizontal parts of the bottom. The idea of the
sloping bottom mode, in conjunction with the above type
of modal expansion, has been first introduced in the case
of water waves propagating in variable bathymetry. Then,
it has been used for many problems exhibiting similar fea-
tures, such as nonlinear water waves (Athanassoulis and
Belibassakis 2007; Belibassakis and Athanassoulis 2011),
hydroacoustics (Athanassoulis et al. 2008; Belibassakis et al.
2014) and hydroelastic applications in variable bathymetry
regions, formulated in the context of classical thin plate
theory (Belibassakis and Athanassoulis 2005), including
high-order extensions in the direction of shear deformable
plate theory (Athanassoulis andBelibassakis 2009). In accor-
dance with the latter works, the infinite set Zn(z; x), n =
0, 1, 2, 3, . . ., of functions describing the vertical structure
of each mode, at each horizontal position x , are generated
by

∂2z Zn(z) − κ2
n Zn(z) = 0, in the vertical interval

−h(x) < z < 0, (5a)

∂z Zn(z = −h) = 0, at the bottom z = −h(x), (5b)

α(κ) ∂z Zn(z = 0) − μ Zn(z = 0) = 0,

at the water-elastic body interface z = 0, (5c)

where α(κ) is a function of κ for hydroelastic waves and
simplifies to α = 1 in the case of water waves. The solution
of the above local vertical eigenvalue problem is given by

Zn(z) = cosh−1(κn h)cosh [κn(z + h)] ,

n = 0, 1, 2, 3, . . . , (6)

where the eigenvalues {κn, n = 0, 1, 2 . . .} are obtained as
the roots of the (local at any horizontal position x) dispersion
relation

μh = α(κ)κh tanh(κh), (7a)

with

α = 1, for x ∈ W, and α(κ) = d κ4h4 + 1 − ε,

for x ∈ E . (7b)

The distribution of the roots (κW
n , for x ∈ W and κE

n ,
for x ∈ E) of the above dispersion relation on the complex
κ-plane, which are used in the vertical structure, Eq. (6), of
the expansion, Eq. (4), are schematically plotted in Fig. 2.
For water waves, the first root is real and associated with
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Fig. 2 Distribution of the roots of the hydroelastic dispersion relation
(Eq. 7a, 7b) on the complex κ-plane

the propagating mode, and the rest are imaginary associ-
ated with the evanescent modes. For hydroelastic waves,
except for the previous categories, there exist also roots
on the complex plane associated with modes characterized
by mixed propagating–evanescent character. Except for the
propagating and evanescentmodes, the localmode expansion
is augmented by the sloping bottommode ϕ−1(x) Z−1(z; x),
permitting the consistent satisfaction of theNeumann bound-
ary condition at the non-horizontal parts of the bottomsurface
and making the local mode series rapidly convergent. A spe-
cific convenient form of the vertical structure Z−1(z; h(x))
of this mode is given by low degree polynomials; however,
other forms are also possible. More details concerning the
role and significance of this term can be found in Athanas-
soulis and Belibassakis (1999) and Belibassakis et al. (2001).

4 Coupled-mode system of equations

The coupled-mode system (CMS) of horizontal differential
equations is obtained with the aid of a variational principle
developed by Belibassakis and Athanassoulis (2005), based
on an energy-type functional of the form

F (ϕ,w) = μ

2

∫

x

z=0∫

z=−h(x)

(∇ϕ)2 dzdx + iωμ

×
∫

x

ϕ(x, z = 0) w dx − ω2

2

×
∫

x

((
d∇2w

)2 + (1 − ε)w2
)
dx + F a .

(8a)

In the above equation,F a are appropriate additional terms
associated with the satisfaction of end-plate conditions, Eqs.

(3d, 3e) at the borderline of the plate, and the boundary con-
ditions concerning wave incidence in the far upwave region
and outgoing wave at the radiation boundary. The variational
principle is obtained by requiring the stationarity of the above
functional:

δF =
∫

x

z=0∫

z=−h(x)

∇2ϕδϕdzdx

+
∫

x

(
∂ϕ

∂z
+ ∇h∇ϕ

)

z=−h
δϕ dx

−
∫

x

(
∂ϕ

∂z
+ iωw

)

z=0
δϕ dx

+g
∫

x

((
∇2d∇2w

)
+ (1 − ε)w − iμ

ω
ϕ

)
δwdx

+δF a = 0. (8b)

The CMS is finally derived by using the representation of the
local mode series expansion Eq. (4) of the wave potential, in
the water column below the free surface and below the elastic
plate, modelling the large elastic floating body. This permits
us to reformulate the problem, Eq. (3a, 3b, 3c, 3d, 3e, 3f)
with respect to the unknown modal amplitudes ϕn(x), n =
−1, 0, 1, 2, . . . , for x ∈ W ∪ E . The present CMS takes the
following form (Belibassakis and Athanassoulis 2005)

∞∑

n=−1

amn(x)∇2 ϕn (x) + bmn(x)∇ ϕn + cmn(x)ϕn(x)

= iω w(x) · χ(E), m = −1, 0, 1, . . . , (9a)

where χ(E) denotes the characteristic function of the plate
subdomain E(i.e. χ(E) = 1, for x ∈ E, and 0 otherwise).
The system, Eq. (9a), is supplemented by the following equa-
tion completing the coupling between the modes ϕn and the
elastic-plate deflection w:

∇2(d∇2w) + (1 − ε)w = iμ

ω

∞∑

n=−1

ϕn(x). (9b)

In the above equations, the horizontally dependent coeffi-
cients amn(x) , bmn(x) and cmn(x) are given by the following
expressions

amn(x) = 〈Zn, Zm〉, (10a)

bmn(x) = 2〈∇Zn, Zm〉 + ∇ h Zn(z = −h)Zm(z = −h),

(10b)
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cmn(x) = 〈∇2Zn + ∂2z Zn, Zm〉
+

(
∂Zn(z = −h)

∂ z
+ ∇h ∇Zn(z = −h)

)

Zm(z = −h), (10c)

where 〈 f, g〉 = ∫ z=0
z=−h(x) f (z)g(z)dz.

Furthermore, it is possible to eliminate the deflection w

from the above system Eq. (9a, 9b) and derive an equivalent
form. One way to succeed it is by using the kinematical con-
dition on the plate surface Eq. (2b), in conjunction with the
hydroelastic model expansion Eq. (4) to express the vertical
derivative of the potential at the plate surface as follows:

w(x, y) = i

ω

∂ϕ(x, y, z = 0)

∂ z
= i

ω

∑

n

ϕn
∂Zn(x, y, z = 0)

∂ z

= i

ω

∑

n

ϕnκn tanh(κnh).

In this case, the present CMS takes the following equivalent
form:

∞∑

n=−1

{
amn(x)∇4ϕn + bmn(x)∇3 ϕn

+
[
c(1)
mn(x) + c(2)

mn(x)
]
∇2 ϕn +

[
d(1)
mn(x) + d(2)

mn(x)
]
∇ ϕn

+
[
e(1)
mn(x) + e(2)

mn(x)
]

ϕn(x)
}

= 0, m = −1, 0, 1, . . . .(11)

In the above equations, the horizontally dependent coef-
ficients amn(x), bmn(x), c

(1)
mn(x), c

(2)
mn(x), d

(1)
mn(x), d

(2)
mn(x),

e(1)
mn(x), e

(2)
mn(x) are given by the following expressions:

amn(x) =
{−d ∂z Zn(z = 0)∂z Zm(z = 0), x ∈ E
0, x ∈ W

, (12a)

bmn(x) =
{[−4d ∇(∂z Zn(z = 0)) − 2∂z Zn(z = 0)∇d

]
∂z Zm(z = 0), x ∈ E

0, x ∈ W
, (12b)

c(1)
mn(x) =

⎧
⎨

⎩

[−6d∇2(∂z Zn(z = 0)) − 6∇d · ∇(∂z Zn(z = 0))
−∇2d ∂z Zn(z = 0)

]
∂z Zm(z = 0), x ∈ E

0, x ∈ W
, (12c)

c(2)
mn(x) = μ 〈Zn, Zm〉 , x ∈ W ∪ E, (12d)

d(1)
mn(x) =

⎧
⎨

⎩

[−4d∇3(∂z Zn(z = 0)) − 2∇2d ∇(∂z Zn(z = 0))+
−6∇d∇2(∂z Zn(z = 0))

]
∂z Zm(z = 0), x ∈ E

0, x ∈ W
, (12e)

d(2)
mn(x) = μ [2 〈∇Zn, Zm〉 + ∇h Zn(z = −h(x))Zm(z = −h(x))] , x ∈ W ∪ E, (12f)

e(1)
mn(x) =

⎧
⎨

⎩

[−d ∇4(∂z Zn(z = 0)) − 2∇d ∇3(∂z Zn(z = 0)) − ∇2d ∇2(∂z Zn(z = 0))+
−(1 − ε)∂z Zn(z = 0) + μZn(z = 0)

]
∂z Zm(z = 0), x ∈ E

0, x ∈ W
, (12g)

e(2)
mn(x) = μ [〈∇2Zn + ∂2z Zn, Zm〉 + ∇h ∇Zn(z = −h(x))Zm(z = −h) ], x ∈ W ∪ E . (12h)

123



J. Ocean Eng. Mar. Energy (2016) 2:159–175 165

Fig. 3 Comparison between
the present method (solid lines)
and experimental data from Wu
et al. (1995), concerning the
plate deflection modulus. Waves
of period T = 2.875 s (squares),
T = 1.429 s (triangles) and
T = 0.7 s (circles), normally
incident on a floating elastic
plate of aspect ratio 20, lying
over a flat bottom in a water
layer of depth h = 1.1 m

Fig. 4 aGeometrical configuration. b Effect of bathymetric variations
on the wave field and the elastic-plate deflection, in the case of waves
of period T = 15 s normally incident on a large floating structure over

the smooth shoal, as calculated by the present method. The PML region
is located outside the region indicated using dashed lines

After solving the present CMS, the wave characteristics
can be obtained all over the domain by means of the cal-
culated wave modes ϕn(x), n = −1, 0, 1, 2, 3, . . ., using
the expansion Eq. (4). Finally, information concerning dis-

tributions of moments and stresses on the plate is obtained
from the solution, through the vertical deflection w; see also
Belibassakis and Athanassoulis (2005).
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Fig. 5 a Distribution of
deflection for an elastic plate
over a shoal (maximum bottom
slope 10%), normalized with
respect to the incident wave
height. The wave incidence is
normal. b Plate deflection along
the longitudinal and transverse
cuts shown in a, normalized
with respect to the incident wave
height

5 Setup of the discrete system

The present CMS is solved, using appropriate boundary
conditions specifying the wave incidence (see Fig. 1) and
the boundary conditions Eq. (3d) and (3e) associated with

elastic-plate deflection at the edges, enforcing zero shear
force and moment. The discrete version of the present
hydroelastic CMS is obtained by truncating the local-mode
series Eq. (4) to a finite number of terms (modes), and using
central, second-order finite differences to approximate the
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horizontal derivatives. Discrete boundary conditions for both
the incident wave and the deflection at the plate edges are
obtained by using second-order forward and backward dif-
ferences to approximate the horizontal derivatives. Using
the present local mode representations, the continuity of the
potential and its normal derivative on the vertical interface
separating the water subregion from the fluid region under
the plate is satisfied by

∞∑

n=−1

(ϕn (x − ε∗n) Zn (x − ε∗n) − ϕn (x + ε∗n)

× Zn (x + ε∗n)) = 0, (13a)

∞∑

n=−1

n∇(ϕn(x − ε∗n)Zn(x − ε∗n)

−ϕn(x + ε∗n)Zn(x + ε∗n)) = 0, (13b)

where n denotes the normal vector (on the horizontal plane)
along the borderline of the plate and ε∗ is small and positive.
In this respect, double nodes are introduced for the wave
potential along the borderline of the plate, and the continuity
of the potential is satisfied by projecting the above equation
on the vertical basis {Zm(x − ε∗n), m = −1, 0, 1 . . .}, x ∈
∂E . Also, forward and backward differences have been used
to express the normal derivatives appearing inEq. (13b) of the
potential in the water subregion and in the plate subregion,
respectively.

Furthermore, the present model is applied to the solution
of the studied problem, in conjunction with the perfectly
matched layer (see Collino andMonk 1998). The latter PML
permits truncation of the computational domain on the hori-
zontal plane, and its coefficients are optimized as discussed in
Belibassakis et al. (2001) for absorbing the propagating and
scattered waves arriving at the lateral and downwave bound-
aries of the domain with minimum reflection. In particular,
in the area of the absorbing layer of uniform thickness l, sur-
rounding the horizontal computational domain in the water
subregion, and assuming that the coefficient matrix amn is
non-singular, the present CMS takes the form

∞∑

n=−1

δmn ∇2ϕn (x, y) + (amn)
−1

× [bmn(x, y) · ∇ϕn(x, y) + cmn ϕn(x, y)] = 0,

m = −1, 0, 1, . . . . (14)

Since the wavelike behaviour of the system for ϕn is essen-
tially determined by the propagating (n = 0) mode, a
straightforward approach is to substitute, at the next step,
the horizontal Laplacian operator appearing in Eq. (14) by

Fig. 6 Wave field for plate with size aspect ratio L/B = 2. a Normal
incidence, θ1 = 0◦, b oblique incidence, θ1 = 15◦, c oblique incidence,
θ1 = 30◦

the PML operator, defined as follows:

D2ϕn =
{

1
sx

(
∂
∂x

(
1
sx

∂ϕn
∂x

))
+ 1

sy

(
∂
∂y

(
1
sy

∂ϕn
∂y

))
, n=0

∇2ϕn, n �= 0
,

(15a)
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Fig. 7 Effect of the incident wave angle on the modulus of the plate
deflection for an elastic plate over a shoal (maximum bottom slope
10%) along various cuts as shown in Fig. 5a. The three incidence angles

examined are: (i) normal incidence, θ1 = 0◦ (solid line), (ii) oblique
incidence, θ1 = 15◦ (dashed line) and (iii) very oblique incidence,
θ1 = 30◦ (dashed dot line)

where the PML-coefficients are defined by

sx = 1 + iσ(x̃)

k
and sy = 1 + iσ(ỹ)

k
. (15b)

In the above equation x̃ ,ỹ are scaled variables starting at the
interior boundary of the PML, and the function σ is positive

and defined by

σ(x̃) = σ0(x̃/ l)
n, σ (x̃) = σ0(x̃/ l)

n, n ≥ 3,

in the PML and zero elsewhere. (15c)

The optimum values for σ0 and n coefficients and more
details about the present version of the PML can be found in
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Belibassakis et al. (2001) where it was first implemented in
conjunction with the present coupled-mode system for water
waves over 3D variable bathymetric terrains. The drawback
of the PML model is that a layer surrounding the compu-
tational domain of width approximately equal to the local
wavelength is sacrificed for enforcing the absorbing condi-
tion. The same method has been applied very successfully
for similar problems in the additional presence of scattering
by other sources, as for example in the case of inhomoge-
neous currents in variable bathymetry regions, as presented in
Belibassakis et al. (2011). Thus, the discrete scheme obtained
is uniformly of second order in the horizontal direction. The
coefficient matrix of the discrete system is block structured
with five- and seven-diagonal blocks, corresponding to the
discrete version of the CMS. The system is numerically con-
structed and solved by means of a parallel implementation,
making feasible the treatment of realistic domains corre-
sponding to areaswith size of the order ofmany characteristic
wavelengths.

Finally, for the treatment of the weak singularities in the
vicinity of the corners, in the case of orthogonal elastic float-
ing bodies, like the examples considered in this work, a
regularizing scheme has been applied to the boundary con-
ditions necessitating zero shear and moment at the border of
the plate, as well as to the interface conditions, necessitat-
ing continuity of normal derivative of the potential. In this
respect, all normal and tangential derivatives at the corner
points are approximated in the discrete scheme by averages
of the same quantities at the next (nearby) nodes at each side
of the corner.

6 Numerical results and discussion

6.1 Elastic plate in constant depth

For the validation of the present method, in this section,
numerical results are presented using data concerning the
physical parameters from the experiment byWu et al. (1995).
In this case, the length of themodelwas L = 10m, its breadth
B = 0.5 m, its thickness 0.038 m and the elastic modulus
of the material E = 103MPa. Moreover, the model density
was ρp = 220 kg/m3, and thus its draft d = 0.0084 m. The
experiment was performed in a water depth of h = 1.1 m,
using incident wave heights of 5, 10 and 20 mm and wave
periods ranging from 0.5 to 3 s, corresponding to deep and
intermediate water depth conditions, respectively.

In Fig. 3, the comparison between the present method
(solid lines) and the experimental data (circles) concerning
themodulus of the plate deflection is shown, normalizedwith
respect to the wave amplitude. More specifically, harmonic
waves of period T = 2.875, 1.429 and 0.7 s, respectively,
normally incident on a floating elastic plate of aspect ratio

Fig. 8 Wave field for normal incidence, θ1 = 0◦. a Plate size aspect
ratio L/B = 1, b plate size aspect ratio L/B = 2 and c plate size aspect
ratio L/B = 4, respectively

20 are considered. In all cases, the present method results
are found to be in very good agreement with measured
data.
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Fig. 9 aGeometrical configuration. b Effect of bathymetric variations
on the wave field and the elastic-plate deflection, in the case of waves of
period T = 15 s normally incident on a large floating structure over the

smooth undulating bottom, as calculated by the present method. The
PML region is indicated using dashed lines

6.2 Elastic plate over smooth underwater shoal

To illustrate the effects of variable bathymetry (sloping bot-
tom) on the hydroelastic behaviour of the system asmodelled
by the present method, as a first example we consider in Fig.
4 a large elastic floating body (L = 240 m, B = 120 m)
modelled as a thin elastic plate, with constant characteris-
tics d = 105 m4, ε = 0.005 and Poisson’s ratio ν = 0.3.
This floating body lays over a smooth underwater shoal,
characterized by a depth function smoothly varying from
h = 15 m to h = 5 m over a distance of 1.5 km, as also
shown in Fig. 4. The bathymetry is given analytically as fol-
lows,

h(x, y)=h1 + h3
2

−h1 − h3
2

tanh

(
π

3

(
x − c1
c2 − c1

)
− 1

2

)
,

(x, y) ∈ [a1, a2]×[b1, b2] ,

(16)

where [a1, a2]× [b1, b2] is the computational domain on the
horizontal plane, with a1 = 0, a2 = 1500 m, b1 = −600 m,
b2 = 600 m the horizontal dimensions of the fluid domain,
and the mean and maximum slopes are 1 and 10 %, respec-
tively. The elastic plate is located in themiddle of the variable
bathymetry region and has dimensions [c1, c2] × [d1, d2],
with c1 = 550 m, c2 = 790 m, d1 = −60 m and

d2 = 60m, and thus the aspect ratio is L/B = 2. The effect of
bathymetric variations and the elastic-plate deflection on the
calculatedwave field, in the case of harmonicwaves of period
T = 15 s that are normally incident on the elastic structure
over the above smooth shoal, is presented in Fig. 4b. The
calculations are based on a grid of 1201 × 961 points on
the horizontal domain that is found enough for numerical
convergence of the results. The detailed investigation of the
present CMS in (Belibassakis and Athanassoulis 2005, Fig.
9) has revealed that the propagating mode (n = 0) and the
first two propagating–evanescent modes (n = 1, 2) are the
most important, being one order of magnitude greater than
the sloping-bottom mode (n = −1) and the next evanescent
modes (n = 4, 5). The rest of the sequence of evanescent
modes presents a fast rate of decay of the order O(n−4)

as n tends to infinity. Based on this remark and taking
into account the huge computational cost in realistic three-
dimensional applications in this work, the numerical results
presented below are obtained by maintaining only the first
three modes (n = 0, 1, 2) in the hydroelastic expansion, Eq.
(4).

We observe in Fig. 4 the strong diffraction pattern gener-
ated by the elastic plate, especially in the front area of the
plate where the reflection phenomena are dominant, as pre-
dicted by the present method. For comparative illustration
of the 3D effects, in Fig. 5, the deflection modulus is plot-
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Fig. 10 Variations on the wave field and the elastic-plate deflection a
for flat bottom and b undulating bottom with Ab = 0.15h and c for
undulating bottom with Ab = 0.30h. Areas with significant changes
are indicated using dashed areas

ted along various longitudinal and transverse sections of the
plate, where we observe that elastic deformation is maxi-
mized at the upwave edges of the plate near the corners, as
naturally expected.

Next, the effect of the incident wave angle on the modulus
of the plate deflection for an elastic plate over the shoal with
maximum bottom slope 10% is illustrated in Fig. 6 for the
same, as before, floating elastic plate, as calculated by the
present CMS. Except normal wave incidence θ1 = 0◦, also
oblique waves have been considered θ1 = 15◦ and θ1 = 30◦.
We clearly observe in Fig. 6 the effect on the diffraction
pattern and the formation of the shadow zone downwave the
plate.

To illustrate the corresponding effects of the wave direc-
tion on the plate deflection, in Fig. 7, the patterns of the
deflection modulus are presented, along with the corre-
sponding transverse and longitudinal sectional distributions.
As expected, as the wave direction becomes more oblique,
the elastic deformation in the plate area near the cor-
ner directly exposed to the incident wave energy becomes
significantly increased, and the three-dimensional effects,
especially asymmetry, due to the wave directionality are evi-
dent.

Next, in Fig. 8, the effect of the plate aspect ratio on the
hydroelasticwavefield is examined. In comparison to the pre-
vious plate of aspect ratio L/B = 2, a shorter and a longer
plate of aspect ratio L/B = 1 and L/B = 4, respectively,
are used for comparative calculations by the present method.
We observe that the modifications in the diffraction pattern
are significant, and especially concerning the reflection of
wave energy in the upwave region of the plate. In particular,
the shorter plate shown in Fig. 6a is less elastically deformed
in this excitation frequency, since the elastic wavelength is
much larger than the plate length and the incident wave-
length and, thus, it behaves as a more stiff and reflecting
obstacle, in comparison with the longer plate plotted in Fig.
8c.

6.3 Elastic plate over smooth undulating bottom

To demonstrate the effects of bottom corrugations on the
hydroelastic behaviour of the system, we examine the same
configuration (elastic plate L = 240 m, B = 120 m, d =
105 m4, ε = 0), lying over a smooth undulating bathymetry.
In this case, the bottom profile is given by the following depth
function,
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Fig. 11 Effect of bottom corrugations on the modulus of the elastic-
plate deflection. The three bottom profiles examined are: a horizontal
bottom Ab = 0, b undulating bottom with amplitude Ab = 0.1h, c
undulating bottom with amplitude Ab = 0.3h, d distribution of deflec-

tion along all longitudinal and transverse sections shown in Fig. 5a for
the same amplitudes. Results of the horizontal bottom are indicated
with solid line, for Ab = 0.1h with dashed line and for Ab = 0.3h with
dashed-dot line
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Fig. 12 Effect of wave direction on the modulus of the elastic-plate
deflection in the area with bottom corrugations of Fig. 9. a Normal
incidence, θ1 = 0◦, b oblique incidence, θ1 = 15◦, c oblique inci-
dence, θ1 = 30◦, d distribution of deflection along all longitudinal and

transverse sections shown in Fig. 5a, for the same angles of wave inci-
dence as in a–b. Results for θ1 = 0◦ are indicated with solid line, for
θ1 = 15◦ with dashed line and for θ1 = 30◦ with dashed-dot line
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h(x, y) ={
h − g(x)Ab sin(kb(x − xa)), (x, y) ∈ [xa, xb] × [b1, b2]
h, (x, y) ∈ [a1, xa) × [b1, b2] ∪ (xb, a2] × [b1, b2]

, (17)

where kb = 2π/λb is the bottom surface wave number,
selected so that the corresponding bottom surface wave
length λb is equal to 0.25L . Moreover, h = 10 m is the mean
depth, and Ab = 0.15h is the amplitude of bottom undula-
tions. The computational domain is [a1, a2] × [b1, b2], with
a1 = 0, a2 = 1500 m, b1 = −600 m, b2 = 600 m, and
the horizontal dimensions and position of the elastic floating
body inside the computational domain: [c1, c2] × [d1, d2],
with c1 = 550 m, c2 = c1 + L , d1 = −60 m and d2 = 60 m.
Finally, the area of bottom undulations is enclosed in the sub-
region [xa, xb]×[b1, b2], with xa = c1−L and xa = c2+L .
To this aim, the function g(x)in Eq. (17) is a filter function
defined by

g(x) =
(
1 − exp

(
−

(
x − xa

λb

)2
))

×
(
1 − exp

(
−

(
x − xb

λb

)2
))

, (18)

which is used to restrict the sea bottom corrugations in the
middle of the computational domain. Thus, again the variable
bathymetry subregion lies between two horizontal flat sub-
regions, both of 10 m depth. For this example, the calculated
wave field for normally incident harmonic waves of period
T = 15 s is presented in Fig. 9, as calculated by the present
method using the same discretization corresponding to a hor-
izontal grid of 1201 × 961 points on the horizontal domain
that is again found enough for numerical convergence of the
results.

Next, the effect of bottom slope and curvature on the
calculated wave field and the elastic-plate deflection is inves-
tigated with the aid of Figs. 10 and 11. In particular, in Fig.
10, numerical results are presented for an undulating bot-
tom with amplitude of bottom corrugations Ab = 0.15h and
Ab = 0.30h, respectively, and compared against the same
structure floating above the flat horizontal bottom of the same
mean depth h = 10 m. Subareas where the diffraction pat-
terns present significant changes are indicated inFig. 10using
dashed lines. The effect of bottom corrugations on the mod-
ulus of the elastic-plate deflection is illustrated in Fig. 11,
where distributions along the various longitudinal and trans-
verse sections (defined in Fig. 5a) are comparatively plotted.
We observe in this figure that, as bottom corrugations become
stronger, significant changes in the elastic field pattern on the
plate are produced, substantially increasing the deflection.

This is due to the fact that bottom undulations could excite
Bragg scattering, enhancing the backscatteredwave energy in
the region. This could lead to formation of partially standing
waves in the area of the elastic floating structure, enhancing
the energy interacting with the plate and finally increasing
substantially the corresponding deflections, as illustrated in
this example; see, e.g. last subplot of Fig. 11c. This finding
could be important in various further directions and applica-
tions, e.g. in the design and analysis of mooring systems for
large floating elastic structures or the investigation of such
systems for wave power absorption; see e.g. Karmakar and
Guedes Soares (2012) and Khabakhpasheva and Korobkin
(2002).

Finally, in Fig. 12, the effect of the incident wave angle on
themodulus of the plate deflection for an elastic plate floating
over a variable bathymetry region is examined, by means of
the present CMS. In this case, the same as before, a floating
elastic structure is considered in the environmentwith bottom
undulations as shown in Fig. 9. Again, we observe in Fig. 12
that as the incident waves becomes more oblique, the elastic
deformation in the plate area near the corner directly exposed
to the incident wave energy is significantly increased, and the
three-dimensional effects, especially asymmetry of the plate
deflection, due to the wave directionality becomes important.

7 Conclusions

In this work, the coupled-modemodel developed by Belibas-
sakis and Athanassoulis (2005) is extended and applied to
the hydroelastic analysis of three-dimensional, large float-
ing bodies of shallow draft lying over variable bathymetry
regions. The present formulation finds also useful applica-
tions to the study of interaction of water waves with ice
floes in coastal waters. A general bathymetry is assumed,
characterized by a continuous depth function, joining two
regions of constant, but possibly different, depth. Follow-
ing previous works for the propagation and diffraction of
water waves over general bathymetric terrains and in the
presence of other inhomogenities, we consider the scattering
problem of harmonic incident waves, under the combined
effects of variable bathymetry and a large floating elastic
structure of orthogonal planform shape. The hydroelastic
problem is formulated within the context of linearized water-
wave and thin elastic-plate theory. To treat the wave field
beneath the elastic floating plate, down to the sloping bot-
tom boundary, a complete, local, hydroelastic-mode series
expansion of the wave field is used, enhanced by an appro-

123



J. Ocean Eng. Mar. Energy (2016) 2:159–175 175

priate sloping-bottommode. The latter enables the consistent
satisfaction of the Neumann bottom-boundary condition on a
general topography and accelerates the convergence. Numer-
ical results concerning floating structures over sloping and
corrugated seabeds are shown, and the effects of wave
direction, bottom slope and curvature on the hydroelastic
responses are discussed. Future work is planned towards the
investigation of hydroelastic responses of large floating bod-
ies and structures of more general planform shape in variable
bathymetry regions, aswell as extensions to incorporate shear
effects.

Acknowledgments The present work has been supported by the
project HydELFS funded by the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference Framework
(NSRF 2007–2013)—Research Funding Program ARHIMEDES-III:
investing in knowledge society through the European Social Fund.

References

Athanassoulis GA, Belibassakis KA (1999) A consistent coupled-mode
theory for the propagation of small-amplitude water waves over
variable bathymetry regions. J Fluid Mech 389:275–301

Athanassoulis GA, Belibassakis KA (2007) New evolution equations
for non-linear water waves in general bathymetry with application
to steady travelling solutions in constant, but arbitrary, depth. J
Discrete Contin Dyn Syst DCDS-B 75–84

Athanassoulis GA, Belibassakis KA (2009) A novel coupled-mode the-
ory with application to hydroelastic analysis of thick, non-uniform
floating bodies over general bathymetry. J Eng Marit Environ
223:419–438

Athanassoulis GA, Belibassakis KA, Mitsoudis DA, Kampanis NA,
Dougalis VA (2008) Coupled-mode and finite-element solutions
of underwater sound propagation problems in stratified acoustic
environments. J Comput Acoust 16(1):83–116

Belibassakis KA, Athanassoulis GA (2005) A coupled-mode model
for the hydroelastic analysis of large floating bodies over variable
bathymetry regions. J Fluid Mech 531:221–249

Belibassakis KA, Athanassoulis GA (2006) A coupled-mode technique
forweakly nonlinearwave interactionwith large floating structures
lying over variable bathymetry regions. Appl OceanRes 28(1):59–
76

Belibassakis KA, Athanassoulis GA (2011) A coupled-mode system
with application to nonlinear water waves propagating in finite
water depth and in variable bathymetry regions.Coast Eng 58:337–
350

Belibassakis KA, Athanassoulis GA, Gerostathis T (2001) A coupled-
mode system for the refraction-diffraction of linear waves over
steep three dimensional topography. Appl Ocean Res 23:319–336

Belibassakis KA, Gerostathis T, Athanassoulis GA (2011) A coupled-
mode model for water wave scattering by horizontal, non-
homogeneous current in general bottom topography. Appl Ocean
Res 33:384–397

Belibassakis KA, Athanassoulis GA, Papathanassiou TK, Filopoulos
SP, Markolefas S (2014) Acoustic wave propagation in inho-
mogeneous, layered waveguides based on modal expansions and
hp-FEM. Wave Motion 51:1021–1043

Bennets L, Biggs N, Porter D (2007) A multi-mode approximation to
wave scattering by ice sheets of varying thickness. J Fluid Mech
579:413–443

Collino F, Monk PB (1998) Optimizing the perfectly matched layer.
Comput Methods Appl Mech Eng 164(1–2):157–171

Gerostathis T, Belibassakis KA, Athanassoulis GA (2008) A coupled-
mode model for the transformation of wave spectrum over steep
3d topography. A parallel-architecture implementation. J Offshore
Mech Arct Eng 130 (011001):1–9

Kashiwagi M (2000) Research on hydroelastic responses of VLFS:
recent progress and future work. J Offshore Polar Eng 10(2):81–90

Karmakar D, Guedes Soares C (2012) Scattering of gravity waves by a
moored finite floating elastic plate. Appl Ocean Res 34:135–149

Khabakhpasheva TI, Korobkin AA (2002) Hydroelastic behaviour of
compound floating plate in waves. J Eng Math 44:21–40

Kyoung JH, Hong SY, Kim BW, Cho SK (2005) Hydroelastic response
of a very large floating structure over a variable bottom topography.
Ocean Eng 32(17–18):2040–2052

Meylan MH, Sturova IV (2009) Time-dependent motion of a two-
dimensional floating elastic plate. J Fluids Struct 25(3):445–460

Murai M, Inoue Y, Nakamura T (2003) The prediction method of
hydroelastic response of VLFS with sea bottom topographical
effects. In: Proceedings of 13th ISOPE conference, pp 107–112

Newman JN (1994) Wave effects on deformable bodies. Appl Ocean
Res 16(1):47–59

Papathanasiou TK, Karperaki A, Theotokoglou EE, Belibassakis KA
(2015) A higher order FEM for time-domain hydroelastic analysis
of large floating bodies in an inhomogeneous shallow water envi-
ronment. Proc R Soc A 471:20140643. doi:10.1098/rspa.2014.
0643

Porter D, Porter R (2004) Approximations to wave scattering by an ice
sheet of variable thickness over undulating bed topography. J Fluid
Mech 509:145–179

Riggs H, Suzuki H, Ertekin C, Kim JW, Iijima K (2008) Comparison of
hydroelastic computer codes based on the ISSCVLFS benchmark.
Ocean Eng 35:589–597

Squire VA (2008) Synergies between VLFS hydroelasticity and sea ice
research. Int J Offshore Polar Eng 18(4):241–253

Squire VA, Dugan JP, Wadhams P, Rottier PJ, Liu AK (1995) Of ocean
waves and ice sheets. Annu Rev Fluid Mech 27:115–168

Sturova IV (2008) Effect of bottom topography on the unsteady behav-
iour of an elastic plate floating on shallow water. J Appl Math
Mech 72(10):417–426

Sturova IV (2009) Time-dependent response of a heterogeneous elastic
plate floating on shallow water of variable depth. J Fluid Mech
637:305–325

Sturova IV, Korobkin AA, Fedotova ZI, Chubarov LB, Komarov VA
(2009) Nonlinear dynamics of non-uniform elastic plate floating
on shallow water of variable depth. In: Proceedings of the 5th
international conference on hydroelasticity in marine technology,
Southampton, UK, pp 323–332

Utsunomiya T, Watanabe E, Nishimura N (2001) Fast multipole algo-
rithm for wave diffraction/radiation problems and its application
to VLFS in variable water depth and topography. In: Proceedings
of the 20th international conference on offshore mechanics and
Arctic engineering OMAE 2001, paper 5202, vol 7, pp 1–7

Watanabe E, Utsunomiya T, Tanigaki S (1998) A transient response
analysis of a very large floating structure by finite element method.
Struct Eng Earthq Eng JSCE 15(2):155s–163s

Wang CD, Meylan MH (2002) The linear wave response of a floating
thin plate on water of variable depth. Appl Ocean Res 24:163–174

Wang CM, Tay ZY (2011) Very large floating structures: applications,
research and development. Procedia Eng 14:62–72

Wang CM,Watanabe E, Utsunomiya T (2008) Very large floating struc-
tures. Taylor & Francis, London

Watanabe E, Utsunomiya T, Wang CM (2004) Hydroelastic analysis of
pontoon-type VLFS: a literature survey. Eng Struct 26:245–256

Wu C,Watanabe E, Utsunomiya T (1995) An eigenfunction expansion-
matching method for analyzing the wave-induced responses of an
elastic floating plate. Appl Ocean Res 17:301–310

123

http://dx.doi.org/10.1098/rspa.2014.0643
http://dx.doi.org/10.1098/rspa.2014.0643

	3D hydroelastic analysis of very large floating bodies over variable bathymetry regions
	Abstract
	1 Introduction
	2 Formulation of the problem
	3 Modal expansion of the wave potential
	4 Coupled-mode system of equations
	5 Setup of the discrete system
	6 Numerical results and discussion
	6.1 Elastic plate in constant depth
	6.2 Elastic plate over smooth underwater shoal
	6.3 Elastic plate over smooth undulating bottom

	7 Conclusions
	Acknowledgments
	References




