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Abstract A 40-chamber I-Beam attenuator-type, oscil-
lating water column, wave energy converter is analyzed
numerically based on linearized potential flow theory, and
experimentally via model test experiments. The high-order
panel method WAMIT by Newman and Lee (WAMIT; a
radiation–diffraction panel program for wave-body interac-
tions, 2014, http://www.wamit.com) is used for the basic
wave-structure interaction analysis. The damping applied
to each chamber by the power take off is modeled in the
experiment by forcing the air through a hole with an area
of about 1% of the chamber water surface area. In the
numerical model, this damping is modeled by an equiva-
lent linearized damping coefficient which extracts the same
amount of energy over one cycle as the experimentally
measured quadratic damping coefficient. The pressure in
each chamber in regular waves of three different height-to-
length ratios is measured in the experiments and compared
to calculations. The model is considered in both fixed and
freely floating, slack-moored conditions. Comparisons are
also made to experimental measurements on a single fixed
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chamber. The capture width ratio in each case is predicted
based on the pressures in the chambers. Good agreement is
found between the calculations and the experiments.
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1 Introduction

Motivated by a desire to decrease global emissions of car-
bon and other environmental pollutants, the world is moving
steadily to replace fossil fuel-based energy supplies with
renewable sources. Ocean wave energy has the potential
to make a significant contribution to this effort. A detailed
description of the resource is given in Barstow et al. (2008).
Estimates for the realistically exploitable resource vary, but
according to the above citedwork it is on the order of 10–25%
of current electricity consumption, while a recent compre-
hensive study by the Electric Power Research Institute in
Jacobsen (2011) estimates that in the USA it could be as
much as 1/3 of current demand. Some countries have even
larger potentials. Wave energy converter (WEC) technol-
ogy is still relatively young compared to wind, water, solar
and even tidal power extraction, and it thus faces significant
hurdles to achieving economically competitive designs. Sig-
nificant political activity has recently been initiated, however,
to mature the industry and speed the large-scale deployment
of wave energy installations, see for example: IEA (2014),
OEE (2014) and SIOcean (2012).

The large-scale exploitation of wave energy will most
likely progress gradually from breakwater-based and near-
shore devices (e.g. WAVENERGY.IT 2014; Oyster 2014)
to smaller- and finally larger-scale deep water sites. The
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progression to deeper water will ideally take place together
with wind power to exploit the combined use of infrastruc-
ture, maintenance services and the shielding effect of the
WECs on the wind turbines. Compared to point absorber and
terminatorWECs, in deepwater attenuator devices have high
theoretical absorption width and lowmooring loads. The low
loads are due to the exploitation of internal (non-rigid-body
mode) degrees of freedom and a subsequent cancelation of
forces along the long ship-like structure oriented parallel to
the main direction of wave propagation. The degrees of free-
dom which are used to extract energy from the waves can
be hinged motions (e.g. Pelamis 2014), individual mechan-
ical oscillators (e.g. Wavestar 2014), or Oscillating Water
Column (OWC) chambers. OWC chambers have the addi-
tional attractive feature of having no moving parts in the
water, albeit at the expense of a generally reduced Power
Take Off (PTO) conversion efficiency associated with exist-
ing air turbines compared to hydraulic systems. OWC-type
modes also offer less freedom in tuning for resonant motions
compared to mechanical oscillators. In-depth presentations
of the history and analysis of WECs are given by for exam-
ple: Falnes (2002), Cruz (2008), Drew et al. (2009), Falcão
(2010), López et al. (2013) and McCormick (2007).

The OWC is one of the oldest and most highly devel-
oped forms of wave energy conversion, having been used
in the late 1800s to produce whistling buoys to warn ships
about dangerouswaters, and since the 1940s as electrical gen-
erators for navigational buoys. Several shore-based power
generation installations have operated successfully for many
years and a number of floating concepts have been tested
over the years. Heath (2012) and CarbonTrust (2005) pro-
vide good overviews of the historical development of the
OWC. Research and development activity in this area has
accelerated dramatically in recent years. A practical exam-
ple is the new U-type OWC design recently developed by
Boccotti (2007, 2012, 2015) and Boccotti et al. (2007). This
design shows dramatically improved absorption width for
fixed installations and is currently being installed in break-
waters at several locations.

The goal of this paper is to clarify a number of sub-
tle details associated with the use of standard radiation–
diffraction theory for the analysis of wave energy devices
which include OWC chambers for wave energy extraction.
By standard radiation–diffraction theory, wemean linearized
potential flow theory solved in the frequency domain, and
we employ here the WAMIT software of Newman and Lee
(2014). Thus all viscous and non-linear effects are neglected,
although we illustrate how iteration can be used to approx-
imate the nonlinear behavior of the air turbine on the OWC
chamber response. We also demonstrate that the calcula-
tions compare well with experimental measurements for
two test cases with one and twenty six degrees of freedom,
respectively. The concept chosen for analysis is a variant of

the I-Beam Attenuator of Moody (1980) which we call the
KNSwing. The original inspiration for this concept comes
from the Kaimei project, see Masuda (1979) and Ishii et al.
(1982), which ran from 1974 through the mid 1980s in Japan
and was designed by Yoshio Masuda who also invented the
above mentioned OWC-powered navigational buoys. The
model considered here consists of forty chambers, each with
internal dimensions of 6m by 5m by 7.5m, giving a total
length of 150m. The target deployment area is the Danish
North Sea, so the chambers are tuned to resonate at wave
periods of around 6s. Model test experiments at a scale of
1:50 are carried out on the full model in both fixed and slack-
moored conditions, and onon a single, fixed, double-chamber
section. The PTO turbine is modeled by a hole in the cham-
ber lid of approximately 1% of the chamber surface area
which is an approximate model for an impulse turbine. Cal-
culations in the frequency domain are made by estimating
an equivalent linearized effective PTO damping coefficient.
The calculations generally agree well with the measured
data. A weakly non-linear time domain model is currently
under development, which we expect to give even better
performance.

2 Theory

Following the work of Evans (1982), standard first-order,
radiation–diffraction theory can be extended to include the
response of one or more partially enclosed OWC chambers,
together with the usual rigid-body motions. The theory is
also discussed in Falnes (2002), Lee and Nielsen (1996) and
Lee et al. (1996) where the last two references have a partic-
ular focus on the implementation in WAMIT. We review the
theory here in some detail for completeness and to highlight
several subtle details which are not entirely obvious in the
above mentioned references.

The flow is assumed to be described by a total velocity
potential �(x, t), satisfying the Laplace equation ∇2� = 0
in the fluid, along with linearized boundary conditions on
the mean free surface at z = 0 and on the mean wetted-body
surface S0, along with a no-flux condition on the solid sea
bottom. As the problem is linear, � can be represented by
the superposition of a number of time harmonic solutions at
different frequencies ω such that

�(x, t) = �
{
φ(x, ω) eiωt

}
(1)

where�{} indicates the real part of a complex quantity. Hav-
ing assumed linearity, we will also require the PTO to be
a linear function of the response. In the context of existing
frequency domain codes, it is convenient to treat the wave
interaction with the internal pressure surface by defining an
extended set of radiation modes j = 7, 8, . . . , 6+ Mp; each
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Fig. 1 A schematic horizontal cross-section of an OWC chamber sec-
tion

ofwhichhas apredefinedmode shape,withMp the total num-
ber of OWC modes defined. Each pressure mode is assigned
a complex amplitude ξ j and amode shape, n j (x, y) such that
the total pressure applied to the interior free surface of the
chamber Si is given by

p0(x, y) = −ρg

6+Mp∑
j=7

ξ j n j (x, y). (2)

The body surface is now extended to include the internal
chamber free surface by defining Sb = S0 + Si , and the
generalized unit normal vector is set to zero on Si for the
rigid-body modes j = 1, 2, . . . , 6; and set to zero on S0 for
the pressure modes j > 6. Figure 1 illustrates the surfaces
for a horizontal cross-section of a single symmetric, double-
chamber OWC section. The applied pressure modifies the
Bernoulli equation on the free surface to give

iω φ + g ζ = − p0
ρ

iω ζ − ∂zφ = 0

}
on z = 0 (3)

which can be combined with (2) to write

∂zφ − ω2

g
φ = − iω

ρg
p0 = iω

6+Mp∑
j=7

ξ j n j , on z = 0 (4)

where ∂z indicates partial differentiation with respect to the
z-coordinate. The potential is nowdecomposed into radiation
and diffraction components in the usual way

φ = φR + φD, φD = A(φI + φS),

φR = iω

6+Mp∑
j=1

ξ jφ j (5)

where A is the incident wave amplitude.
The diffraction potential φD represents the solution for a

fixed body, with p0 = 0, subjected to a wave of amplitude

A incident from heading angle β measured from the positive
x-axis. This incident wave is defined by

φI = ig

ω

cosh [k(z + h)]
cosh (kh)

e−ik(x cosβ+y sin β) (6)

where the wave number k = 2π/λ is related to the wave
frequency via the dispersion relation

ω2 = gk tanh (kh) (7)

with h the water depth, g the gravitational acceleration and
λ the wave length. The wave phase and group velocities are
given by

c = ω

k
, cg = c

2

(
1 + 2kh

sinh (2kh)

)
. (8)

The forcing in the diffraction problem comes only from the
solid body boundary condition

∂nφS = −∂nφI on S0 (9)

where ∂n = n · ∇ indicates the derivative in the direction
normal to the surface. The canonical radiation potentials φ j

correspond either to unit amplitude rigid-body motion or
applied oscillatory pressure on the interior free surface, at
frequency ω. They are combined via the generalized bound-
ary conditions

∂zφ j − ω2

g
φ j = n j , on Si

∂nφ j = n j , on S0 (10)

where the rigid-body modes and the pressure-surface modes
are automatically distinguished by the extended definition of
the normal vector n j . In this way, the pressure modes are
expressed in the same basic form as the normal rigid-body
modes.

In an OWC, power is extracted from the waves using the
motion of the water in the chamber to force air through a tur-
bine. Thus, the critical quantity here is the flux of air through
the chamber. The set of mode shapes n j which define the
pressure distribution inside the chamber can be chosen as
desired, but the most obvious choice is a set of orthogonal
standing modes inside the chamber. With this choice, the
mean (piston-mode) elevation inside a chamber will be the
only mode that contributes to the flux through the turbine. In
this work, we will consider only one mode for each chamber
with n j = (0, 0, 1) on the internal free surface of chamber j
and zero everywhere else on Sb. We note, however, that the
higher modes can influence the flux indirectly since all the
radiation and pressure modes are coupled via the equations
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of motions. If large standing mode oscillations are expected
to occur, then thesemodes should be included in the analysis.

The total volume flux q through the chamber is given by

q =
∫

Si
∂zφ dS =

∫

Si
∂zφD dS +

∫

Si
∂zφR dS

= qD + qR . (11)

The mean power extracted by the turbine over one period of
oscillation is given by

W = 1

T

∫ T

0
�{p0 eiωt } �{q eiωt } dt = 1

2
�{p∗

0 q} (12)

where p∗
0 indicates the complex conjugate of p0 and T =

2π/ω is the wave period. Here, we have assumed that the
behavior of the air turbine is such that there is a linear rela-
tionship between the flux and the pressure in each chamber,

q =
6+Mp∑
j=7

q j , q j = Bj0 p j0, (13)

where p j0 indicates the pressure, and Bj0 the applied damp-
ing coefficient, on the chamber surface S j associated with
mode j . The effects of air compressibility are also neglected
with this assumption. In this case the total mean power
extracted by each chamber over a cycle is given by

Wj = 1

2
Bj0 p

∗
j0 p j0. (14)

The sum of Wj over all chambers gives the total power
extracted, and will normally be expressed as a capture width
ratio by scaling it with the maximum available power pass-
ing through a section of the free surface of length Lc along
a wave crest,

Wmax = 1

2
ρgA2cgLc (15)

where Lc is usually taken to be either the wavelength λ or
the largest dimension of the body.

Combining (11) and (13) with the decompositions of (5)
and (2), we can write a flux-pressure balance equation for
each mean pressure mode j in the form

− Bj0 ρg ξ j − q j R = q jD. (16)

The diffraction flux q jD is defined by (11), and using (4) we
can write this as

q jD =
∫

S j
∂zφD dS = ω2

g

∫

S j
φD dS = iω

ρg
X j (17)

with

X j = −iωρ

∫

Sb
φD n j dS (18)

the standard WAMIT definition of the exciting force coeffi-
cient. Similarly for the radiation flux q j R , we combine Eqs.
(11), (10) and (5) to write

q j R =
∫

S j
∂zφR dS = iω

6+Mp∑
k=1

ξk

∫

S j
∂zφkn j dS

= iω

6+Mp∑
k=1

ξk

∫

S j

(
ω2

g
φk + nk

)
n j dS

= iω

6+Mp∑
k=1

ξk

[
ω2

ρg

(
A jk − i

ω
Bjk

)
− c jk

]
(19)

where

c jk = −
∫

S j
nkn j dS (20)

and we have used the WAMIT definition of the added mass,
and damping coefficients

A jk − i

ω
Bjk = ρ

∫

Sb
φk n j dS. (21)

Note that due to the extended definition of the normal vectors,
c jk = 0 when j > 6, except along the diagonal where c j j =
−S j0 is just the area of internal free surface S j . Inserting (19)
and (17) into (16) and dividing through by iω gives

−ρg B j0

iω
ξ j +

6+Mp∑
k=1

[
−ω2

ρg

(
A jk − i

ω
Bjk

)
+ c jk

]
ξk

= X j

ρg
. (22)

This equation is in the same form as the standard rigid-
body mode equations of motion, but with an applied external
damping coefficient which is also a function of ω. We can
thus write the complete system of equations as

6+Mp∑
k=1

[
−ω̄2 (

M̄ jk + Ā jk − i B̄ jk
) − 1

iω̄
B̄0
jk + c̄ jk

]
ξ̄k

= X̄ j , j = 1, 2, . . . , 6 + Mp (23)

where the matrix M̄ jk is the standard linearized body iner-
tia matrix and the WAMIT non-dimensionalization has been
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applied in terms of a length-scale L , the gravitational con-
stant g, the water density ρ and the incident wave elevation
A. Explicitly,

Ā jk = A jk

ρLm
, B̄ jk = Bjk

ρωLm
X̄ j = X j

ρgLn
;

ξ̄ j = ξ j

A
, B̄0

j j = ρ
√
gL

L2 Bj0, c̄ j j = − S j0

L2 , j > 6;
(24)

and ω̄ = ω
√
L/g. The pressure surface mode response ξ j ,

j > 6 is a pressure headmeasured inmeters, i.e. it is a transla-
tional mode like surge, sway and yaw; as opposed to the rota-
tional modes roll, pitch and yaw. Thus the exponentsm and n
here are as follows:m = 3 for both j, k = 1, 2, 3, 7, . . . , 6+
Mp (translational–translational mode combinations); m = 5
for both j, k = 4, 5, 6 (rotational–rotational combinations);
and m = 4 for translational–rotational combinations; n = 2
for translational modes and n = 3 for rotational modes. We
note that since the excess pressure developed in each OWC
chamber must be produced by the floating structure itself,
there will in general be hydrostatic coupling between the
rigid-body modes and the pressure modes which must be
included in the matrix c̄ jk .

Having solved for the body response in the frequency
domain, the capture width ratio with respect to a length-
along-the-crest of Lc can be written in terms of nondimen-
sional quantities as

W = W

Wmax
=

6+Mp∑
j=7

B̄ j0 ξ̄∗
j ξ̄ j

c̄g

L

Lc
(25)

where c̄g = cg/
√
gL .

If we consider a fixed, single degree of freedom OWC
chamber, then the solution for the chamber response is
explicit and simply given by

ξ̄7 = X̄7[
−ω̄2 Ā77 + c̄77 + i

(
ω̄2 B̄77 + B̄0

ω̄

)] . (26)

The optimum PTO damping B̄0 in this case can be derived
in the usual way by inserting (26) into (14) and setting the
derivative with respect to B0 to zero to get

(
B̄0

)
opt = ω̄

√
c̄277 − 2 Ā77c̄77 ω̄2 + ( Ā2

77 + B̄2
77)ω̄

4. (27)

We note that at the undamped natural frequency of the cham-
ber

ω̄0 =
√

c̄77
Ā77

(28)

i.e. when it is in resonance, the optimal damping becomes

(
B̄0

)
opt = ω̄3 B̄77 (29)

which is analagous to the optimum condition for a single
degree of freedom mechanical WEC which is tuned to reso-
nance.

2.1 Estimating the linearized PTO damping coefficient
B0

The choice of the air turbine used to extract power from the
chamber is an important aspect of the designofOWCdevices,
and an active area of ongoing research. The Wells-type tur-
bine has traditionally been the most widely used, though
impulse turbines are also available and the recently invented
bi-radial turbine, see e.g. Falcão et al. (2013), appears to
provide another promising alternative. TheWells turbine pro-
duces a linear pressure/flux relationwhich is convenient from
a numerical modeling point of view, and it can be modeled
in the laboratory by means of a suitably designed porous
membrane covered orifice. The impulse turbine produces a
quadratic relation between pressure and flux and is simple to
model in the lab using an open orifice with an area of around
1% of the total interior free surface area. We note however,
that air compressibility effects are generally important for
full-scale devices which requires special care both numeri-
cally and at model scale. These issues are discussed at length
in a recent publication by Falcão andHenriques (2014). Here,
we have chosen to adopt a simple open orifice model.

To numerically model the orifice in the frequency domain
requires the development of an equivalent linear damp-
ing coefficient. Ignoring compressibility effects which are
insignificant at this scale, the pressure drop across the orifice
is proportional to the square of the flow velocity (or flux)
through the orifice

p(t) = 1

2
ρa

(
1

Cd a

)2

Q(t)2 sign(Q)= 1

B1
Q(t)2 sign(Q)

(30)

whereρa = 1.225 kg/m3 is the air density, a is the area of the
orifice, andCd is an effective area coefficient which has been
determined experimentally to be Cd = 0.64 for the chamber
and orifice tested here. Figure 2 plots the experimental results
togetherwith (30) andwe can see that the relation gives a very
good fit to the data. This relation can be used directly in the
time domain, but to do the analysis in the frequency domain
requires estimating an equivalent linear damping coefficient.
To do this, we assume an oscillatory flux in the chamber

Q(t) = |q| sin(ωt) (31)
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Fig. 2 Measured pressure drop across the chamber orifice vs volume
flux through the chamber

and look for a B0 which gives the samemean power loss over
one cycle of oscillation. The mean power loss is given by

W = 1

T

∫ T

0
p(t) Q(t) dt. (32)

Inserting first (30) and then (13) into (32), using (31), and
finally equating the two results gives the relation

B0 = 3π

8|q| B1. (33)

According to our linear model, the magnitude of the flux in
the chamber is given by

|q| = B0|p0| = ρg|ξ7|B0 (34)

which leads to

B0 =
√

3π

8ρg|ξ7| B1 (35)

as the equivalent linearized damping coefficient. Figure 3
plots the result of (35) for the double chamber shown in
Fig. 7, where we have solved iteratively for the chamber
response shown in Fig. 4 at three values of wave steepness
H/λ = 0.025, 0.04 and 0.06. Also shown for reference is
the optimum value from (27).

3 The response of one fixed, double-chamber
section

We consider first the response of one fixed double-chamber
section.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

4

6
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10
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16

T/T0

B
0

Model, H/λ = .025
Model, H/λ = .04
Model, H/λ = .06
Optimal

Fig. 3 Equivalent linearized damping coefficients from (35) corre-
sponding to the response shown in Fig. 4 for one fixed double-chamber.
The optimum value of (27) is also shown
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Fig. 4 Single chamber pressure response amplitude using the lin-
earized PTO damping coefficient values shown in Fig. 3

3.1 Experimental measurements

Weprovide here a brief description of the experimental set up
and analysis procedure, while more details can be found in
Ducasse (2014). The physical model used in the experiments
is shown in Fig. 5 and a schematic of the flume is shown in
in Fig. 6. The full-scale internal chamber dimensions are 6m
by 5m by 7.5m in the x , y and z-directions, respectively, and
the model is at a scale of 1:50. These chamber dimensions
give an undamped natural period of 5.9 s which is tuned to
be close to a typical value for the conditions in the Danish
North Sea near the northwest coast of Jylland. The flumeused
here measures 25m by 0.6m, and the water depth was set to
0.65m. The width of the model is 0.1m, so there are only six
chamber widths across the flume, and we can expect some
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wall effects to be present. The first transverse sloshing mode
in the tank is at T/T0 = 0.74 and an enhanced response near
this point can be seen in the results shown below.

For these measurements, one tank wall was used as a
symmetry plane and tests were made at a series of mono-
chromatic conditions using three values of wave steepness
corresponding to H/λ = 0.025, 0.04 and 0.06. A Smartec
SPD102DAhyb analog pressure sensor attached to the cham-
ber lid was used to measure the pressure inside the chamber.
Two resistance wave probes were inserted into the chamber
tomeasure the internal free surface elevationwith the lid both
on and off the chamber. These twomeasurements gave nearly

Fig. 5 The 1:50 scale model of one double-chamber section used in
the DTU experiments. The tank wall was used as a symmetry plane, so
only half of the section appears in the model. The water line is indicated
by the black line

identical results for all the closed chamber cases considered
here. Visual inspection also confirmed that therewas no obvi-
ous internal sloshing mode activity. We can, thus, expect that
the inclusion of only one piston mode for each chamber is
justified in this case. With the lid off the chamber, however,
the violent motions near resonance did lead to sloshingmode
activity and wave breaking.

To verify the repeatability of the wave conditions and
establish the undisturbedwave amplitudes, all of the test con-
ditions were first run multiple times without the chamber in
place, and the wave elevations were recorded at the four posi-
tions along the tank indicated in Fig. 6. The same cases were
then run again with the chamber in place and the following
procedure was adopted for processing the data. The signals
were first low-pass filtered to remove noise at frequencies
higher than the sixth wave harmonic. To define a pressure or
wave elevation amplitude, and to estimate themean absorbed
power, we considered a five wave period window of the total
measured time series, chosen during the interval between the
arrival of the wave front at the chamber and the time when
any possible reflections from the ends of the tank could arrive
back at the chamber. The amplitude used for the comparisons
below is taken to be the first-harmonic amplitude of a least
squares fit to each record using the first five harmonics.

Since we have measured both the pressure and the inter-
nal surface elevation in the chamber, the absorbed power
can be computed from (32) in three ways: via the measured
pressure and the time derivative of the measured internal
chamber elevation; via the pressure alone and (30); or via
the time derivative of the elevation alone and (30). These
three methods give only small differences in the estimated
average absorbed power. The measured absorbed power is
finally multiplied by two to account for the image chamber.

3.2 Calculations and results

The WAMIT geometry used for the calculations is shown
in Fig. 7. We first consider the free undamped internal sur-
face elevation amplitude response of the chamber, which is
shown in Fig. 8. This figure compares the measured data at
the three values of incident wave steepness with the WAMIT

Fig. 6 Schematic of the
experimental set up in the DTU
flume, showing the locations of
the chamber and the wave
probes relative to the
wavemaker and the beach. The
tank is 0.6m wide and the water
depth is 0.65m
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X Y

Z

Fig. 7 The submerged geometry of the double-chamber section used
for theWAMIT calculations. The green (bright) grid shows the internal
pressure surface Si , while the olive (dull) grid shows the solid body
surface S0. Geometry created using the MultiSurf software from Aero-
Hydro (2014) (color figure online)
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Fig. 8 Free undamped internal surface elevation amplitude response
of the chamber plotted vs wave period

calculations. Near resonance, the internal chamber motions
become large enough to splash over the top of the chamber
and dip below the submerged entrance, leading to strongly
nonlinear effects which are, of course, not captured by the
calculations. Away from resonance, however, the agreement
can be seen to be excellent.

The response amplitude for the internal pressure in the
chamber with the lid attached is shown in Fig. 9. The calcu-
lations here aremadeusing the values of equivalent linearized
PTO damping coefficient shown in Fig. 3. Here, we can see
that the pressures are somewhat over predicted near reso-
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Fig. 9 The pressure amplitudes inside the chamber normalized by the
incident wave amplitude A
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Fig. 10 The capture width ratio based on the length of the structure,
L = 7.5m, using the PTO damping coefficients shown in Fig. 3

nance, and slightly under predicted in longer waves, but the
general behavior and the trends with increasing wave steep-
ness are well predicted. The total absorbed power is shown
in Fig. 10 in the form of the capture width ratio based on the
total length of the chamber in the x-direction, L = 7.5m.
The comparison here can be seen to follow the internal pres-
sure closely, as would be expected. The optimum absorption
predicted by using (27) as the damping coefficient is also
shown for reference, and we can see that the theory predicts
significant improvement in the near vicinity of the resonant
period. In all of these calculations, the finite tank width has
been partially accounted for by including one tank wall in the
WAMIT analysis. More images of the chamber could also be
added to more fully account for the second wall, but this is
left for future work.
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Fig. 11 Photo of the scale model ready for testing. A removable bow
section is fitted in this picture, but results are presented here onlywithout
the bow

4 The response of the full model

We now consider the full 40 chamber model.

4.1 Experiments

The experiments on the full model were carried out at
the Hydraulic and Maritime Research Center (HMRC) at
University College Cork, Ireland in 2013. We describe the
experiment briefly here while more details can be found in
Nielsen (2013) and Pors and Simonsen (2013). A picture of
the 1:50 scale model is shown in Fig. 11 and a schematic
of the experimental set up is shown in Fig. 12. The basin
measures 25m by 18.5m with a water depth of 1m. It has
40 hinged-flap, dry-backed, wave paddles for wave genera-
tion, and a 5m long Enkamat beach for wave absorption at
the far end. The model used in these experiments measures
3m long by 0.345m wide, with a draft of 0.165m, thus we
do not expect the side walls to have any significant effect on
the measurements in this case. A cluster of five wave probes
was placed approximately 2m in front of the centerline of the
model and a horizontal line of nine probes at 1m intervals
was placed 2.25m behind the model (see Fig. 12). The same
basic experimental and analysis procedure was followed for
these tests as the one described above for the single cham-
ber tests. In this case, the model was tested in both regular
and irregular waves and in both a fixed and a moored condi-
tion. The pressure in all 20 chambers along one side of the
model was measured using pressure sensors and the rigid-
body motions were measured using an optical system. The
forces in the mooring system, which is indicated by the solid
lines in Fig. 12, were also recorded. Tests were done both
with and without the removable bow section which is shown
in Fig. 11.

Fig. 12 Schematic of the experimental set up atHMRC.The solid lines
indicate themooring lines and the points indicate the wave gauges. The
water depth is 1m and themotionswheremeasured by an optical system

In this paper, we will focus on the regular wave tests,
without the bow section, in the fixed and the freely floating
(slack-moored) conditions. As in the single chamber tests,
the regular waves were tested at wave steepness values of
H/λ = 0.025, 0.04 and 0.06. The internal chamber surface
elevations were not measured in these tests, so the absorbed
power has been computed from the pressure measurements,
together with the pressure–flux relation in (30).

4.2 Fixed model calculations and results

Figure 13 shows the high-order patch boundaries of the
WAMIT geometry used for the calculations. This model was
also created using the MultiSurf software. For the numer-
ical solution in this case there are 20 degrees of freedom,
one for each pair of chambers. To estimate the equivalent
linearized damping coefficients for each chamber, the pro-
cedure described above is applied to iteratively find a set of
coefficients and responses that satisfy (35). However, here
an additional constraint has been added to limit the inter-
nal chamber free surface motion amplitude to 2.5m (at full
scale), i.e. the distance from the mean free surface to the
top of the submerged chamber opening. From the assumed
relation between pressure and flux in the chamber (13), this
condition can be written

ζ̄ j = −B̄ j0

iω|c̄ j j | ξ̄ j → |ξ̄ j | ≤ 2.5

A

ω̄|c̄ j j |
B̄ j0

. (36)
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X

Y

Z

Fig. 13 The patch boundaries of the submerged geometry for the full
40 chamber numericalmodel. The green (bright) patches show the inter-
nal pressure surfaces of each chamber

The estimation of the optimal damping coefficients is
now a non-linear optimization problem which has been
solved using the Matlab constrained minimization routine
fmincon based on the total absorbed power by all cham-
bers with the above mentioned constraint on the maximum
response amplitude.

Figure 14 shows the resultant damping coefficients and
the pressure response in Chamber number 1, which is at the
bow of the structure. Note that since the normalization length
in this case is twenty times larger than that used for the single
chamber case, themagnitude of B̄0 ismuch smaller here, even
though B0 itself is of same order of magnitude in both cases.
The same data are shown in Figs. 15 and 16 for chamber
number 10 just forward of themidships section, and chamber
number 20 at the stern of themodel. Experimental data for the
fixed model is only available for the H/λ = 0.025 case and
this is also plotted. The agreement between theory and mea-
surements is reasonably good, though the calculations tend
to generally over-predict the pressures. The numerically opti-
mizedvalues are also plotted, andwecan see that the behavior

Fig. 14 Bow chamber: the
equivalent linearized damping
coefficient (left) and the
pressure response (right) for the
fixed model
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Fig. 15 Midships chamber: the
equivalent linearized damping
coefficient (left) and the
pressure response (right) for the
fixed model
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Fig. 16 Stern chamber: the
equivalent linearized damping
coefficient (left) and the
pressure response (right) for the
fixed model
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Fig. 17 The capture width ratio of the fixed 40 chamber model with
respect to L = 150m

of the damping coefficients and the pressure responses are
qualitatively similar to that of the single chamber, though the
amplitudes tend to decrease as we move from bow to stern.

Figure 17 shows the absorbed power as a capture width
ratio normalized by the total length of the device L = 150m.
The general over-prediction of the chamber pressures leads,
as would be expected, to a general over-prediction of the
device absorption width for wave periods above the resonant
period. As for the single chamber case, substantial improve-
ment in absorption is predicted near the resonant periodwhen
an optimal damping coefficient is applied. Unfortunately
there is a gap in the experimental data near the resonance
period, but new experiments are in progress to fill in this
region.

4.3 Freely floating model calculations and results

In the freely floating case, we add the six rigid-body modes
to the 20 pressure-surface modes to get 26 degrees of free-

dom. The rigid-body motions of the structure also induce
flux in the chambers, so the pressure response ξ j is now the
combined result of the rigid-body motions and the internal
surface motion. The internal surface elevation ζ j , measured
relative to the mean water line of chamber j , is thus given by

q̄ j = |c̄ j j | iω̄ζ̄ j , ζ̄ j = ζ̄ j0 − ξ̄3 + x̄ j ξ̄5 + ȳ j ξ̄4 (37)

where ζ̄ j0 = ζ j0/A is the non-dimensional surface elevation
amplitude relative to the still water level, and ξ3, ξ4, ξ5 repre-
sent the heave, roll and pitch motion amplitudes respectively.
If the non-dimensional x and y-coordinates of the center of
chamber j are given by x̄ j , ȳ j , then the hydrostatic coupling
between the pressure response and the heave, pitch and roll
modes is given by

c̄3k = S̄k0; c̄4k = ȳk S̄k0; c̄5k = −x̄k S̄k0, for 6 < k <= Mp

(38)

This interaction is symmetric, so these coefficients are also
reflected across the diagonal of the c̄ jk matrix. With these
modifications, the solution proceeds as described above in
the fixed body case.

The results for the damping coefficients and pressures
in the bow, mid-section and stern chambers are shown in
Figs. 18, 19 and 20. The experimental results for the mea-
sured pressures are also shown. The agreement between
calculations and measurements is satisfactory with a general
over-prediction near the resonant period and some under-
prediction in long waves. It is clear that the motions have
a significant effect on the local pressures in the chambers
compared to the fixed body case.

Figure 21 shows the absorbed power as a capture width
ratio normalized by the total length of device L = 150m.
The agreement here is perhaps slightly better than in the
fixed model case. Interestingly, both calculations and exper-
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Fig. 18 Bow chamber: the
equivalent linearized damping
coefficient (left) and the
pressure response (right) for the
freely floating model
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Fig. 19 Midships chamber: the
equivalent linearized damping
coefficient (left) and the
pressure response (right) for the
freely floating model
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Fig. 20 Stern chamber: the
equivalent linearized damping
coefficient (left) and the
pressure response (right) for the
freely floating model
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iments predict that the motions have a positive effect on
the absorption near the resonant frequency, but a negative
effect in long waves. The optimized damping coefficients
predict a similar improvement in absorption to that which
was found in the fixed model case. The left hand plot in
Fig. 22 shows the same calculations normalized with respect
to the incident wavelength λ for reference. The right hand
plot in Fig. 22 shows the predicted mean absorbed power
in megawatts at full scale as a function of wave period for
the three considered wave steepness values. This gives an
indication of the real potential of such a device and also
illustrates the large variability in absorbed power inherent
to wave energy. As discussed above, a maximum of about
80% of this absorbed power will be converted into electrical
power depending on the conditions and the actual air turbines
used. It could also be attractive to consider using valves to
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Fig. 21 The capture width ratio of the moored 40 chamber model with
respect to L = 150m
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Fig. 23 The surge motion response of the full 40 chamber model
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Fig. 24 The heave motion response of the full 40 chamber model

Fig. 22 The capture width ratio
of the freely floating 40 chamber
model with respect to the
wavelength λ (left), and the
predicted full-scale power
absorption in megawatts (right)
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Fig. 25 The pitch motion response of the full 40 chamber model

connect all the chambers to a central channel to drive one
unidirectional flow through a larger and more efficient tur-
bine.

Figures 23, 24 and 25 show the rigid-body motion
response of the structure in the surge, heave and pitch
modes, respectively. These results are normalized by the
wave amplitude A and the wave slope k A for translational
and rotational modes, respectively, and are plotted versus
the relative incident wavelength. Here, we can see a good
agreement between the calculations and the measurements,
especially in the target wave period region where the rigid-
body motions are small. The increased pressures in the
chambers near resonance which are predicted by the opti-
mized damping coefficients can be seen to introduce an
enhanced pitch response there. We note that the mooring
system introduces a very long natural period to the surge
response of the structure, but this period is far beyond the
wind-wave spectrum which we focus on here. We note also
that the vertical center of gravity and the pitch radius of
gyration of the ballasted model were used in the calcula-
tions.

5 Conclusions

In this paper, we have clarified several subtle details which
are important to getting good performance out of standard
frequency domain, linear potential flow theory for the analy-
sis of floating structures which include one or more OWC
degrees of freedom. This has been illustrated by considering
both a fixed single degree of freedom OWC and an I-beam
attenuator OWC device with 26 degrees of freedom. The
agreement between calculations and measurements is gen-
erally found to be excellent, though the calculations tend
to slightly over-predict the internal chamber pressures and
therefore the absorbed power near resonance, but under-

predict these quantities in long waves in the freely floating
condition.

Future work will focus on weakly non-linear calculations
in the time domain which will allow for a better model of the
air turbine and inclusion of some viscous and air compress-
ibility effects. Possible improvements to the design which
are currently under investigation include: replacing the sim-
ple chamber with a U-OWC chamber; replacing the OWC
with a simple mechanical oscillator; and introducing a valve
system to rectify the air flow from all chambers to a central
plenum and one large unidirectional turbine. Survivability
tests, structural calculations and detailed mooring system
design are also in progress to get an accurate estimate of
the final cost of energy for such a system.
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