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Abstract Run-up of long waves in sloping U-shaped bays
is studied analytically in the framework of the 1-D non-
linear shallow water theory. By assuming that the wave
flow is uniform along the cross section, the 2-D nonlinear
shallow water equations are reduced to a linear semi-axis
variable-coefficient 1-D wave equation via the generalized
Carrier-Greenspan transformation (Rybkin et al. in J Fluid
Mech 748:416–432, 2014). A spectral solution is developed
by solving the linear semi-axis variable-coefficient 1-D equa-
tion via separation of variables and then applying the inverse
Carrier-Greenspan transform. To compute the run-up of a
given long wave, a numerical method is developed to find the
eigenfunction decomposition required for the spectral solu-
tion in the linearized system. The run-up of a long wave in a
bathymetry characteristic of a narrow canyon is then exam-
ined.
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1 Introduction

Tsunamis pose a major hazard to coastal regions and can
result in casualties fatalities and property damage. In 2004,
the Indian Ocean tsunami caused more than 228,000 fatal-
ities and had an estimated economic impact of 10 billion
USD (Geist et al. 2006; Bernard and Robinson 2009). More
recently, the 2011 Tohoku tsunami resulted in 15,889 fatali-
ties and an estimated economic cost of over 250 billion USD
(National Police Agency of Japan 2014; Nanto et al. 2011).
Tsunami run-up and its associated inundation are the most
devastating stage of a tsunami and therefore accurate models
for the tsunami run-up process are critical for any attempt to
minimize the damages caused by tsunamis.

The societal impact of a tsunami depends on both the
level of preparation in the coastal communities and the effi-
ciency of evacuation plans. In turn, the actions taken by
emergency managers and harbor masters depend strongly on
the information bulletins issued by tsunami warning centers
(Borrero et al. 2005, 2015; Barberopoulou et al. 2011; Ewing
2011, 2015; Wilson and Miller 2014). Typical actions taken
by emergency managers range from limiting access to the
waterfront to a full evacuation of the near-shore areas. Under
certain circumstances, emergency managers need to adjust
evacuation plans; overly conservative evacuation may result
in heavy costs to businesses, and potentially damage public
confidence in response activities (Kiffer 2012; Wilson and
Miller 2014).

Quick and robust assessment of the incoming tsunami
is paramount to the determination of an emergency plan.
To generate such assessments, warning centers process all
available data to provide a forecast for potential inundation
at selected locations (Tang et al. 2009). Quick and efficient
estimates for the potential wave height at locations where
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Fig. 1 Top left A (x, z)
cross-sectional view of an
N -wave in a constantly sloping
parabolic bay. Top right A (y, z)
cross-sectional view of a
parabolic bay with water
displacement η(x, t), and
bottom the 3-D view of the bay
and N -wave given by the two
cross sections
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forecasts by the Warning Centers are not yet available are
important to select an appropriate evacuation procedure.

Recent studies of the 2011Tohoku tsunami have suggested
that the local bathymetry is a key component in predicting the
local run-up, narrower bays having larger run-up than wider
bays (Didenkulova and Pelinovsky 2011b; Shimozono et al.
2012, 2014; Liu et al. 2013; Kim et al. 2013). An under-
standing of the run-up characteristics in such bays may help
communities where no timely forecast is available.

The 2-Dnonlinear shallowwater theory is commonly used
to predict the propagation of long waves in the ocean and
the subsequent inundation of coastal areas (Synolakis and
Bernard 2006; Kanoglu et al. 2015). The classical 2-D non-
linear shallow water wave equations are the system

∂η

∂t
+ ∇ · ([η + h] U) = 0 (1)

∂U
∂t

+ (U · ∇) U = −g ∇η (2)

whereU(x, y, t) = 〈U (x, y, t), V (x, y, t)〉 is a velocity vec-
tor, η(x, y, t) is the water level displacement, h(x, y) is the
still water depth and g is the constant of gravity. In the case

of long, narrow channels and fjords, (1, 2) can be depth
averaged into 1-D equations (Stoker 1957; Pelinovsky and
Troshina 1994; Didenkulova and Pelinovsky 2011b; Rybkin
et al. 2014). For such bays, the conservation of mass and
linear momentum become the shallow water wave equations

∂S

∂t
+ ∂

∂x
(uS) = 0, (3)

∂u

∂t
+ u

∂u

∂x
+ g

∂H

∂x
= g

dh

dx
. (4)

In this system, u = u(x, t) is the cross-sectional average
velocity, H = H(x, t) and h = h(x, 0) are, respectively, the
total water depth and unperturbedwater depth along themain
axis of the bay, g is the acceleration due to gravity, and S(x, t)
is the cross-sectional area under water at the point (x, t). We
assume that S can be written as a function of the total depth
H only; i.e., the cross section of the bay does not change with
respect to the distance from shoreline.We denote the average
water displacement as η(x, t) = H(x, t)−h(x, 0). A sketch
of a U-shaped bay and wave profile are shown in Fig. 1.

The 1-D non-linear shallow water wave equations have
been extensively studied analytically. In 1958, Carrier and
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Greenspan developed a hodograph transform, known as the
classical Carrier-Greenspan transform, which transforms the
system (3, 4) into a linear second order wave equation. The
classical Carrier-Greenspan transform is only valid in the
case of a plane sloping beach, h(x) = αx where, α > 0 (Car-
rier and Greenspan 1957), and has been an invaluable tool
in the development of solutions to shallow water wave equa-
tions (Shuto 1973; Spielfogel 1976; Synolakis 1987;Liu et al.
1991; Pelinovsky andMazova 1992; Tadepalli and Synolakis
1994; Pelinovsky 1995; Massel and Pelinovsky 2001; Car-
rier et al. 2003; Kanoglu 2004; Tinti and Tonini 2005; Zahibo
et al. 2006; Aydin 2011). In particular, a Green’s function for
(3, 4) with a zero initial velocity condition, u(x, 0) = 0, was
found by Carrier et al. (2003) and a Green’s function for (3,
4) which is valid for a nonzero initial velocity profile was
developed by Kanoglu and Synolakis (2006).

In 2011, Didenkulova and Pelinovsky generalized the
classical Carrier-Greenspan transformation to the case of
sloping bays with parabolic cross sections (i.e., bays with
bathymetry of the form γ y2 −αx for some constants α > 0,
and γ > 0) and U-shaped and V-shaped cross sections i.e.,
bays with bathymetry of the form

h(x, y) = γ |y|m − αx (5)

for some positive constants m, α, and γ (Didenkulova and
Pelinovsky 2011a, b). Note that V-shaped bays are charac-
terized by 0 < m ≤ 1 and U-shaped bays by 1 < m. This
generalization led to an analytic solution for wave run-up in
a constantly sloping parabolic bay (Didenkulova and Peli-
novsky 2011b), a d’Alembert solution for a parabolic bay of
infinite length (Didenkulova and Pelinovsky 2011b), and a
spectral solution for U-shaped and V-shaped bays of infinite
length (Garayshin 2013). Rybkin et al. (2014) further gener-
alized the Carrier-Greenspan transform to the case of sloping
bays with arbitrary cross section which was then numerically
implemented by Harris et al. (2015).

These recent generalizations prompt interest in the viabil-
ity of theCarrier-Greenspan transform to longwave run-up in
U-shaped and V-shaped bays. Such bays are of interest since
they are good approximations to the bathymetry of many
inlets, fjords, and river canyons.

In this paper,wedevelop a spectral solution for the tsunami
run-up problem for U-shaped and V-shaped bays of finite
length. We first discuss the Carrier-Greenspan transform in
U-shaped and V-shaped bays as developed by Didenkulova
and Pelinovsky (2011b). Then, we develop an initial value
boundary problem for wave run-up in U-shaped and V-
shaped bay of finite length similar to the work by Aydin
and Kanoglu (2007) and Aydin (2011). The resulting initial
value boundary problem is solved via separation of vari-
ables, numerically implemented, and tested for validity. In
particular, we validate our method against the analytic solu-

tion for an infinite sloping bay with parabolic cross sections
developed by Didenkulova and Pelinovsky (2011b). In this
validation, we examine the effects that the wavelength of the
initial wave and the length of the bay have on the error in the
approximation of the maximum run-up. Since this analytic
solution is valid for bays of infinite length, these comparisons
test the validity and applicability of our solution to bays of
infinite length. We then verify our solution by modeling the
process of wind setdown in a 2000 m long, narrow, steeply
sloping canyon and comparing our results to the 2-D veri-
fied and validated numerical model FUNWAVE (Tehranirad
et al. 2012a, b; Synolakis et al. 2008). These comparisons are
encouraging, and our solutions agree more than one might
expect when comparing a 1-D depth averagedmodel to a 2-D
model. In particular the two models agree on most aspects of
the wave run-up and run-down process.

2 Carrier-Greenspan transform
for U- and V-shaped bays

In this section, we provide a brief overview of the Carrier-
Greenspan transformation by Rybkin et al. (2014) for a
linearly inclined bay of U-shaped or V-shaped cross section
[bays given by (5) where m, γ , and α are positive constants]
followed by the development of an initial value boundary
problem for run-up in such bays. See Fig. 1 for an example
of a U-shaped bay.

Following Rybkin et al. (2014) we define a new coordi-
nate system with respect to the bathymetry. A key step for
analytically computing the generalized Carrier-Greenspan
transform is finding the cross-sectional area, S(x, t), as a
function of the effective depth H(x, t). For U-shaped and V-
shaped bays we have S(H) ∼ m

m+1H
(m+1)/m . Consequently.

we define the new coordinate system (σ, λ) by

λ(x, t) = u(x, t) + αgt and (6)

σ(x, t) =
∫ H(x,t)

0

√
g

S(h)

dS

dh
dh = 2

√
g(m + 1)

m
H(x, t).

(7)

The variable λ is related to time, while σ ≥ 0 is associated
with the spatial variable. Note that the moving shoreline is
represented by H(x, t) = 0 and thus the above definition for
σ implies that the moving shoreline corresponds to σ = 0.
Examining (6) we see that initial data at t = 0 corresponds
to data at λ = 0 if and only if the initial velocity, u0(x) =
u(x, 0), is zero. We assume that u0(x) = 0, unlike the work
done by Kanoglu and Synolakis (2006) and Aydin (2011).

In order to exploit the convenient properties of the σ − λ

system, Rybkin et al. (2014) defined a function F = F(σ )

and a potential � = �(σ, λ) via
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F(σ ) = 2

√
gS

dh

dS
, u = �σ

F(σ )
. (8)

For U-shaped and V-shaped bays, H(σ ) = m
4g(m+1) σ 2 and

we obtain

F(σ ) = m

m + 1
σ, u = (m + 1)

mσ
�σ . (9)

In terms of F(σ ), (3, 4) can be written as the linear second
order wave equation

�λλ − �σσ − m + 2

mσ
�σ = 0. (10)

Finally, using Eqs. (6, 7) and (9) we find the water distur-
bance η(x, t) and velocity u(x, t) forU-shaped andV-shaped
bays through the nonlinear transformation

u = m + 1

mσ
�σ , η = 1

2g

(
�λ − u2

)
,

x = 1

2gα

(
�λ − 2g H − u2

)
, t = λ − u

αg
. (11)

It is conceivable that there are some non-breaking initial
wave profiles where (11) ceases to be one-to-one. In such
cases, (11) is not invertible and thus the generalized Carrier-
Greenspan transform cannot be used to solve (3, 4). Rybkin
et al. (2014) have shown that the Jacobian of (11) vanishes
precisely when the wave as predicted by (3, 4) breaks. Since
the Jacobian of a differential coordinate transform is nonzero
if and only if the coordinate transform is a bijection, the
work by Rybkin et al. (2014) ensures that the generalized
Carrier-Greenspan transform can predict the run-up for all
non-breaking initial profiles. Note that wave breaking in the
system (3, 4) corresponds to a gradient catastrophe and not
themore complicated breaking process that is present in real-
world tsunami waves (Liu et al. 1991).

We now develop our initial boundary value problem for
bays of finite length. For the shoreline boundary condition
at σ = 0 we follow the work by Aydin (2011); Carrier et al.
(2003); Rybkin et al. (2014) and Kanoglu and Synolakis
(2006) and assume that the water velocity is bounded. In
transformed coordinates the boundedness of the velocity, u,
at the shoreline along with (11) gives the condition

�σ (σ, λ)|σ=0 = 0. (12)

At the offshore boundary, xL � 1, we assume there is a
physical wall, and thus we assume u(xL , t) = 0. For a
discussion of this wall condition the interested reader may
consult (Antuono and Brocchini 2007; Aydin 2011). For our
method of solving (10), it is convenient for σL = σ(xL , t)
to be constant. However, imposing that σL is constant is

problematic since the CG transform (11) implies that xL =
α−1(η(σL , λ)−H(xL , t)). Thus if the wave height at the off-
shore boundary is not constant, then both σL and xL cannot
simultaneously be constants. To solve this potential problem,
we note that when η(σL , λ) 	 H(σL) for all relevant λ then
xL is approximately a constant for some fixed σL . This argu-
ment was previously made by Synolakis (1987). Thus we
compute the initial σL from (6). Physically, we are assuming
that the perturbation at the wall is small when compared to
the depth of the unperturbed water height at the wall. With
this assumption, our condition that u(xL , t) = 0 with (11)
becomes

�σ (σ, λ)|σ=σL
= 0. (13)

For the initial conditions at t = 0 we use the physical
wave height η0(x) and physical velocity profile u0(x) = 0.
Exploiting (11), our physical initial conditions are

�(σ, 0) = m

m + 1

∫ σ

0
u0(σ (x ′)) σ ′ dσ ′ = 0 and

�λ(σ, λ)|λ=0 = 2g η0(σ (x)) (14)

with the mapping between x and σ defined as in (6), and
where σ ′ is a dummy integration variable.

We now note that (10) along with our Neumann boundary
conditions (12, 13) and our initial conditions (14) form a con-
sistent system. Finally one should note that unlike the work
of Aydin and Kanoglu (2007) and Aydin (2011) we use Neu-
mann boundary conditions instead of Dirichlet conditions.

3 Spectral solution to the SWEs for U-shaped and
V-shaped bays of finite length

The tsunami run-up problem in U-shaped and V-shaped bays
of finite length is formulated as

�λλ = �σσ + m + 2

mσ
�σ , (15)

with the boundary conditions

�σ (σ, λ)|σ=0 = 0 and �σ (σ, λ)|σ=σL
= 0, (16)

and the initial conditions

�(σ, 0) = 0 and �λ(σ, λ)|λ=0 = 2g η0(σ (x)). (17)

Before presenting our method of solving the system (15)–
(17), we would like to note that our solution is found via a
generalization of the works over a sloping beach by Aydin
and Kanoglu (2007) and Aydin (2011) to U-shaped bays.
Since this (15)–(17) forms a linear system, we look for a
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separable solution (Brown and Churchill 1993) to (15) of the
form �(σ, λ) = χ(σ)
(λ) and obtain

(
χ ′′(σ ) + m + 2

mσ
χ ′(σ )

)
1

χ(σ)
= −v2 = 
′′(λ)


(λ)
. (18)

The choice of a negative separation constant, −v2, facili-
tates wave-like solutions (Brown and Churchill 1993). One
of the difficulties involved in solving this system is finding
the function χ(σ). Computing χ(σ) is equivalent to solving
the ODE boundary value problem

χ ′′(σ ) + m + 2

mσ
χ ′(σ ) = −v2χ(σ)

where, χ ′(0) = χ ′(σL) = 0. (19)

To solve (19), we transform it into Bessel’s equation of
order m−1. This is accomplished by multiplying (19) by
σ (1/m)+1, introducing the parameter β = 1/m, assuming
χ(σ) = σ−βϕ(σ ) where ϕ(σ) is an arbitrary function, and
finally introducing the changeof variablesσ = γ /

√
v.Under

this transformation, (19) becomes Bessel’s equation

γ 2ϕγγ + γ ϕγ + (γ 2 − β2) ϕ = 0

with boundary conditions

ϕ(0) = 0 and σLϕγ (σL) − βϕ(σL) = 0. (20)

The general solution to Bessel’s equation is

ϕ(σ) = C1 Jβ(σv) + C2Yβ(σv),

where Jβ(σ ) and Yβ(σ ) are Bessel functions of the first and
second kinds, respectively (Abramowitz and Stegun 1965).
After applyingour boundary conditions (20) toϕ(σ),wehave
that C2 = 0 and the constant v must be a positive solution to
the equation

σL J
′
β(σLv) − β Jβ(σLv) = 0. (21)

After solving (18) for 
(λ), we have

�n(σ, λ) = Jβ(σvn) σ−β (An sin(vnλ) + Bn cos(vnλ))

where vn is the nth positive root of (21) solves (15) and
satisfies the boundary conditions (16). To satisfy the initial
conditions (17), we utilize the principle of linear superposi-
tion and find the Fourier-Bessel series,

�(σ, λ) =
∞∑
n=1

�n(σ, λ) =
∞∑
n=1

(
Jβ(σvn)

σβ
(An sin(vnλ)

+Bn cos(vnλ))

)
(22)

which is an exact solution of (15), subject to (16). We will
refer to (22) as the spectral solution. Applying our initial
conditions (17) to the function (22) we note that

∞∑
n=1

Bn
Jβ(σvn)

σβ
= 0 and

∞∑
n=1

An
Jβ(σvn)

σβ
vn

= 2g η0(σ (x)). (23)

In order to solve for our coefficients An and Bn , we
apply an orthogonality condition for the family of functions
{Jβ(σvn)σ

−β}∞n=1. We thus note that the left hand side of
(18) can be written as

d2χ

dσ 2 + m + 2

mσ

dχ

dσ
= 1

σ 1+2β

d

dσ

(
σ 1+2β dχ

dσ

)
,

and then utilize Sturm-Liouville (Al-Gwaiz 2007) theory to
obtain the orthogonality condition

∫ σL

0

(
Jβ(σvn) σ−β

) (
Jβ(σvm) σ−β

)
σ 1+2β dσ

= δnm

∫ σL

0
J 2β (σvn) σ dσ,

where δnm is the Kronecker delta. Consequently, multiplying
(23) by Jβ(σvm)σ 1+β and integrating with respect to σ from
0 to σL we obtain

Bn = 0, (24)

and

An = 2g

vn
∫ σL
0 J 2β (σvn)σ dσ

∫ σL

0
η0(x(σ, 0))

×Jβ(vnσ) σ 1+β dσ. (25)

A straightforward modification of the work by Stempak
(2002) implies that (22) with coefficients defined via (24)
and (25), converges a.e. for any m ≥ −2, as long as the
initial condition �λ(σ, λ)|λ=0 = 2g η0(σ (x)), belongs to
L p(0, σL) for some p ∈ (4/3,∞]. Thus, for any U-shaped
and V-shaped bay and any bounded initial data, the conver-
gence of our spectral solution is assumed.

Using this analytical spectral solution to (15), we develop
a numerical method to evaluate our spectral solution (22). In
our algorithm, we consider with an initial number of coeffi-
cients, {An}Pn=1, compute the approximation to (15), check
for convergence in the approximation of the initial condition
and then increase the number of coefficients until our numer-
ical approximation agrees with the initial condition to within
the desired accuracy. Convergence of our algorithm for con-
tinuous initial data is given by the convergence of our spectral
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solution. The necessary computational steps to evaluate (22)
are:

1. Use the physical bay length and the initial wave height to
compute σL and σ(x, 0). In particular, recall that Eq. (6)
gives the transformation from (x, t) to σ and thus σL and
σ(x, 0) can be computed by applying Newton’s method
to

σ(x, 0) − 2

√
g(m + 1)

m
(η0(x, 0) − αx) = 0.

2. Compute the first P eigenvalues, vn , for some natural
number P by finding the first P positive roots of (21).
We accomplish this by utilizing the open-source software
Chebfun (Trefethen 2013).

3. Compute An and Bn for each eigenvalue under consider-
ation from (25) and (24) and thus compute the potential
�(σ, λ) via (22).

4. Find the corresponding physical solution by computing
(11) via the following algorithm:

(a) Compute �σ and �λ by utilizing (22).
(b) Compute u(x(σ, λ), t (σ, λ)) via the equation

u = m + 1

mσ
�σ .

(c) Compute the wave height η(x(σ, λ), t (σ, λ)) through
the equation

η = 1

2g
(�λ − u2).

(d) Calculate x(σ, λ) via

x = 1

2gα

(
�λ − 2g H − u2

)
.

(e) Compute t (σ, λ) via the equation

t = λ − u

αg
.

5. Check for the error in the approximation of the initial
condition. If the error is not below the desired tolerance,
repeat steps 2–4 with one more eigenvalue.

6. The resulting (x, t) points will not be on an even grid.
Interpolate the solution onto an even grid (Harris et al.
2015).

We note that the above algorithm requires around a CPU
minute to run on a midrange 2012 CPU.

4 Validation of the spectral solution

In this section, we validate our spectral solution (22) by com-
paring it to an analytic solution found by Didenkulova and
Pelinovsky (2011b) in a parabolic bay (m = 2) of infinite
length. The analytic solution we utilize is the d’Alembert
solution to (10),

�̂(σ ≥ 0, λ; A, σ0, ρ) = A

σ

[
e
−

(
σ+λ−σ0

ρ

)2
− e

−
(

σ−λ−σ0
ρ

)2

+e
−

(
σ+λ+σ0

ρ

)2
− e

−
(

σ−λ+σ0
ρ

)2]

(26)

for an initial N-wave profile given by

η̂0(σ ; A, σ0, ρ) = − 4A

gp2

[
σ − σ0

σ
e
−

(
σ−σ0

ρ

)2

+ σ + σ0

σ
e
−

(
σ+σ0

ρ

)2]
and û0(σ ) = 0,

(27)

where A is related to the amplitude of the wave, ρ is the wave
length, and σ0 is the distance of the wave from the shore in σ

coordinates. Since the dynamics of the (26) are analytically
known, we compute �̂σ and �̂λ from (26) and thus compute
the corresponding wave run-up in physical coordinates using
the transformation (11).

Our validation involves four tests. We first examine the
space-time dynamics of a sample N -wave; then we examine
the effect of the wavelength, ρ, of the initial condition on the
accuracy of the shoreline dynamics. Finally, the accuracy of a
using finite length bay to approximate a bay of infinite length
is then examined.

For each test, we fix some initial bay length and compare
our spectral solution (22) at the moving shoreline. For con-
sistency we use a bay slope of α = 0.01 for all comparisons
with (26) and for notational convenience we denote the wave
predicted by the spectral solution, (22), by ηs(x, t) and the
wave predicted by the analytic solution, (26), by ηa(x, t).

4.1 Test 1: run-up of an N-wave

For our first test we examine run-up of the wave given by
the initial profile η̂0(σ ; A = 300, σ0 = 25, ρ = 7) where
η̂ is defined in equation (27). These coefficients generate an
N-wave centered at 1200 m with a height of 0.13 m and
a length of 1200 m (see the top right plot in Fig. 2). The
offshore boundary in non-physical coordinates is fixed at
σL = 55, which corresponds to an initial physical bay length
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Fig. 2 Left A plot of the first 20 coefficients for our spectral solution
ηs(x, t) given in (22) corresponding to the initial condition, η̂0(σ ; A =
300, σ0 = 25, ρ = 7) where η̂0 is defined in (27). Note the decay-
ing nature of the coefficients An . Right-top Initial condition given by
η̂0(σ ; A = 300, σ0 = 25, ρ = 7) where η̂0 is given in (27). Right-

bottom The error in the our spectral approximation, ηs(x, 0), of the
initial condition. The discrepancy between the initial condition and our
spectral approximation to the initial condition is small having 0.00028
and 0.00036% relative error at the maximum and minimum points of
our initial wave respectfully

of xL = 5139.3 m. This distance was chosen arbitrarily, but
a discussion of the effect of the bay length on our spectral
solution is given in Sect. 4.3.

Figure 2 shows the values of An for the eigenfunction
decomposition of the N-wave η̂0(σ ; A = 300, σ0 = 25, ρ =
7).Note that An has periodic behaviour andquickly decreases
to zero and also that for n ≥ 15 the magnitude of An is small
as compared to the coefficient values for n < 15. The right-
hand plots in Fig. 2 shows our initial condition, η̂0(σ ; A =
300, σ0 = 25, ρ = 7), and the error in the wave height of our
spectral approximation to the initial condition. It is notable
that the error is of the order of 6×10−6 m for a wave with
height of 0.13 m.

We now examine the time evolution of this wave. The
top left plot in Fig. 3 shows the space-time behavior of the
analytic solution, η(x, t), for the infinite bay. Note that the
initial N-wave splits into two waves: one that travels away
from the shore and one that interacts with the shore line and
then reflects off the shore. This is consistent with the investi-
gation of N-waves preformed by Kanoglu et al. (2013). The
behavior of the spectral solution, ηs(x, t), is shown in the top
right plot of Fig. 3. Its behavior differs from the analytic solu-
tion in that the waves reaching the offshore boundary reflect
back towards the shore. Thus, to examine the differences
between the analytic solution and the spectral solution, we
consider |ηa(x, t) − ηs(x, t)| in a region where the reflected
wave has not yet reached the shore. This region is defined
by the black lines in the top two plots in Fig. 3. The error,
|ηa(x, t)−ηs(x, t)|, in this region is given in the bottom plot

of Fig. 3. Note that the error is small, and peaks near the
maximum wave run-up and minimum wave run-down. The
relative error at themaximumrun-up andminimumrun-down
are readily computed as 0.0042 and 0.0053%, respectively.
This shows that the spectral solution, ηs(x, t), and the ana-
lytic solution, ηa(x, t), are in good agreement.

4.2 Test 2: affect of a N-wave’s wavelength
on the spectral solution’s error

We now examine the effect that the wavelength (ρ) of an
initial N-wave profile has on the accuracy of the spectral
solution ηs . In particular, we study three initial profiles that
are centered at the same point, have the same initial maxi-
mum height, and have different wavelengths. For an accurate
comparison of our spectral solution’s accuracy,we choose the
number of coefficients, P , in our expansion so that P is the
smallest integer such that

√∑N
i=1(ηs(xi , 0) − η̂0(xi ; A, σ0, ρ))2√∑N

i=1(η̂0(xi ; A, σ0, ρ))2
< 0.01.

In other words, we pick the smallest integer P such that the
�2 norm of the difference between our spectral solution’s
approximation to the initial condition weighted by the recip-
rocal of the �2 norm of the initial condition in question is
below 1%.
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Fig. 3 Top left The space-time
evolution of the analytic
solution, ηa(x, t) given in (26).
Note that the analytic solution
does not interact with the wall.
Top right The space-time
evolution of the spectral solution
ηs(x, t) given in (22). Note that
in this model, the waves interact
with the boundary and reflect
back towards the shoreline. The
black box defines the domain for
the bottom figure. Bottom The
absolute value of the difference
in the analytical and spectral
solutions within the black box in
the top plots. Note that the error
within the region where the two
solutions represent the same
physical model is of the order of
10−5 m and the wave height is
of the order of 0.1 m

We choose to examine the initial conditions given by
η̂0(σ ; A = 31.6, σ0 = 50, ρ = 11), η̂0(σ ; A = 15.9, σ0 =
50, ρ = 5), and η̂0(σ ; A = 9.9, σ0 = 50, ρ = 3). Figure 4
shows these three profiles. It is notable that thewaves in order
of large wavelength to small wavelength require 18, 32, and
57 coefficients to obtain the 0.01 error bound on the initial
condition. The maximum run-up of these waves in order of
longest to shortest wave is 0.015, 0.038, and 0.066 m respec-
tively. Moreover, the absolute relative errors at the maximum
run-up location ordered from longest wave to shortest wave
are 0.003, 0.013, and 0.059%, respectively. This suggests
that our spectral solution better approximated long waves
than short waves. We believe that this loss of accuracy is due
to the larger number of coefficients which must be computed
to approximate the initial condition for short wavelengths.
In practice, the loss of accuracy when approximating short
waves is not a limitation since our model is only valid for
long waves.

4.3 Test 3: error due to approximating an infinite bay
by a finite bay

We now examine the effect that the length of a finite bay has
on the approximation of a bay of infinite length. In particular,
we are interested in the relationship between the length of the
finite bay and the error in the approximation of the maximum
run-up in the bay of infinite length. Note that if the length
of the finite bay is too small, the wave will reflect off of
the offshore boundary and interfere with the run-up process.
Thus, we must ensure that the finite bay is sufficiently long
to prevent error. Moreover, even if the bay is larger than this
minimum distance, the fact that the physical length of our
bay changes over time may affect the run-up of the spectral
solution.

To test for effects of the length of thewall on the run-up,we
examine the run-up of the initial profile η̂0(σ, A = 300, σ0 =
30, ρ = 7)where η̂0(σ ; A.σ0, ρ) is defined in (27). Note that
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Fig. 4 Three initial profiles
that have the same initial
maximum height, are centered
at the same point but have
different wavelengths. Note that
η̂0(σ ; A, σ0, ρ) is given in Eq.
(27)
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Fig. 5 The effect that the length of the bay has on the error of the
approximation of the analytical solution, ηa (26), by the spectral solu-
tion, ηs given in (22). We consider the run-up of the initial condition
η̂0(σ, A = 300, σ0 = 30, ρ = 7) where η̂0(σ ; A.σ0, ρ) is defined in
(27). Furthermore, the formulas 100∗|(max(ηa)−max(ηs))/max(ηa)|

and 100∗|(min(ηa)−min(ηs))/min(ηa)| are used to compute the rela-
tive errors shown in the blue circles and red triangles respectively. Note
that the error is very sensitive to the change in the length of the bay until
the we consider bay larger than 4500 m

this initial condition was used in the experiment in Sect. 4.1.
Figure 5 plots the error versus our choice of wall location xL .
Here, we see that the relative error for bays shorter than 4500
m is rather chaotic but on average, quickly decreases. For
bays longer than 4500m, the error is relatively constant. This
is evident that the length of the bay does not havemuch effect
on the maximum run-up, once it exceeds a certain length and
also shows that the bay length in the experiment in Sect. 4.1
(5239.3 m) was large enough to ensure no reflection errors.

5 Verification of the spectral solution

To verify that our method properly captures real-world water
dynamics, we preform two numerical experiments compar-
ing our spectral solution to the 2-D nonlinear shallow water
wave model FUNWAVE-TVD 1.0 (Shi et al. 2012). FUN-
WAVE is a phase-resolving, time-stepping 2-D Boussinesq
model for ocean surface wave propagation. The version of
FUNWAVEweuse is based on theMUSCLE-TVDfinite vol-
ume schemewith adaptive Runge Kutta time-stepping. In the

current paper, FUNWAVE was restricted to run without dis-
persion so that FUNWAVE solves the classical 2-D shallow
water wave equations (1, 2).Wewould like to note that FUN-
WAVE has been verified and validated by Tehranirad et al.
(2012a, b) according to an exhaustive suite of tests proposed
by (Synolakis et al. 2008). The interested reader may consult
(Shi et al. 2012) for further details about FUNWAVE. Note,
that we are comparing a 1-D model to a 2-D model, and
should therefore expect some differences between the two
models. For convenience of notation, we denote the wave
predicted by our spectral solution (22) by ηs(x, t) and the
wave predicted by the FUNWAVE model (in the middle of
the bay) by η f (x, t).

For our verification experiments, we choose a bathymetry
and two initial profiles representative of the wind setdown
problem.Wind setdown is the process where a relatively con-
stant gust of wind blows toward the wall of a dam, canyon
or glacier. This wind causes water to be pushed away from
the shore and towards the wall of the canyon (Nof and Paldor
1992; Aydin and Kanoglu 2007). When the wind stops blow-
ing, awave propagates and floods the coast (Didenkulova and
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Fig. 6 Diagram for the wind
setdown problem. The black
regions are the bathymetry of
the canyon, the dashed line
represents the normal water
height, and the blue region
shows the new water
equilibrium position due the
force of the wind on the water

Wind 

Fig. 7 Top Example of a
canyon. The canyon is 2000 m
long by 30 m deep. The slope
along the canyon is 0.015. The
steepness of the side walls are
simulated by letting the cross
section be defined by |y|3/2.
Bottom-left The y − z cross
section of the canyon.
Bottom-right The plots of the
first four eigenfunctions at t = 0
for this canyon as a function of
distance from the shore. The
second eigenfunction is marked
with circles as it is the
eigenfunction that is used as the
initial condition for our first
validation experiment. The
fourth eigenfunction multiplied
by −1 is shown in the 3-D
canyon picture
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Pelinovsky 2011b). Figure 6 depicts the type of initial con-
dition that is used in the wind setdown problem. The dashed
line represents the unperturbed water height, the blue region
shows the new water equilibrium position and the back tri-
angle and rectangle represent the bathymetry of the canyon.

Note that within the framework of the employed model,
(3)–(4), the equation resulting from employing the general-

ized CG transform, (10), does not depend on the coefficient
γ in (5). Thus for simplicity we assume that γ = 1 and con-
sider a narrow (cross section defined by |y|3/2) constantly
sloping, 2000 m long bathymetry with a wall depth of 30 m
(α = 0.015). Figure 7 contains a 3-D view of the canyon as
well as its cross section, and a plot of our model’s first four
eigenfunctions at t = 0 for this canyon.
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Fig. 8 Left Surface plots for the spectral solution,ηs(x, t), correspond-
ing to the initial condition η̃0(σ (x))) (defined in (28)) for the wave
run-up problem in a 2 km long canyon. Note the periodic nature of the
solution in terms of both x and t . Right A near-wall view of the error

in our stationary wall assumption. Note that the largest relative error in
the walls location from 2 km is 0.9% and that the initial length of the
canyon is 2 km corresponding the length of our physical canyon

5.1 Perturbations due to an initial disturbance
parameterized by a single eigenfunction

For our first validation experiment, our initial condition is
simply multiple of the second eigenfunction. In particular,
we use an initial condition given by

η̃0(σ ) = −200
Jβ(σ

√
v1)

σβ
and ũ0(σ ) = 0, (28)

where v1 is the second eigenvalue. Figure 7 shows this initial
condition in the canyon under consideration. This profile was
chosen over the initial condition used in Aydin and Kanoglu
(2007) because it is given by a single eigenfunction and thus
allows for an analysis of the error due to a single eigenfunc-
tion. Unlike Aydin and Kanoglu (2007), who started with the
balance equations by Nof and Paldor (1992), our initial con-
dition may not by physical significant. The interested reader
is suggested to see Aydin and Kanoglu (2007) for a discus-
sion of initial conditions for the wind setdown problem that
are known to be physically relevant.

Note that for η̃0 one can analytically compute η(x, t) for
all points (x, t) in terms of v1. Thus, some of the behavior of
this solution can be studied via analytic methods. In particu-
lar, the maximum run-up values, minimum run-down values,
and the behavior of the solution at both the wall and shore
can be analytically described in terms of the parameter v1.
Unfortunately, the value of v1 changes the period of the solu-
tion with respect to both space and time; thus, such analytic
descriptions are not useful in practice. Instead, we apply the
numerical method described in Sect. 3 to generate pictures
of the wave dynamics of η̃0 in our canyon.

Figure 8 shows the wave run-up predicted by the spectral
solution. The left plot shows the solution for the first two run-
up values. Note the periodic nature of our solution in both

space and time. In particular, the spatial part of the canyon
is split into two zones which correspond to the zeros of the
second eigenfunction and these zones oscillate in time similar
to a sinewavewith period 2πv

−1/2
1 . Recall that the derivation

of our spectral solution (22) required the length of the bay
to be fixed at some σL (in this case σL = 44.4027), but
physically the length of bay is assumed to be fixed at some
offshore distance xL . Figure 8 shows that this assumption is
violated; the maximum relative error in the movement of the
wall is 0.9%.

Figure 9 shows the comparison between η f (x, t) and
ηs(x, t) for particular instances in time. We see that there
is good agreement between η f (x, t) and ηs(x, t) during the
process of the first run-up (Fig. 9a, b) and the shoreline
extrema (Fig. 9c–f). On the other hand, Fig. 9 shows that
there is error (0.0042 and 0.0053% at the first minimum run-
down and maximum run-up respectively) in the wave during
the run-down process.

In order to better compare the two solutions, we com-
pare the shoreline dynamics of the models. Figure 10 shows
the shoreline wave heights predicted by both FUNWAVE,
η f (x, t), and our spectral solution, ηs(x, t). The curves
labeled with symbols a-f correspond to the times in Fig. 9a–
f. The behaviour of the solution at the shoreline is clearly
seen. In particular, the two solutions agree remarkably well
for the first run-up, and only begin to differ during the first
run-down. Note, that the shoreline displacement predicted
by FUNWAVE during the first run-down abruptly changes
from the prediction given by the spectral solution. Following
this abrupt change, the two solutions show similar behav-
ior, but disagree with a time delay. Overall, after 295 s
the FUNWAVE model tends to predict earlier run-up and
run-down than the spectral solution. Despite these differ-
ences, the two solutions closely agree on the height and
time of the wave extrema. The discrepancies we observe
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Fig. 9 Comparison of the water
level computed by the spectral
solution (22) and the
FUNWAVE model for the initial
condition η̃0(σ ) (28). a The
waves 5 s into the run-up
process where they agree with
each other very well. b The
wave in the run-up process after
100 s. c The first maximum
run-up at 200 s. Again the
predictions of the FUNWAVE
model and the spectral solution
agree. In d the wave is retreating
from its maximum run-up point.
During the run-down process
the FUNWAVE model predicts
slower water movement than our
spectral solution does. In e we
see the minimum run-down; at
this point the two models agree
with each other but there is some
slight viable difference. Finally
in f the waves are at run-up
again and agree with each other
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may be due to differences between the classical 2-D shallow
water wave equations (1, 2) and our 1-D cross-sectionally
averaged system (3, 4). Considering the differences in the
underlying physics of the two models, the solutions agree
rather well. Furthermore due to the steepness of the bay, the
FUNWAVE model required 48 h (using parallelization on a
super-computer) to compute the space-time dynamics of the
wave run-up while the spectral solution only required only
22 s (using a single core of a personal computer) to compute
the space-time dynamics of the corresponding 1-D wave.

5.2 Perturbations due to an initial disturbance
parameterized by the weighted sum of three
eigenfunctions

In the second experiment, we use an initial condition given
by a weighted sum of the first three nontrivial eigenfunctions
(Fig. 7). In particular, we chose the initial condition

η̄0(σ ) = −200
3∑

n=1

Jβ(σ
√

vn)

3nσβ
and ū0(σ ) = 0 (29)

where vn is the nth nontrivial eigenvalue (see Fig. 11). This
initial condition was chosen because in physical coordinates
the condition has the basic shape of a typical wind setdown
profile and allows for an examination of the error of a more
complicated eigenvalue decomposition than the initial profile
used in the first experiment.

Figure 12 shows the shoreline position predictions of both
our spectral solution, ηs(x, t), and the FUNWAVE model,
η f (x, t). Notice that the two solutions agree rather well dur-
ing the first three major run-up times, at 200, 600, and 1000
s. Additionally, both models predict similar general behavior
throughout the entire time domain. There are, however, some
noticeable differences during the run-down process. Specifi-
cally, there are major differences during the second and third
major run-down at 700 and 1100 s respectively. Again these
discrepancies may be do to the fact that we are comparing
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Fig. 10 Comparison of the shoreline dynamics computed by the spec-
tral solution (22) and FUNWAVEmodels. The initial condition is given
by η̃0(σ ) defined in (28). Note that the two models agree well until
300 s. After this time the models disagree on the space-time location
of the shore location but still predict similar behavior. The dashed lines
correspond to the plots shown in Fig. 9a–f
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Fig. 11 Initial wave height, η̄0(σ (x)) defined in (29), for the second
wave run-up experiment. Note that the sloping black line in the left of
the figure represents the bottom of the bay and the dashed black line
represents the unperturbed water level
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Fig. 12 Comparison of the shorelinewater level computed by the spec-
tral solution, ηs(x, t) (22), and the prediction of the FUNWAVEmodel,
η f (x, t), for the initial condition η̄0(σ ) shown in Fig. 11. Note both
models predict similar behavior for the shoreline and are in agreement
formany of themaximum run-up values andminimum run-down values

a 1-D model to a 2-D model. Similar to the last experiment,
the FUNWAVE model required 48 h to compute the wave
dynamics on a supercomputer whereas it required only 28 s

on a single core of a mid-range 2012 CPU to compute the
wave dynamics via our spectral solution.

6 Conclusions

In this paper, we developed a spectral solution to the long
wave run-up problem in bays of finite length and an algorithm
for its implementation. The derived solution is valid for the
longwave run-up problem in constantly sloping bays of finite
length with cross section given by γ |y|m for any positive
constants m and γ . In addition, the finite bays under consid-
eration have physical walls at some fixed offshore boundary
which is typical of dams, canyons, and glaciers. The initial
conditions consideredwere restricted to longwaveswith zero
velocity. For the technique used in this paper, the restriction
on the initial velocity is not superficial, but for small initial
velocities it is possible to extend our solution by lineariz-
ing the generalized CG transform for the initial time (Carrier
et al. 2003; Kanoglu 2004). The accuracy of this approxima-
tion for the methodology used in this paper is topic of future
research. The choice of a zero initial velocity profile is an
appropriate model to approximate physical phenomena such
as wind setdown (Aydin and Kanoglu 2007; Nof and Paldor
1992; Didenkulova and Pelinovsky 2011b).

Our spectral solution has been extensively validated and
verified. Several comparisons of our solution to an analytic
solution for the parabolic bay of infinite length (Didenkulova
and Pelinovsky 2011b) reveal that ourmethod agreeswith the
analytic solution for a variety of different waves. In particu-
lar, our solution correctly predicts run-up for initial waves of
varying wavelength. The effect of approximating an infinite
bay by one on finite lengthwas analyzed and it was found that
our spectral solution predicts the correct shoreline behaviour
given that the wall is sufficiently far from the shore. The bay
length that is sufficient depends on the initial wave pertur-
bation. Moreover, after conducting numerous experiments,
we found that the length of the bay does not seem to affect
the first run-up given that the bay is sufficiently long so that
reflections do not interfere with the initial run-up.

The spectral solution has also been verified on the wind
setdown problem via a comparison to the verified and vali-
dated nonlinear shallow water wave model FUNWAVE. The
experiments show that our spectral solution agrees with the
dynamics of the run-up process that are predicted by FUN-
WAVE. The comparisons we made with FUNWAVE suggest
that our spectral solution could be used to predict some
aspects of 2-D wave dynamics even though our spectral
method solves the 1-D cross-sectionally averaged nonlinear
shallow water wave equations. One should note that our 1-D
cross-sectionally averaged model does not allow for a study
of the effect of the width of the bay on the run-up and such
a study is a topic for future research.
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It is notable that our spectral solution is an extreme
improvement over the FUNWAVEmodel in term of runtime.
For the cases considered in this manuscript, we computed the
spectral solution approximately 1500 times faster than it took
to run the FUNWAVE model. Finally, one should note that
throughout this manuscript only U-shaped bays were consid-
ered but the method presented here is also valid for V-shaped
bays.
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