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Abstract The present research aims at getting an under-
standing of the process of dispersion of surface sediment in an
oscillatory boundary layer, which may represent an idealised
case of, for example, a stockpile area where excavated sedi-
ment is stockpiled temporarily (or permanently). The process
is studied numerically, using a random-walk particle model
with the input data for the mean and turbulence characteris-
tics of the wave boundary layer picked up from a transitional
two-equation k–ω Reynolds averaged Navier–Stokes model
and plugged in the random-walk model. First, the flow model
is validated against experimental data in the literature. Then,
the random-walk dispersion model is run for different oscil-
latory flow cases and for a number of steady flow cases for
comparison. The primary sediment grains of concern are fine
sediments (with low fall velocity), which would stay in sus-
pension for most of the time. Nevertheless, the dispersion of
neutrally buoyant and heavier particles that spend most of
their time in close vicinity to the bed are also discussed. The
numerical model results are compared with the results of a
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series of experiments carried out in an oscillating U-tunnel
facility. The results are found to be in general agreement both
qualitatively and quantitatively. In the last part of the study,
an example application of the present model for fine sand
dispersing in a wave boundary layer under storm conditions
is given.
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List of symbols

a Amplitude of oscillatory motion
ar Standard normal variable
αω, βω,σω, α∗, β∗,
σ ∗, α∗

0 , α0, β∗
0 ,

σ d, σ do, Rβ , Rω,
Rk, SR, Kr

Constants and variables used in k–ω

turbulence closure model

b Dispersion model tuning parameter
β Rouse parameter
c Concentration of particles (number

of particles per unit area)
C Non-dimensional concentration of

particles (probability density func-
tion)

C0 Zeroth moment of concentration
d Diameter of particle
δ Thickness of oscillatory boundary

layer
D1 Dispersion coefficient
δb Thickness of viscous sub-layer
�t Duration of particle vertical dis-

placement
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�y Vertical displacement of a particle
ε Dissipation rate
g Gravitational acceleration
h Oscillating tunnel half-thickness or

water depth
Hrms Root-mean square wave height
k Turbulence kinetic energy
κ Von Kármán constant
ks Nikuradse’s equivalent sand rough-

ness
k+

s Roughness Reynolds number

 Model turbulence length scale

p Length scale of particle vertical

motion
M Integer of model resolution
ν Kinematic viscosity
N Number of particles
νT Turbulence viscosity
p Pressure
Px Pressure gradient term
θ Shields parameter
ρ Specific mass
ReT Model Reynolds number
Rew Wave Reynolds number
S Autocorrelation coefficient
s Specific gravity of particle
t Time
T Non-dimensional time
t0 Initial time
tend Final time
tstorm Duration of storm
Tw Period of oscillatory motion
Tz Zero-upcrossing period of waves
U Particle velocity
U Ensemble-averaged particle velocity
ū Reynolds-averaged Eulerian flow

velocity
u′, v′, w′ Fluctuating velocity component

along x , y and z axes, respectively
U0 Free stream velocity
Uf Friction velocity
Ufm Amplitude of friction velocity
Um Amplitude of free stream velocity
ω Specific dissipation rate
ws Particle settling velocity
ωw Angular frequency of oscillatory

flow and waves
X Particle position
X Ensemble-averaged particle position
X0 Non-dimensional free stream

displacement
ξ Non-dimensional horizontal

distance

x Horizontal distance
y Vertical distance measured from the

bed
Y Non-dimensional vertical distance
y+ Vertical distance in wall units
y2 New vertical position of a particle
yn0 Initial vertical position of the nth

particle

1 Introduction

Construction operations in the marine environment may
require vast amount of dredging by means of different meth-
ods. During the handling and disposal process of excavated
(dredged) sediment, various amounts of this rather fine mate-
rial will be spread into the marine environment. Eventually,
the dredged material is either used as fill material for other
parts of the construction or is disposed to a stockpile area in
the sea. Since the marine environment, especially the near-
bed region, is highly dynamic in terms of current and/or
wave action, the disposed sediments will go through a series
of transport and mixing processes (i.e. advection, diffu-
sion, dispersion). It is of great importance to understand the
mechanics of these processes for planning and managing of
marine dredging operations.

Dispersion in bottom boundary layers is the most dom-
inant of all these mixing processes qualitatively and quan-
titatively. In this process, the joint action of shear (mean
velocity gradient) and wall-normal turbulence fluctuations
in the boundary layer near the bed disperses the sediment
particles horizontally. The dispersion coefficient is the mea-
sure for the rate of dispersion.

Longitudinal dispersion in steady flows has, in the past,
drawn quite a lot of attention, with the pioneering work
of Taylor (1953, 1954), followed by Aris (1956), Elder
(1959), Fischer (1966, 1967), Sayre (1968), Chatwin (1973),
Sumer (1973, 1974), Pedersen (1977), Fischer et al. (1979),
Chatwin and Sullivan (1982), Allen (1982), Smith (1983)
and Demuren and Rodi (1986) among others. The findings
of these studies were often applied to channels, transmission
pipes, atmospheric boundary layers, rivers, tidal inlets and
estuaries.

Wave boundary layers, on the other hand, are formed over
the seabed under waves. They are characterised by a very
small vertical extent (in the order of magnitude of 20–30 cm at
most), with very strong shear and turbulence, two important
“ingredients” for dispersion. Unlike the steady flow situa-
tions, there are not many studies dealing with dispersion
processes in unsteady flows, particularly in oscillatory and
wave boundary-layer flows. Aris (1960) was the first to deal
with the dispersion of a solute in periodically altering flows,
albeit for the laminar case. Chatwin (1975) investigated the
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longitudinal dispersion of a passive neutrally buoyant disper-
sant in oscillatory pipe flow. Smith (1982), Yasuda (1982)
and Yasuda (1984) studied the dispersion process in oscil-
latory two-dimensional boundary layers, which resembles
tidal flow boundary layers rather than wave boundary layers.
Yasuda (1989) extended his previous research to disper-
sion of suspended (heavy) particles. Mei and Chian (1994)
conducted a theoretical study in which they paid special
attention to the dispersion of small suspended particles in
wave boundary layers, including the convection due to the
steady streaming. These works all used a time-invariant eddy
viscosity when describing the turbulent flow. Ng (2004)
studied the dispersion process in oscillatory boundary lay-
ers using a time-dependent turbulent diffusivity and found
that the time dependency of the eddy viscosity could not
be neglected since it generated a significant difference in
terms of dispersion coefficients. Recently, Mazumder and
Paul (2012) carried out a numerical study in which they mod-
elled the dispersion of suspended sediments in oscillatory
boundary layers including the settlement, temporary storage
and re-entrainment processes.

The present research aims at getting an understanding
of the process of dispersion of the surface sediment in an
oscillatory boundary layer, which may represent an idealised
case of, for example, a stockpile area where excavated sed-
iment (stockpiled temporarily or permanently) is subject to
waves. Section 2 presents a single-particle analysis for the
longitudinal dispersion, first for a steady turbulent flow in
an open channel, followed by an extension of the latter
analysis to an oscillatory turbulent flow in an oscillating tun-
nel. Section 3 presents the numerical model adopted in the
study, comprising a k–ω model to calculate the “background”
flow, and a random-walk model to calculate the longitudinal
dispersion. Section 4 describes the single-particle experi-
ments conducted in an oscillating tunnel. Section 5 presents
the results including the validation of the numerical model,
and comparison with the experimental data obtained in the
experimental campaign. The paper ends with a final sec-
tion, Sect. 6, in which the numerical model developed in the
present study is applied to a real-life problem with disper-
sion of disposed sediment in a wave boundary layer under
storm conditions. The present results and the existing knowl-

edge (yet, highly limited) form a complementary source of
information on the dispersion of sediment in wave/oscillatory
boundary layers.

2 Longitudinal dispersion in an oscillating tunnel

In this section, the description of the longitudinal disper-
sion process will be discussed from the point of view of
one-particle analysis. First, the dispersion process will be
discussed for an open channel flow (Sect. 2.1) and, subse-
quently, the analysis will be extended to the idealised case of
dispersion in an oscillating tunnel (Sect. 2.2).

2.1 Longitudinal dispersion in an open channel flow

We first consider the turbulent flow in an open channel with
a smooth bottom. The flow depth is h and the x and y axes
are chosen so that x is in the flow direction and y in the
upward direction (Fig. 1). We will describe the process of
longitudinal dispersion of sediment particles, using the so-
called one-particle analysis. We release the particle from a
point in the channel (Fig. 1). The particle will travel under
the combined action of the mean shearing motion, turbu-
lence and gravity. We consider that the flow conditions and
the particle properties are such that the particle, although
heavy, is not deposited on the bottom when it comes close
to the bottom, but is reflected back into the main body of the
flow.

Because of the presence of the free surface and the bottom,
and more importantly the conditions ensuring that the particle
remains in the flow, the horizontal velocity of the particle is
necessarily a stationary random function of time as soon as
the influence of the special choice of the point on the cross-
section where the particle was released has been lost.

Sumer (1974) developed a statistical formulation to
describe the longitudinal dispersion of heavy particles in such
a flow environment. In what follows is a summary of this for-
mulation, which will be extended to the case of oscillatory
flow in an oscillating tunnel in the next section.

Let U (t) denote the fluctuation about the ensemble mean
U of the component of the particle velocity (Lagrangian

Fig. 1 Definition sketch.
Longitudinal dispersion in an
open channel flow
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Fig. 2 Definition sketch.
Longitudinal dispersion in an
oscillatory flow in an oscillating
tunnel
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velocity) in the flow direction. The mean position of the par-
ticle in the horizontal direction is a distance

X(t) = U (t − t0) (1)

downstream from the point of release. Here, t is the time and
t0 is the time at which the particle is released into the flow.
The variance of the displacement about the mean, X , is

X2(t) ∼= 2(t − t0) U 2

∞∫

0

S(t ′) dt ′

−2U 2

∞∫

0

t ′S(t ′) dt ′ as t − t0 → ∞ (2)

in which S(t ′) is the autocorrelation coefficient of the velocity
U :

S(t ′) = U (t) U (t + t ′)/U 2 (3)

The probability density function of the particle position in
the horizontal direction tends to a Gaussian distribution with
a longitudinal diffusivity D1 (longitudinal dispersion coeffi-
cient) as t − t0 → ∞ where

D1 = 1

2

dX2

dt
= U 2

∞∫

0

S(t ′) dt ′ (4)

Sumer (1974), on dimensional grounds, expressed the mean
particle velocity, U , and the longitudinal dispersion coeffi-
cient, D1, by

U

Uf
= f (β), and

D1

hUf
= g(β) (5)

in which Uf is the friction velocity and β, also called the
Rouse parameter, is defined by

β = ws

κUf
(6)

in which κis the von Karman constant (κ = 0.4). It may
be noted that Sumer (1974) calculated analytically the latter
quantities, using Aris’ moment method for the range of 0 ≤
β < 0.7, as will be discussed later.

2.2 Longitudinal dispersion in an oscillating tunnel

We now consider an oscillatory flow in an oscillating tunnel
(Fig. 2). The oscillatory flow Reynolds number, Rew = aUm

ν
,

is such that the oscillatory boundary layer is in the turbulent
regime, i.e. Rew > 1.5 × 105 (Sleath 1984; Jensen et al.
1989). Here, Um is the amplitude of the free stream velocity
U0 = Um sin(ωw t), ωw is angular frequency and a is the
amplitude of the free stream motion, equal to Um/ωw. Note
that this is precisely the same flow environment as that used
in the single-particle experiments described in Sect. 4.

Similar to the open channel case, we will describe the
process of longitudinal dispersion of sediment particles in the
oscillating tunnel, using the one-particle analysis. We release
the particle from a point in the tunnel (Fig. 2). The particle
will travel under the combined action of the phase-resolved
mean shearing motion, phase-resolved turbulence and grav-
ity. Here, too, we consider that the flow conditions and the
particle properties are such that the particle is maintained in
the main body of the flow.

Because of the presence of the two walls of the tunnel,
and more importantly the conditions ensuring that the parti-
cle remains in the flow, the horizontal velocity of the particle
will be a stationary random function of time as soon as the
influence of the special choice of the point on the cross-
section where the particle was released has been lost, similar
to the open-channel case. Therefore, the statistical formu-
lation developed for the open-channel flow case should be
equally valid for the oscillating tunnel case as well (Eqs.
(1)–(4)), with U and X(t) in Eq. (1) identically equal to zero
due to the symmetric periodic motion in the tunnel.

The non-dimensional expression for the longitudinal dis-
persion coefficient, D1 in Eq. (5), may be adopted for the
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oscillating tunnel case, replacing (1) the flow depth h (which
is actually the thickness of the boundary layer in the open
channel) with the thickness of the oscillatory boundary layer
in the oscillating tunnel, δ, and (2) the friction velocity Uf

with the maximum value of the friction velocity associated
with the oscillatory boundary layer in the oscillating tunnel,
Ufm. Here, δ is defined as the location of the point of maxi-
mum velocity from the bed measured at the phase ωwt = 90o

(i.e. when U0 = Um) (Jensen et al. 1989).
Regarding the function g(β) on the right hand side of

Eq. (5), there will be one additional parameter in the present
case, namely the ratio of the flow amplitude and the tunnel
half width, a/h:

D1

δUfm
= g

(
β,

a

h

)
(7)

Contrary to wave boundary layers where the boundary-layer
flow is described by only one single parameter, namely
the wave Reynolds number, the oscillatory boundary layer
flow in an oscillating tunnel is governed by two parameters,
namely the wave Reynolds number and a non-dimensional
parameter involving the height of the oscillating tunnel (see
Lodahl et al. 1998). In the above formulation (Eq. (7)), the
wave Reynolds number is involved indirectly through the
boundary layer thickness δ, and the height of the tunnel is
involved through the non-dimensional parameter a

h .

3 Numerical model

The numerical model has two components: (1) the flow model
that will yield the phase-dependent velocity and turbulent
kinetic energy profiles, and (2) the random-walk dispersion
model that will allow the simulation of the dispersion process,
based on the tracking of a single particle for multiple times
with the input from the flow model. These components are
explained below.

3.1 The flow model

Two-equation turbulence closure models for Reynolds aver-
aged Navier–Stokes (RANS) equation have been widely used
in fluid mechanic and coastal engineering for solving various
problems related to turbulent boundary layers. These models
either use the k–ω or k–ε turbulence closure. In these mod-
els, it is possible to solve the Reynolds averaged velocities
(i.e. mean velocities) along with wall shear stresses and tur-
bulence kinetic energy on a time-averaged or phase-resolved
basis.

In the present study, a modified version of the k–ω model
developed by Fuhrman et al. (2013), MatRANS, has been
used for the mean flow and turbulence input necessary for

the longitudinal dispersion simulations. The modification of
the model is a transitional flow option, which can capture
the transition from laminar to turbulent flow conditions. The
model solves simplified versions of the horizontal compo-
nent of the incompressible RANS equations, combined with
the two-equation k–ω turbulence closure model of Wilcox
(2006). The considered RANS equation reads:

∂ ū

∂t
= − 1

ρ

∂ p̄

∂x
+ ν

∂2ū

∂y2 + ∂

∂y

(
νT

∂ ū

∂y

)
(8)

where u, v and w are the streamwise, wall-normal and lat-
eral velocity components, respectively. p is pressure, ρ is
specific mass of fluid, ν and νT are laminar and turbulent
kinematic viscosities, respectively. An overbar denotes the
Reynolds averaging. The turbulence model consists of two
respective transport equations for (1) the turbulent kinetic

energy (per unit mass) k = 1
2

(
u′2 + v′2 + w′2

)
, where the

prime denotes fluctuating components, and (2) the specific
dissipation rate ω (Fuhrman et al. 2013):

∂k

∂t
= νT

(
∂ ū

∂y

∂ ū

∂y

)
− β∗kω + ∂

∂y

[(
ν + σ ∗α∗ k

ω

)
∂k

∂y

]

(9)
∂ω

∂t
= αω

ω

k
νT

(
∂ ū

∂y

∂ ū

∂y

)
− βωω2 + σd

ω

∂k

∂y

∂ω

∂y

+ ∂

∂y

[(
ν + σωα∗ k

ω

)
∂ω

∂y

]
(10)

In Eq. (10), σd is defined as:

σd =

⎧⎪⎪⎨
⎪⎪⎩

0,
∂k

∂y

∂ω

∂y
< 0

σdo,
∂k

∂y

∂ω

∂y
≥ 0

(11)

The turbulent (eddy) viscosity is defined slightly different
from the previous versions of the model:

νT = α∗k
ω

(12)

Here, α∗ is a model coefficient adjusted by a model Reynolds
number ReT as follows:

α∗ = α∗
0 + ReT

Rk

1 + ReT
Rk

, ReT = k

ω · ν
(13)

When α∗ is unity, the model becomes identical with that of
Fuhrman et al. (2013). Similarly, α and β∗ coefficients are
also adjusted by ReT.
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α = 13

25

α0 + ReT
Rω

α∗
(

1 + ReT
Rω

) (14)

β∗ = β∗
0

100
27 βω +

(
ReT
Rβ

)4

1 +
(
ReT
Rβ

)4 (15)

The values assigned to rest of the model coefficients are given
as follows:

βω = 0.0708 α0 = 1
9 α∗

0 = 1
3βω

β∗
0 = 9

100 Rω = 2.61 Rk = 3 Rβ = 8

σω = 1
2 σdo = 1

8 σ ∗ = 3
5

(16)

Since the flow model does not give the turbulent fluctuations
separately but only the turbulent kinetic energy (k), wall-
normal turbulence fluctuating velocity, v′2, is estimated by
the following approximation suggested by Nezu and Naka-
gawa (1993):

v′2 ≈ 0.34 k (17)

Finally, a length scale of turbulence, 
, is defined as follows:


 =
√
k

ω
(18)

The flow model is solved for the lower half of the tunnel
due to symmetry around the centreline. In the model, a no-
slip condition is imposed at the bottom boundary (i.e. wall),
where the velocity is zero. For the turbulent kinetic energy,
also a zero value is imposed at the wall (i.e. k = 0). For
specific dissipation rate, ω, the following bottom boundary
condition adopted from Wilcox (2006) was used:

ω = U 2
f

ν
SR, y = 0 (19)

in which SR is a factor based on the roughness Reynolds
number k+

s = ksUf /ν where ks is the Nikuradse’s equivalent
sand roughness. SR is given as:

SR =

⎧⎪⎨
⎪⎩

(
200
k+

s

)2
, k+

s ≤ 5

Kr
k+

s
+

[(
200
k+

s

)2 − Kr
k+

s

]
e5−k+

s , k+
s > 0

(20)

Here, Kr is a model coefficient with the value of 50.
On the upper boundary (namely, at the centreline of the

tunnel), a frictionless lid is considered, whereby the shear
stress and vertical derivatives of all variables are set to zero.

The flow is driven by prescribing the pressure gradient
term appearing in Eq. (8). For this study, the following values
are used for the pressure gradient term:

1

ρ

∂p

∂x
= −∂U0

∂t
+ Px (21)

U0 is the desired free stream velocity (U0 = Um sin(ωw t))
and Px is the constant pressure gradient associated with the
hydraulic slope which becomes zero in the case of pure oscil-
latory flow and Px = −U 2

f /h in the case of steady flow.
When the flow model was run for steady flow conditions,

the model time was run for long enough such that all the
flow parameters would remain unchanged with time. When
oscillatory flow conditions are simulated by flow model, it
was seen that after 4th or 5th wave period the model output
started to repeat itself periodically. As such, the flow model
was run for a warm up time of 10 wave periods and the
values in the final wave period of the model were extracted
for repeated use in the dispersion model.

In this version of the model, secondary (convective) terms
were not included in the model equations. Therefore, when
simulating the oscillatory flow, the steady streaming associ-
ated with the wave boundary layers is not considered. For
other details of the MatRANS model, Fuhrman et al. (2013)
can be consulted.

3.2 The dispersion model

The dispersion process is studied, using a random-walk
model. The random-walk model is a particle-based model
where a number of particles (N ) are released from a point
source (or a line or plane source) one after another, each
being tracked from time t = 0 to a time of t = t . A parti-
cle placed at a vertical position is convected in the vertical
direction by (1) the vertical fluctuating velocity, and (2) the
fall velocity of the particle itself, while it is convected in
the horizontal direction by the horizontal mean velocity. The
model assumes that the vertical fluctuating velocity exists
for a small time interval. The magnitude and direction of the
vertical fluctuating velocity are the random elements of the
model. The path of an initially marked particle position is
calculated as the sum of a series of such small time intervals
as the particle migrates through the statistical field variables.
Many such paths are used to compile the statistical proper-
ties by means of an ensemble average. In the simulations,
the particles are maintained in the main body of the flow all
the time. To this end, the particles coming very close to the
bottom are re-entrained into the flow, as will be detailed later.

We note that no interaction between the particles (grain-
to-grain collision) is taken into account in the simulations,
implying that simulations are not valid for extremely high
concentrations. Also, the bouncing of particles at the bed is
considered to be due to near-bed turbulence alone. This is a
valid approximation for sediment covering silt, fine sand and
even partly medium-size sediment.

123



J. Ocean Eng. Mar. Energy (2016) 2:59–83 65

To the authors’ knowledge, Sullivan (1972) and Sumer
(1973) were the first to use a random-walk model for the pur-
pose of simulating the longitudinal dispersion processes in
a turbulent open-channel flow, Sullivan (1972) for neutrally
buoyant particles, and Sumer for heavy particles. Bayazit
(1972) also used a similar random-walk model to calculate
the settling distances of heavy particles in a turbulent open-
channel flow.

In the present study, the simulations were carried out for
three kinds of flow environments: (1) for a steady flow in a
tunnel; (2) for an oscillatory flow in an oscillating tunnel,
and (3) for an oscillatory flow in a wave boundary layer.
The steady flow case is included as a reference case, which
also enables the model validation as well. The model is also
validated in the case of the oscillating tunnel against the
laboratory experiments carried out in an oscillating tunnel,
described in the next section. The third case, the wave bound-
ary layer, is included to demonstrate the implementation of
the model in a real-life situation.

The flow domain is defined as a 2D tunnel (Fig. 2). The
hydrodynamic model is run for the half-space 0 < y < h first,
and then the flow domain for dispersion model is defined by
vertically mirroring the hydrodynamic model output about
the center line.

In all the three cases, the bottom wall of the flow envi-
ronment is considered to be hydraulically smooth. When
particles get very close to the wall, they may get embed-
ded in the viscous sub-layer since the turbulence fluctuations
are very small there. To prevent this, the particles are not
allowed to travel closer to the wall than a certain distance,
δb, taken to be equal to the thickness of viscous sub-layer,
similar to Sullivan (1972) and Sumer (1973):

δ+
b = 5y+ or δb = 5

ν

Uf
(22)

where Uf is the friction velocity in the steady flow case, or
the amplitude of the friction velocity, Ufm, in the oscillatory
flow cases (the oscillating tunnel and the wave boundary layer
cases).

The particles are initially released from x = 0 in the form
of a line source (aligned with equal vertical intervals) at the
instant t = 0. The initial y position of the nth particle, yn0,
will, for example for the case of the oscillating tunnel, be

yn0 = δb + 2(h − δb)

N + 1
n (23)

in which N is the total number of particles released. Once
a particle is released, it will move in small discrete steps.
Each step will take a time �t , and the particle will change its
horizontal (streamwise) and vertical (wall-normal) positions
from x and y to x + �x and y + �y, respectively. The time
interval �t for each step is calculated by

�t = 
p√
v′2

(24)


p = b · 
 (25)

Here,
√

v′2 is the standard deviation of the wall-normal veloc-
ity component. The statistical character of the wall-normal
velocity fluctuations is represented by the Gaussian (nor-
mal) distribution whose mean value is zero (v̄ = 0) and
variance is a function of the wall-normal distance for the
steady flow case,

(√
v′2(y)

)
, and a function of both the wall-

normal distance and the phase for the oscillatory flow cases,(√
v′2(ωw t, y)

)
in Eq. (24) is a length scale of turbulence

that quantifies the vertical motion of the particles and this
quantity, too, is a function of the wall-normal distance for
the steady flow case, 
p(y), and a function of both the wall-
normal distance and the phase for the oscillatory flow cases,

p(ωw t, y). As seen in Eq. (25), the scales 
 and 
p are linked
by the coefficient b, which is a constant that serves as a tun-
ing parameter for the length scale. For the present model, the
tuning was performed with the values of the dispersion coeffi-
cients of steady flow case obtained by the analytical models
(Elder 1959; Sumer 1974). The value of b that makes the
model results match the analytical values best came out to be

7.75. The quantities 
 and
√

v′2 are calculated from the flow
model through Eqs. (17) and (18), respectively.

The vertical displacement of the particle, �y, is calculated
from

�y = (v′ − ws) · �t (26)

For neutrally buoyant particles, ws is obviously set equal to
zero. Here, v′ is the vertical fluctuation velocity calculated by

v′ = ar ·
√

v′2(ωw t, y) (27)

where the coefficient ar is a random variable whose proba-
bility density function satisfies the normal distribution with
a mean equal to 0 and standard deviation of 1 (i.e. a standard
normal variable). Thus, v′ can either be positive or negative,
which will also affect the direction of the particle’s vertical
displacement. It is worth mentioning that, for the sake of
physical consistency, the value of �y was not allowed to be
greater than 2h.

For the particles to be maintained in the main body of the
flow, the following conditions are employed:

y2 =

⎧⎪⎪⎨
⎪⎪⎩

y + �y, when δb < y + �y < (2h − δb)

2(2h − δb) − (y+�y), when y+�y≥(2h − δb)

max {δb, [2δb − (y + �y) − ws · �t]} ,

when y + �y ≤ δb

(28)
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in which y2 is the new position of the particle in the verti-
cal. Similar conditions are applied for the case of the wave
boundary layer, to ensure that the particle is maintained in
the flow all the time.

As the particle travels up and down in the flow domain, it
will be carried by the flow in the streamwise direction. The
Eulerian streamwise velocity of the flow, ū(ωw t, y), varies
as a function of wall-normal distance and also the phase.
A particle released in such a flow field will experience a
time dependent Lagrangian velocity, U , as it is convected
downstream. The horizontal distance travelled by the particle
during the time interval �t is

�x =
t+�t∫

t

Udt (29)

For the steady flow case, Eq. (29) can easily be expressed in
terms of Eulerian velocity:

�x = 1

(y2 − y)

y2∫

y

ū(y) dy · �t (30)

For the oscillatory-flow case, however, this velocity is calcu-
lated by the following numerical integration:

�x =
t+�t∫

t

Udt

≈ 1

M

M∑
m=0

ū
(
ωw

(
t + m

M
�t

)
, y + m

M
�y

)

︸ ︷︷ ︸
average Lagrangian velocity of the particle

·�t (31)

in which ū(ωw t, y) is taken from the flow-model calculations
and M is an integer of resolution that holds the following
condition:

M ≥ max

{
1000 · �t

Tw
, max

[
1000

�y

h
,

1

5
· �yU f

ν

]}
(32)

Here, Tw is the wave period equal to Tw = 2π
ωw

. If the particle
is bouncing from any of the flow boundaries, then Eq. (31) is
evaluated separately from the particle initial position to the
boundary and from the boundary to the particle final position.

In the oscillatory flow cases, the value of �t needs to be
limited with a fraction of the wave period, Tw, considering
that the timescale of turbulent motion should be significantly
smaller than the wave period. In other words, the vertical
travel of the particle cannot be sustained with a constant ver-
tical velocity for long durations comparable with the wave
period, given that the statistical properties of the turbulence
characteristics are a function of the phase (i.e. ωwt). For
example, for each Tw/4 time interval, the free stream veloc-

ity rises from minimum (0) to maximum (Um) along with
the bed shear stress and associated turbulence characteris-
tics. Thus, one would expect that �t cannot exceed, say, a
quarter of the wave period. The comparison of the numerical
model results with that of the experiments showed that lim-
iting the travel time to be �t ≤ 0.15 Tw gives a better match
with the experiments. We further note that the difference in
the dispersion coefficient caused by the selection of limiting
value as 0.15 Tw and 0.25 Tw is rather small. It should also
be mentioned that when a

h ≥ 20, the effect of limiting �t on
dispersion coefficient vanishes.

The calculation procedure implemented in MATLAB
environment is summarised as follows:

1. Run the flow model for the designated flow conditions
and obtain ū(ωw t, y), k(ωw t, y) and 
(ωw t, y) for the
lower half of the oscillating tunnel

2. Calculate
√

v′2(ωw t, y) and
p(ωw t, y)matrices through
Eqs. (17) and (25), respectively

3. Mirror the matrices in step 2, to include also the upper
half of the tunnel

4. Line-up N particles with the designated β at x = 0 and
t = 0 along the vertical with intervals described by Eq.
(23)

5. Release the N particles one by one and run the dispersion
simulation for each particle until t = tend.

(a) For the given phase (ωwt) and vertical location (y) of

the particle, pick up the values of 
p and
√

v′2 from
the relevant matrices and calculate �t via Eq. (24)

(b) Check if �t ≤ 0.15Tw

(c) Calculate the random v′ and �y from Eq. (27) and
(26), respectively

(d) Calculate y2 from Eq. (28)
(e) Calculate �x from Eq. (31)
(f) Update t , x and y as t = t + �t , x = x + �x and

y = y2

(g) If t < tend, continue the simulation with repeating
the steps a–f

(h) If t > tend, discard the last vertical travel of the parti-
cle and arrange a final travel by designating �t = tend

– t .
(i) Save the path of the particle and go to step 5 for a

new particle

6. After the last (N th) particle completes its path, stop the
dispersion simulation and calculate the relevant particle
statistics.

4 Experiments

The experiments were conducted in the oscillating U-tunnel
facility located at the Hydraulics Laboratory of Technical
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Fig. 3 Longitudinal and cross-sectional sketch of the oscillating U-tunnel and experimental setup

University of Denmark. A detailed description of the tunnel
can be found in, e.g. Jensen et al. (1989). The longitudinal and
cross-sectional sketches of the U-tunnel are given in Fig. 3.
The walls of the U-tunnel were smooth. A vertical sheet of
light by means of LED spots, 3 cm in thickness at the top
of the tunnel, and 4 cm at the bottom of the tunnel (Fig. 3),
was established to illuminate the particles travelling in the
tunnel. The length of the light sheet was 2 m. The particle
trajectories were videotaped with a camera (Fig. 3) through
the transparent side wall of the tunnel at a rate of 50 frames
per second. The camera angle was calibrated such that the
distortion introduced by the lens was corrected.

A spherical particle, printed in plastic using a 3D printer,
was used in the experiments. The particle size, the specific
gravity and the settling velocity of the particles were d = 2.9
mm, s = 1.19 and ws = 9.8 cm/s, respectively.

The free stream velocity was measured by a Dantec
Dynamics FiberFlow laser Doppler anemometer (LDA) at
14.5 cm away from the bed (i.e. at the centreline of the
tunnel). The LDA signal also served as a reference signal
for monitoring the phase of the flow during particle track-
ing experiments. In addition to free stream velocity, velocity
profiles were determined by means of LDA measurements
conducted at 30 positions across the half thickness of the
oscillating tunnel. At each location, velocity measurements
were taken for 50 wave periods and ensemble averaging was
conducted to obtain the Reynolds averaged velocity as a func-
tion of the phase, ū(ωwt, y). These measurements are not
included here for reasons of space.

For the determination of the friction velocity, Ufm, direct
measurements of bed shear stress were conducted with a
Dantec Dynamics 55R46 Hot-film probe. These measure-
ments were also conducted for 50 wave periods to obtain the
ensemble-averaged values.

Three sets of experiments were conducted, with Rew = 6
× 105, 1.5 × 106 and 3.3 × 106, respectively. The period
of the oscillatory flow was kept constant as Tw = 9.72 s
(the natural oscillation period of the tunnel). The flow prop-
erties and the particle properties are summarised in Table 1.
In this table, θ is the Shields parameter. The boundary layer
thicknesses (δ) given in Table 1 were calculated by means of
the flow model. Note that these δ values are in good agree-

ment when compared with the values obtained from the mean
velocity profiles measured at ωwt = 90◦.

In the experiments, the particle was released into the flow
domain multiple times (Table 1, last column). Then, the par-
ticle trajectory was videotaped, and subsequently the mean
particle position and the variance along with the longitudi-
nal dispersion coefficient were calculated. Similar particle
tracking experiments were previously conducted by Sumer
and Oguz (1978) and Sumer and Deigaard (1981) in an open
channel flow.

One of the limitations of the experimental setup was that,
it was not possible to track the particles too long before they
disappear out of the light sheet. Typical durations of monitor-
ing were about one wave period. It should also be noted that
the particles might be lost for some frames in the video, but
then found again and subsequently tracked. The last three
columns of Table 1 refer to the minimum, maximum and
mean number of particles that could be tracked at each frame
during one complete wave period. Further details about the
experiments can be found in Steffensen (2014).

5 Results

5.1 Validation of the flow model

The flow model used in this study, MatRANS, will be
validated against different steady and unsteady flow cases
(Fuhrman et al. 2013). For validating the results of the present
modified version of the model, it is compared with the oscil-
latory flow measurements of the literature.

Figures 4, 5 and 6 present the comparison of model results
with the experimental data of Jensen et al. (1989) for the

oscillatory flow case of Rew = U2
m

ων
= 6.2×106. Note that in

Figs. 5 and 6, the y-axis is non-dimensionalised by the hor-
izontal amplitude of the free stream motion, a = Um/ωw.
In Fig. 4, the variation of the friction velocity, Uf , during
one period is given, whereas Reynolds-averaged velocity
profiles for different wave phases are shown in Fig. 5. As
can be seen there is a good agreement between the model
results and the experimental data. The turbulence kinetic
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Table 1 The experiments conducted in the oscillating tunnel

Um (m/s) a = UmTw
2π

(m) Rew = Um a
ν

Ufm (cm/s) δ (cm) a/h β θ = U2
fm

(s−1)gd N

Min. Max. Mean

0.63 0.97 6.0 × 105 3.3 1.5 6.7 7.2 0.22 119 534 286

1.03 1.59 1.5 × 106 4.9 2.8 10.7 4.8 0.47 356 630 511

1.54 2.38 3.3 × 106 6.6 3.9 16.4 3.6 0.83 140 350 240

Fig. 4 Comparison of model
results for oscillatory flow with
the measurements of Jensen
et al. (1989) (Rew = 6.2 × 106).
Variation of friction velocity
during one wave period
(Uf/Um vs.ωwt)

0 45 90 135 180 225 270 315 360
0

0.005
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0.015

0.02

0.025

0.03

0.035

0.04

ωwt(°)

Uf

Um

Computed

Jensen et al. (1989)

Fig. 5 Comparison of model
results for oscillatory flow with
the measurements of Jensen
et al. (1989) (Rew = 6.2 × 106).
Left and right panel show the
velocity profiles in acceleration
and deceleration stages of the
flow for each 15◦ increments of
ωwt . Symbols same as in Fig. 4

energy profiles for different wave phases are given in Fig. 6.
It should be noted that the turbulence kinetic energy val-
ues from Jensen et al. (1989) were not directly measured in
three dimensions, but approximated by k ≈ 0.65(u′2 + v′2)
(Justesen 1991). Generally, the model can capture the tur-
bulent kinetic energy profiles well. Yet, the turbulence in
deceleration phases (where the pressure gradient is adverse)

seems to be relatively underestimated by the model. It is
worth mentioning that comparison against the steady flow
data from Fuhrman et al. (2010) has likewise yielded a very
good agreement both for mean flow and turbulence proper-
ties, though these results are not included herein for brevity.

Similar to the flow model used in this study, recently Tang
and Lin (2015) developed a RANS model established on the
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Fig. 6 Comparison of model results for oscillatory flow with the measurements of Jensen et al. (1989) (Rew = 6.2 × 106). Turbulent kinetic
energy profiles for each 15◦ increment of ωwt . Symbols same as in Fig. 4

k–ω baseline formulation, which can simulate the turbulent
as well as transitional boundary layer flows. They also com-
pared their findings with the experimental data of Jensen et al.
(1989), yielding a good agreement.

5.2 Longitudinal dispersion in steady flow

Throughout the present section, the results will be presented
in non-dimensional forms with

X = x

h
, Y = y

h
, T = tUf

h
, U = u

Uf
(33)

Before the results of dispersion model were acquired, a sen-
sitivity analysis was conducted with different number of par-
ticles to optimize the number of particles, N , to be used in the
simulations. This is obviously a trade-off between computa-
tional effort and higher accuracy. The results of these prelimi-
nary runs are given in Fig. 7. As can be seen, when the number
of particles reaches roughly 10,000, the mean and variance
of particle positions become practically stable. Therefore,
N = 10,000 was adopted for the dispersion simulations.

The flow parameters used in the simulations are as fol-
lows: The half thickness of the tunnel, h = 14.5 cm, the

mean flow velocity, V = 2 m/s, the friction velocity, Uf = 8
cm/s. The simulations were conducted over a time period of
0 ≤ T ≤ 20, which corresponds to 0 ≤ t ≤ 11 s with the
present flow parameters. The vertical and horizontal particle
positions (snapshot of particle locations) were recorded by
interpolation at frequent time intervals (with 0.1 in terms of
non-dimensional time). The simulations were conducted for
different settling velocities, covering 0 ≤ β ≤ 1.

Figure 8 shows the time series of mean particle positions
for neutrally buoyant particles. On this figure, the displace-
ment obtained by integration of sectional average velocity
(V ) is also shown. As can be seen, the mean particle veloc-
ity (i.e. velocity of the particle cloud) is almost identical to
the mean cross-sectional velocity. In other words, Eulerian
velocity and Lagrangian velocity are equal, as expected in a
steady (∂/∂t=0) and uniform (∂/∂x=0) flow environment.

The concentration of particles, c(x, y, t), can be defined
as the number of particles per unit area. The non-dimensional
particle concentration, C , can then be defined as:

C(X,Y, T ) = c
h2

N
(34)

Using Aris’ moment method, Sumer (1974) found that the
zeroth moment of concentration, defined by

123



70 J. Ocean Eng. Mar. Energy (2016) 2:59–83

Fig. 7 Sensitivity of mean and variance of particle positions with respect to the number of particles released into the flow, N , in the random walk
simulation

Fig. 8 Non-dimensional mean
particle X positions versus
non-dimensional time, steady
flow, neutrally buoyant particles
(β = 0)
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Fig. 9 Zeroth moment of concentration (C0) for large times compared
with analytical solution, steady flow, neutrally buoyant particles (β = 0)

C0 =
∞∫

−∞
Cdξ (35)

in which

ξ = x −U t

h
(36)

is, for large times, given as:

C0(Y, T ) = sin πβ

πβ

(
1 − Y

Y

)β

, T > 7.5 (37)

For neutrally buoyant particles C0(Y, T ), for large times,
becomes unity. In Fig. 9, the zeroth concentration moment
calculated from the present simulation (corresponding to
T = 20) is plotted. The concentration value is not 1 but 0.5
since the thickness of the flow domain is 2h. As can be seen,
model results are consistent with the analytical expression.

Figure 10 shows the variance of the particle X positions
plotted as function of time. Initially the variance increases

with time like (X − X)2 ∝ t2, but after approximately T ≈
3, it increases linearly, (X − X)2 ∝ t , in agreement with the
theory.

When the same simulation is conducted for heavy particles
with β = 0.3, the picture changes significantly. Figure 11
shows the particle mean X positions with time. It can be seen
that the particle cloud travels slower than the mean Eulerian
flow velocity and it is delayed more and more with time.

In Fig. 12, the zeroth concentration moment at T = 20
is given for a heavy particle with β = 0.3 along with the
analytical profile from Sumer (1974), Eq. (37) above. A good
agreement can be seen.

Fig. 10 Change of non-dimensional particles variance with time,
steady flow, neutrally buoyant particles (β = 0)

Fig. 11 Non-dimensional mean particle X positions versus non-
dimensional time, steady flow, heavy particles (β = 0.3)

Fig. 12 Zeroth moment of concentration (C0) for large times com-
pared with analytical solution, steady flow, heavy particles (β = 0.3)

The numerical simulation has been repeated for particles
with different settling velocities. The results of these simula-
tions are presented in Fig. 13 in terms of the ratio of dispersion
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Fig. 13 Ratio of dispersion coefficient for heavy particles to that of
neutrally buoyant particles versus the non-dimensional settling velocity
(β)

coefficient of heavy particles to that of neutrally buoyant par-
ticles (D1(β)/D1(0)). The dispersion coefficient is obtained

from D1 = 1
2

d(X−X)2

dT for large times (Eq. 4), i.e. half of the
slope of the straight line in the variance plot (in Fig. 10). Inci-
dentally, the numerical value of the dispersion coefficient for
neutrally buoyant particles was found to be D1(0) = 5.96,
and this value is in good agreement with that obtained analyt-
ically by Elder (1959), D1(0) = 5.86. Along with the model
results, the analytical solution of Sumer (1974) and numeri-
cal solution of Sayre (1968) are also plotted in Fig. 13. As the
particles become heavy, the dispersion coefficient increases
significantly, since they start to be transported close to bed
where the velocity gradient is steeper. The model results gen-
erally agree with the analytical solution of Sumer (1974). The
slight discrepancies in Fig. 13 may be attributed to the way
in which the reflective boundary condition at the bottom is
formulated in these three studies.

The simulation results summarised in the preceding
appear to be in good agreement with the existing informa-
tion. This has provided confidence in the use of the present
methods for the oscillatory flow cases studied in the present
research.

5.3 Longitudinal dispersion in oscillating tunnel

The flow parameters used in the oscillating-tunnel simula-
tions are summarised in Table 2. The friction velocity (Ufm)

and boundary layer thickness (δ) values given in the table
were obtained from the results of flow model runs.

Figures 14 and 15 display the particle trajectories for two
cases, one for the case of the neutrally buoyant particle (β =
0), and the other for a heavy particle with β = 0.3. The
particles are released from the middle of the flow domain
and tracked for five wave periods. From Fig. 14, it is seen that Ta
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Fig. 14 Non-dimensional path
of a neutrally buoyant (β = 0)
particle released in oscillatory
flow for five consequent wave
periods, a/h = 21.4 and
Rew = 6.2 × 106

Fig. 15 Non-dimensional path
of a heavy (β = 0.3) particle
released in oscillatory flow for
five consequent wave periods,
a/h = 21.4 and
Rew = 6.2 × 106

the particle is moving dominantly by the free stream velocity
when it is away from the walls. Yet, the turbulence and steep
velocity gradient make the particle path deviate from the free
stream whenever the particle comes close to the walls. This
particle spends its time more or less uniformly across the
thickness of the flow domain.

Figure 15 shows the path of the heavy particle (with
β = 0.3). The aspects mentioned in the preceding paragraph
can more vigorously be seen in this figure. Since this particle

is a heavy particle, it spends more time closer to the bottom,
and thus experiences relatively stronger shear and turbulence.
Hence, one would expect that heavy particles would be sub-
jected to higher dispersion, just as in the case of steady flow.

For direct comparison, Fig. 16 presents the velocity gradi-
ent experienced by the two particles throughout their paths.
In the oscillatory flow case, the mean of the non-dimensional
velocity gradients for the neutrally buoyant particle (β = 0)
and heavy particle (β = 0.3) is around 5 and 36, respec-
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Fig. 16 The non-dimensional
velocity gradients ( ∂U

∂Y ) that the
particles in Figs. 14 and 15
experience along their paths

Fig. 17 Non-dimensional
variance of particle position

( (x−x)2

δ2 ) as a function of

non-dimensional time (
tU

fm
δ

) for
the oscillatory tunnel case, black
line phase-averaged variance.
Neutrally buoyant particles
(β = 0), a/h = 21.4, and
Rew = 6.2 × 106

tively. The difference is around a factor 7 and shows how the
settling velocity of the particle affects the dispersion process
significantly.

Figure 17 presents the variance in non-dimensional form

( (x−x̄)2

δ2 ) plotted versus non-dimensional time ( tUfm
δ

) for the
neutrally buoyant particle. In this flow case, one wave period
corresponds to 16.33 in terms of non-dimensional time. Con-
trary to the steady flow case, the variance does not increase
with a constant rate, but it exhibits an increase at a constant
rate with a superimposed periodic variation. Note that this

behaviour was also observed by other researchers as well,
e.g. Mazumder and Paul (2012). The non-dimensional dis-
persion coefficient of neutrally buoyant particles ( D1

δUfm
) is

found to be around 1.5, a factor 4 smaller than the steady
flow case.

To demonstrate the effect of a/h on the dispersion process,
the following parametric study was conducted. First, the half
thickness of the flow domain (h) was kept constant at 14.5 cm
and a/h was changed by changing the wave Reynolds num-
ber (Rew) of the oscillatory flow from 2.7×105 to 9.9×107

(Group no. 1 experiments in Table 2). Secondly, Rew was
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Fig. 18 Variation of
non-dimensional dispersion
coefficient for neutrally buoyant
particles (β = 0) with
non-dimensional amplitude
(a/h). Circles Rew = 6.2 ×106,
Triangles variable Rew

Fig. 19 Non-dimensional
variance of particle position

( (x−x)2

δ2 ) as a function of

non-dimensional time (
tU

fm
δ

) for
oscillatory tunnel case, black
line phase-averaged variance.
Heavy particles (β = 0.3),
a/h = 21.4, and
Rew = 6.2 × 106

kept constant at 6.2×106 and h was changed covering a
wide range of a/h (Group no. 2–10 experiments in Table
2). For each case, the non-dimensional dispersion coeffi-
cient was calculated as a function of a/h. The results are
plotted in Fig. 18. As can clearly be seen here, both the
above results collapse generally onto the same curve, which
evidently shows that the non-dimensional dispersion coef-
ficient is not dependent on Rew, but it is a function of a/h.
The results presented by Fig. 18 further show that the dis-
persion coefficient increases with increasing a/h and attains
asymptotically to the dispersion coefficient for steady open-
channel-flow value. This is expected because, for large values
of a/h (very small values of the tunnel height), the parame-

ter a/h will not play any significant role in the oscillatory
boundary layer process, as the boundary layer will extend
across the entire tunnel height and, therefore, the tunnel
height is no longer a controlling parameter for the bound-
ary layer process. The decrease in the dispersion coefficient
with decreasing a/h, on the other hand, can be explained as
follows. The smaller the value of the parameter a/h, the larger
is the tunnel height and, therefore, the particle should expe-
rience smaller velocity gradients during its travel in the flow,
implying that the dispersion coefficient should decrease with
decreasing a/h.

The dispersion of heavy particles with β = 0.3 was sim-
ulated for the oscillatory tunnel case depicted in Figs. 4, 5
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Fig. 20 The zeroth
concentration moment of heavy
particles (β = 0.3) for
oscillatory flow compared to
steady flow. a/h = 21.4, and
Rew = 6.2 × 106

Fig. 21 Variation of non-dimensional dispersion coefficient with non-dimensional amplitude (a/h) for different non-dimensional settling velocities
(β)

and 6 (i.e. Rew = 6.2×106 and a/h = 21.4). The time vari-
ation of variance of particle positions in non-dimensional
form is given in Fig. 19. The behaviour is similar to that of
the neutrally buoyant particle, but the dispersion is stronger,
given that the particle spends more time close to the bed. The
dispersion coefficient came out to be around 4, more than a
factor two higher than the neutrally buoyant case. Recall that,
in the case of the steady flow, the dispersion coefficient for
β = 0.3 was found to be approximately 10, a significantly
higher value.

The zeroth concentration moments (i.e. concentration pro-
files) of heavy particles are given in Fig. 20. On this figure,
the concentration profile of the same particle in steady flow is
also shown. As can be seen, the particles tend to come closer
to the bed in the oscillatory flow case as compared to the
steady flow. Turbulence cannot counterbalance the settling
tendency of particles as pronounced as in the steady flow
case. As a result, fewer particles can be carried to the upper
regions of the flow domain.
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With the purpose of clearly demonstrating the non-
dimensional dispersion coefficient as a function of β and
a/h, the model was run for a wide range of the two govern-
ing parameters (Table 2). Results are given as a family of
curves in Fig. 21. Note that the β = 0 curve in Fig. 21 is
identical with the circles in Fig. 18.

Figure 21 suggests that the dependency of the dispersion
coefficient on non-dimensional amplitude gets weaker as the
particles get heavier (i.e. for large β values). Likewise, for
short amplitudes (a/h <40) the effect of β on the dispersion
coefficient is more dominant than longer amplitudes.

In the study of Mazumder and Paul (2012), the bed
condition defined for the particles was different than the
present study, such that a settlement (bed absorbency) and
re-entrainment procedure was employed. Furthermore, their
study does not clearly state an increase in the dispersion coef-
ficient with increasing settling velocity. Thus, the two studies
are not directly comparable. Nevertheless, the time variation
of the variance found by Mazumder and Paul (2012) quali-
tatively agrees well with the present results (Figs. 17, 19).

Ng (2004) carried out an analytical study to find out the
dispersion coefficients of neutrally buoyant particles in oscil-
latory flow. They used the free stream velocity and amplitude
of the horizontal motion to non-dimensionalise the dispersion
coefficient. When converted to the terms of the present study,
their findings for a/h = 32 and 96 come out to be D1

δUfm
≈ 3.8

and 5, respectively. In the present model, those two values
are found as 3.1 and 4.2. When compared, these findings are
not radically diverse, given that the methodology followed
by Ng (2004) and the present study is quite different.

5.4 Comparison with the oscillating tunnel experiments

As given in Sect. 4, three oscillating tunnel experiments were
conducted (Table 1). The non-dimensional settling veloc-
ity of the particles in these experiments was relatively high
(namely β = 3.6, 4.8 and 7.2). Nevertheless, the bottom
conditions were such that the particles did not deposit on the
bottom when they came close to the bottom, and they were
maintained in the flow all the time. These experiments were
simulated in the numerical model and obtained results are
compared with those of the experiments.

Figures 22, 23 and 24 compare the results of the con-
ducted experiments (Table 1) and the numerical simulation
for the phase-averaged zeroth moment of concentration pro-
files (C0) as a function of non-dimensional vertical distance
(Y ).

As is seen from the figures, the numerical simulations
exhibit a general agreement with the experimental results for
all the cases. For β = 3.6, the numerical model estimates the
concentration at the upper regions slightly lower compared
to the experimental results. As for β = 7.2, the estimate
of the model is fairly more uniform while the experiment

Fig. 22 Phase-averaged zeroth moment of concentration (C0) profile,
β = 3.6, a/h = 16.4,Rew = 3.3 × 106

Fig. 23 Phase-averaged zeroth moment of concentration (C0) profile,
β = 4.8, a/h = 10.7, and Rew = 1.5 × 106

Fig. 24 Phase-averaged zeroth moment of concentration (C0) profile,
β = 7.2, a/h = 6.7, and Rew = 60 × 105

gave a more peaked result. It should, furthermore, be noted
that this case also corresponds to the lowest wave Reynolds
number (6 × 105), which is in the transitional regime. A
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Fig. 25 Mean particle position
(X) as a function of phase
(ωwt), β = 3.6, a/h = 16.4,
Rew = 3.3 × 106

Fig. 26 Mean particle position
(X) as a function of phase
(ωwt), β = 4.8, a/h = 10.7,
Rew = 1.5 × 106

probable explanation why the model seems to perform bet-
ter for β = 4.8 is that, the number of particles captured in
the experiments with β = 4.8 is almost two times larger
than the other two experimental sets (Table 1). As the num-
ber of particles is increased, a better resolution of vertical
concentration profile of particles could be obtained in the
experiments, and thus a better comparison with the numer-
ical results was maintained. These results suggest that the

numerical model can capture the suspension behaviour of
heavy particles reasonably well.

The variation of the mean particle positions (X) recorded
as a function of phase (ωwt) during the three experiments
is shown in Figs. 25, 26 and 27, respectively, along with the
results of the numerical simulation. Recall that ωwt = 0 cor-
responds to the zero up-crossing point in the free stream
velocity. The lower panes of these figures show X0 =
−a cos(ωwt), the non-dimensional displacement of the fluid
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Fig. 27 Mean particle position
(X) as a function of (ωwt),
β = 7.2, a/h = 6.7,
Rew = 6.0 × 105

Fig. 28 Non-dimensional
variance of particle position

( (x−x̄)2

δ2 ) as a function of

non-dimensional time ( tUfm
δ

), a
Experiments (black line
phase-averaged variance), b
Numerical simulations. β = 3.6,
a/h = 16.4, Rew = 3.3 × 106

(a) (b)

in the free stream as a reference signal. In these figures, the
phase-averaged positions of particles in numerical and exper-
imental results are matched at X = 0, since the experiments
start from an arbitrary position.

For all the three tested cases, the displacement of the par-
ticles in the oscillating tunnel experiments is approximately
30 % lower compared to the numerical simulation results.
This is somehow expected, since the particles in the oscillat-
ing tunnel have a finite size and a higher specific mass than
water, and thus they experience a certain lag each time the
surrounding fluid is accelerated owing to their inertia.

The variance of particle positions in non-dimensional

form ( (x−x̄)2

δ2 ) is presented as a function of the non-

dimensional time ( tUfm
δ

) in Figs. 28a, 29a and 30a for the
three cases, such that the half of the slope of the straight line
in the variance plot gives non-dimensional dispersion ( D1

δUfm
)

coefficient. Figures 28b, 29b, and 30b display the numerical
simulation results for comparison.

It is seen that the dispersion behaviour in the experi-
ments basically composed of an increasing trend of variance
superimposed with some periodic variations, as depicted in
Sect. 5.3. The time variation of the variance is not captured
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Fig. 29 Non-dimensional
variance of particle position

( (x−x̄)2

δ2 ) as a function of

non-dimensional time ( tUfm
δ

),
a experiments (black line
phase-averaged variance),
b numerical simulations.
β = 4.8, a/h = 10.7,
Rew = 1.5 × 106

(a) (b)

Fig. 30 Non-dimensional
variance of particle position

( (x−x̄)2

δ2 ) as a function of

non-dimensional time ( tUfm
δ

),
a experiments (black line
phase-averaged variance),
b numerical simulations.
β = 7.2, a/h = 6.7,
Rew = 6.0 × 105

(a) (b)

for large times due to the small sample size. Although the
numerical model generally captures the constant increasing
trend fairly well, the periodic variation amplitudes calculated
by the model are significantly lower than those of the exper-
iments, presumably attributed to the settling velocity of the
particles being increased beyond the suspension threshold
(i.e. ws

Ufm
>> 1) .

The results of non-dimensional dispersion coefficients
found from the half of the slope of the trend line of the exper-
imental data in Figs. 28a, 29a and 30a are compared in Table
3. The numerical model result is in fairly good agreement
with the experimental result for β = 3.6 while it differs as
much as more than 35 % for the other two cases. No clear
explanation has been found for this discrepancy. Neverthe-
less, the experimental data suffer from the small sample size,

Table 3 Comparison of model results with experiments

Case D1
δUfm

Rew a/h β Model Experiments

3.3×106 16.43 3.6 5.1 4.9

1.5×106 10.67 4.8 6.0 7.2

6.0×105 6.72 7.2 6.1 9.6

as pointed out earlier. Another possible reason is that the
dispersion model mainly deals with fine sediment which has
low fall velocity and is kept in suspension in almost all times.
As the sediment gets heavier (as the fall velocity increases),
the particles presumably tend to be transported as bed sedi-
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Fig. 31 Non-dimensional
variance of particle position

( (x−x̄)2

δ2 ) as a function of

non-dimensional time ( tUfm
δ

) for
the first eight waves (black line
phase-averaged variance). Water
depth 10 m, β = 0.3,
Hrms = 2.6 m, Tz = 8 s

ment, at least during some phases of the flow, which causes
a discrepancy between the model and experimental results.

6 Longitudinal dispersion in wave boundary layer:
practical application

In this section, a practical example will be given on how
the presented numerical model can be used to simulate the
longitudinal dispersion of heavy particles in wave boundary
layers. The following case is considered:

Excavated material (fine sand with d50 = 0.10 mm) from
a dredging operation is disposed to a coastal area at a depth
of 10 m. The settling velocity of the material is ws = 0.65
cm/s. Some time after disposal, the material disperses under
the action of storm waves with a root-mean square wave
height of Hrms = 2.6 m and zero-crossing period of Tz = 8
s. This process will be simulated as follows by means of the
presented numerical model.

First, the flow model is run for the determination of the
mean flow and turbulence characteristics developing under
the wave boundary layer. As the free stream velocity, the
horizontal orbital velocity at the bed found from the linear
wave theory, Um = 1.01 m/s, was used. The model upper
boundary (i.e. frictionless lid) was set to h = 1 m. It can be
shown by linear wave theory that the orbital velocity at the
top of model upper boundary is practically equal to the one
at the bed (Um(y=1m) = 1.02 m/s). Thus, the oscillatory flow
model results are directly applicable for this wave boundary
layer case.

The flow model yielded a friction velocity of Ufm = 5.5
cm/s and boundary layer thickness of δ = 2.5 cm, compati-
ble with the ones that can be found from the classical wave
boundary layer formulae (e.g. Fredsøe and Deigaard 1992,
chp. 2). For these conditions, the non-dimensional settling
velocity of the particles corresponds to β = 0.3. With the
output of the flow model, the random-walk dispersion model
was run with N = 10,000 particles. The particles are released
from the bed and none of the particles were seen to travel
higher than 0.32 m from the bed. Figure 31 displays the vari-
ance of particle position versus time for the first eight waves
at the beginning of the storm. From the variance-versus-time
data, the dispersion coefficient was calculated as D1

δUfm
= 3.5

or D1 = 4.8 × 10−3 m2/s.
To illustrate the spreading of the dumped sediment as

a result of the dispersion caused by the storm waves, it is
assumed that the initial layer of the dumped sediment (before
the storm breaks) covered a width of B0 = 20 m in a uni-
form manner with a small thickness compared to depth. If
the storm lasts about eight hours, the increase of the variance
of the sediment longitudinal positions can be calculated by
use of Eq. (4):

(
(x − x̄)2

)
1
−

(
(x − x̄)2

)
0

= 2D1 tstorm

= 2 × (4.8 × 10−3) × (8 × 3600) ∼= 277m2 (38)

The variance of initial positions of the disposed sediment
layer, which is composed of N grains uniformly distributed
between − B0

2 and B0
2 , can be calculated as follows:
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Fig. 32 Initial (upper panel) and final (lower panel) concentration distribution (pdf of particles) of the disposed sediment to a depth of 10 m,
β = 0.3, Hrms = 2.6 m, Tz = 8 s, tstorm = 8 h

(x − x̄)2
0 = 1

N

N∑
n=1

(x − x̄)2

= 1

N

N∑
n=1

(
n
B0

N
− B0

2

)2

≈ 33m2 (39)

The result of Eq. (39) converges to a fixed value for N <

100. Hence the variance of the longitudinal positions of the
dumped sediment layer becomes ((x − x̄)2)1 = 310 m2 after
the storm disperses it. With a back calculation employing
Eq. (39), the equivalent width of the sediment layer after
the storm can be found as B1 ≈ 61 m. This example has
been illustrated in Fig. 32, obtained by the model simulation,
which shows the initial and final concentration distribution
(i.e. the probability density function) of the particles in the
dumped sediment layer.

7 Conclusions

In the present study, the dispersion process of suspended
sediments in an oscillatory tunnel is studied with applica-
tion on wave boundary layers. The problem is modelled by
means of a Lagrangian numerical model that combines a k–ω

RANS model and a random-walk numerical scheme. Model
results for dispersion of neutrally buoyant and heavy particles
under different oscillatory flow conditions were presented
and discussed. Finally, an application example regarding the
dispersion of fine sand dumped on seabed under storm waves

was presented. The conclusions drawn from the present study
can be summarised as follows:

• The results for steady flow case show that the model
results are consistent with the existing information in the
literature, and well represent the physics of the process
for suspended particles unless the settling velocity is sig-
nificantly high.

• In the case of oscillatory flow, the variance of par-
ticle positions does not increase monotonously as in
steady flow case, but it exhibits some periodic oscilla-
tions accompanied by a continuous trend of dispersion.

• In the oscillatory flow case, the dispersion process is gov-
erned by the Rouse parameter as well as an additional
non-dimensional parameter representing the amplitude
of the motion. Generally, in oscillatory flow the disper-
sion coefficients are significantly less than that of the
steady flow. The primary reason for this decrease appears
to be the lower shear and turbulence experienced by the
particles. This is demonstrated graphically and numeri-
cally in the study.

• For oscillatory flow, the dispersion coefficient increases
with the settling velocity in a similar manner with the
steady flow case. The reason for this increase is, again,
that heavy particles moving closer to bed experience
a higher shear (i.e. velocity gradient) and turbulence
throughout their paths, which presumably disperses them
farther and farther.

• When the amplitude of the oscillatory motion increases,
dispersion coefficient of neutrally buoyant particles
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increases significantly and asymptotically attains to the
value of the steady, open channel, flow case. As the par-
ticles get heavier (i.e. as the Rouse parameter increases),
the dispersion coefficient under oscillatory flow becomes
less dependent on the amplitude of the motion.

• The comparison of the present findings with the result
of the experimental campaign, conducted in a U-tunnel
facility, showed a reasonable agreement although the
settling velocity values in the experimental study were
beyond the suspension regime.

• Finally, the use of the present model was demonstrated
with a practical case example in which the dispersion of
fine sand under storm waves was studied.

The next stage of the present research shall be includ-
ing provisions for the effect of steady streaming as well
as co-existing current. Additionally, the settlement and re-
suspension processes (see for example Sumer 1977) of the
bed sediment may also be included in the model calculations.
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