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Abstract A time-domain 3D Rankine panel method based
on a simplified variant of the mixed Eulerian–Lagrangian
scheme under certain approximations is developed for study-
ing steep nonlinear waves interacting with practical ship
and offshore configurations at zero speed. Appropriate tech-
niques have been developed that enable the method to
produce very long-duration simulation results. Two levels
of time-domain computations are performed: (1) a fully lin-
ear formulation where all external forces are computed on
the mean wetted surface, and (2) an approximate nonlin-
ear computation where the hydrodynamics interaction forces
(diffraction and radiation forces) are determined on the mean
surface and the forces arising from the incident steep waves
and hydrostatic restoring forces are determined based upon
the exact wetted surface under the nonlinear incident wave.
Numerical computations for three practical marine struc-
tures, the barge, the S175 hull, and the semisubmersible
are presented. The linear computations for which very long-
duration simulations are achievable from the present method
are validated against results from other available methods.
As the method is developed for stationary floating bodies
undergoing oscillation about their mean location, it can-
not be applied for a fully unrestrained body which can
freely drift. In absence of physical restraints, the approximate
nonlinear calculation requires imposition of artificial con-
straints partially or fully restraining the horizontal motions.
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Very long-duration simulations under the influence of steep
nonlinear large-amplitude waves for all the three structures
considered could be achieved. Comparative studies between
different force and motion components in large-amplitude
waves from linear and the approximate nonlinear compu-
tations are made to bring out the influence of the incident
wave nonlinearities on these structures. It is found that the
nonlinearities of the forces and motions are strongly depen-
dent on the above water hull geometry. Compared to a small
water-plane area hull (the semisubmersible), or a wall-sided
hull (the barge), a flared hull (S175) results in pronounced
nonlinear features in the forces and motion time-histories.

Keywords 3D numerical wave tank · Body nonlinear ·
Rankine panel method · Time-domain approach

1 Introduction

In the field of ocean engineering, there is a strong requirement
for prediction of extreme values of design parameters which
affects the operability and structural integrity. Prediction of
severe nonlinear loads and large-amplitudemotions is, there-
fore, of great importance to the safety of offshore marine
systems. Computational schemes for predicting responses
in small-amplitude linear incident waves are presently well
established and most of the codes routinely used by marine
and offshore industries for these evaluations are based on
a 3D singularity distribution method using the frequency-
domain free-surface Green function. As regards evaluation
of nonlinear responses in large-amplitude waves, there can
be several approaches for solution of this nonlinear prob-
lem: (1) a second-order frequency-domain solution based on
perturbation theory (Faltinsen 1990; Chakrabarti 1990), (2)
a mixed Eulerian–Lagrangian (MEL) approach which was
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originally developed byLonguet-Higgins andCokelet (1976)
for 2D nonlinear wave studies and subsequently followed
up for wave–structure interactions (e.g. Beck 1994; Ferrant
1996) and (3) application of Reynolds-averaged Navier–
Stokes equation (RANSE)-based CFD solvers (Mousaviraad
et al. 2010; Bunnik et al. 2010). The latter twomethods can in
principle be applied to study extremewave–structure interac-
tion involving steep nonlinear waves. However, requirement
of high computational effort by these approaches prohibits
their routine usage by the offshore industries particularly
during the preliminary design phase. RANSE solvers at
present appear more suitable for studying specific problems
of interest such as rolling response close to roll resonant
period, sloshing and violent motion of fluid in confined
spaces where fluid viscosity plays an important role as
opposed to the global forces and motions. For ships and
large offshore structures in the near future the main work-
horse method likely to remain will be based on potential
flow formulations. The ITTC Specialist Committee on CFD
in Marine Hydrodynamics remarks that RANSE-based CFD
methods are not efficient methods for obtaining response
amplitude operators (RAOs) for a range of wave headings,
frequencies, and wave steepness (ITTC 2014). At the same
time, as the offshore sector is moving towards ultra deep
water and new application areas for offshore structures con-
tinue to appear, the industry is witnessing emergence of
various novel hybrid offshore configurations like SPAR plat-
forms with heave damping plates, floating offshore wind
turbines with large and high above water parts exposed
to dynamic wind loads, etc.Thus there is a strong practi-
cal demand for an generalized computing tool applicable
to a wide variety of marine structures for routine use to
predict extreme design parameters, and also having the pro-
vision to incorporate effects of forces arising from variety
of other sources without suffering by high computational
cost.

In this paper, we present development of a practical com-
putational tool for large-amplitude nonlinear steep waves
interacting with practical 3D offshore and ship structures.
The method follows a numerical wave tank (NWT) approach
where the interaction hydrodynamics of wave radiation and
diffraction effects are determined based on an MEL type of
scheme.At this time, it will be useful to provide a brief review
of full nonlinear MEL studies applied to wave–structure
interactions. Faltinsen (1977) studied the full nonlinear
wave–structure interaction problem of interior sloshing in
a tank based on an MEL approach in two dimensions (2D).
In a 3D NWT, (Xü and Yue 1992; Zhang et al. 1996) used
MEL approach to simulate extreme and overturning waves
but without any structure in the wave field. Beck (1994)
developed a time-domain solution for floating bodies using
a desingularised method. A study on the motion of a floating
truncated vertical cylinder using a 3DMEL in a regular wave

was carried out by Ferrant (1996). In this study, only verti-
cal motions were allowed and the other degrees of freedom
(DOF) were inhibited. Cointe et al. (1990) applied a domain
decomposition scheme for 2D floating body simulations.
Domain decomposition method within the MEL scheme for
the 3D floating body problem has also been applied by Wu
andTaylor (1996) andKashiwagi (2000) among others.More
recently, Bai and Eatock Taylor (2009) applied the domain
decomposition method to investigate fully nonlinear wave
interaction of fixed and freely floating flared structures. Qiu
and Peng (2013) used a panel-free method for the body-exact
problem in the time domain. One of the important numerical
problems of an MEL-type time-domain solution scheme for
the full nonlinear floating body problem is associated with
the coupling between hydrodynamic forces and rigid body
motions which tend to cause numerical instability inhibit-
ing long-duration time-domain simulation. Many improved
numerical schemes have been devised to handle this cou-
pling, e.g. the acceleration potential method of Tanizawa
(1995, 1996), the implicit coupled scheme of Dombre et al.
(2015).

In addition to the limited works mentioned above, there
are a large number of other studies on application of MEL
scheme for the floating body simulations addressing different
numerical aspects which can be found in Tanizawa (2000).
Most of these works have attempted to solve the full nonlin-
ear wave structure interaction in an NWT. However, despite
drastic improvement in computational power, many chal-
lenges are still faced in studying full nonlinear interactions
of floating bodies by an MEL type of approach, particularly
if long-duration simulations are desired for realistic practi-
cal and complex configurations. On the other hand, driven
by the need of the industry to study the effect of steep waves
on structures, a variety of so-called blended methods and
methods that are based on a variety of levels of simplifying
approximation have also been developed over the years. An
overview of such methods can be found in the recent review
article of Hiradis et al. (2014).

The basic objective of the present work is to come up
with a solution scheme in time domain within the frame-
work of anNWT inwhich large-amplitude and steep incident
waves can be made to interact with offshore structures, and
the influence of the important nonlinearities of these waves
on the loads and responses can be captured with only mod-
est computational effort. In addition, the scheme should
in principle be capable of considering a wide variety of
emerging novel type of structures, multi-body interactions,
etc. Practical offshore structures are also exposed to forces
from many other sources besides waves, e.g. wind, cur-
rent, mooring lines and risers, Morison forces, DP thrusters
forces, etc. In this regard, versatility of time-domain solvers
is well known over frequency-domain solvers. In many of
the existing time-domain solvers used by the offshore indus-
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try, the wave structure interaction part is determined in the
frequency domain by codes such as WAMIT and the com-
puted hydrodynamic radiation and diffraction forces are then
transformed to time domain using impulse-response function
(IRF) following the formulation of Cummins (1962). The
influence of external forces can be incorporated by adding
these forces and moments on the right-hand side of the equa-
tions of motions. Indeed, use of IRF-based formulation is
very popular in time-domain simulation of ships and float-
ing bodies and it has been used for a variety of applications.
The frequency-dependent added mass and damping needed
for evaluating the memory-integral term in these formu-
lations are usually found from a linear frequency-domain
hydrodynamic solution. For simulations involving speed-
dependent ship motions, these are usually determined from
strip-theory formulations with suitable modifications to take
into account the forward speed-dependent corrections (De
Kat and Paulling 1989; Fonseca and Guedes-Soares 1998;
Ayaz et al. 2006), while 3D linear hydrodynamic solvers
are used for simulations involving stationary floating off-
shore configurations (Chitrapu et al. 1993; Kim et al. 2013).
Similarly the diffraction forces are also usually determined
from linear frequency-domain solutions and transformed into
time domain. These IRF-based formulations can also take
into account the incident Froude–Krylov (F–K) forces eval-
uated on the exact wetted hull of the object under the incident
wave profile (DeKat andPaulling 1989;Chitrapu andErtekin
1995).

The present approach differs from these IRF-based time-
domain formulations in which the hydrodynamic interaction
part of radiation and diffraction is determined in the time
domain directly as the solution progresses in time. Although
termed numerical wave tank, the present scheme differs from
the usual nonlinear NWT approach where waves are cre-
ated in a tank by physical movement of a wave-maker. Here
the structure is made to appear in an existing incident wave
field in a 3D circular domain. The solution methodology for
time evolution of forces and motions are, however, simi-
lar to the full nonlinear MEL scheme. At this time it may
be instructive to bring out the advantage and drawback of
the present scheme in comparison to the IRF-based formu-
lations. In the present method, the incident waves can be
defined by any desired wave theory including a fully nonlin-
ear steady numerical wave model, and thus it is possible to
capture the exact F–K nonlinear forces. This is also possi-
ble in the IRF-based formulation although in almost all past
works the incident waves are either described by linear waves
or by Stokes 2nd order wave (e.g. Grochowalski et al. 1998).
An advantage of using the nonlinear numerical wave is that
it does not require any approximation to capture the wave
kinematics for the part between the exact and the mean free
surface. The other important feature of the present scheme is
that the body boundary condition for the diffraction poten-

tial can be specified using this nonlinear incident potential
even though the surface over which it is applied is the mean
body surface. Although theoretically inconsistent, since non-
linear wave kinematics is larger in magnitude compared to
the linear wave kinematics, this is expected to yield a better
approximation of the nonlinear wave diffraction effect than
fully linear wave diffraction.

The present method also provide possibilities of captur-
ing further nonlinearities associated with wave diffraction
by applying the body impermeability condition through a
mapping of the exact wetted surface to the mean body sur-
face following the idea similar (but not exactly same) to the
‘body-exact’ version of the 3D ship motion LAMP code
(Lin et al. 1994). This idea is explained later in the paper.
Among the other beneficial features, multi-body interactions
are straightforward in the present method including cap-
turing the free-surface elevations in the gap between the
objects. As the solution provides the free-surface elevations
over the entire domain at every time step, it is also straight-
forward to determine the air-gap or under-deck clearance
based on the nonlinear incident wave. Preliminary results
demonstrating both these features havebeenpresented below.
It is also straightforward to consider Morison members
and include the Morison forces based on the exact wetted
surface of the members as in Chitrapu et al. (1993) but
here these forces can be determined using the full nonlin-
ear incident wave kinematics. Overall the solution method
can provide rich information on the body responses and
the free-surface elevations over the entire domain, with the
potential to successively improve upon the scheme for cap-
turing nonlinearities associated with wave diffraction. The
major limitation of the method is that it is not applicable for
the forward speed problem.

Numerical computations are carried out for a wall-sided
barge, the flared S175 hull and a twin pontoon six-column
semisubmersible. Since a fully consistent linear solution
emerges when incident waves are taken as linear waves and
all forces are determined on the mean wetted surface, the
linearized computations are first validated against the usual
3D frequency-domain Green function-based results as well
as with experimental results and other Rankine panel time-
domain results. For these linear computations, extremely
stable and long-duration simulation results couldbeobtained.
As the method is developed for stationary floating bodies
undergoing oscillations about the mean positions, it can-
not be applied if the body is allowed to freely drift. The
problem of a freely drifting body is essentially equivalent
to the forward speed ship motion problem where the mean
drift speed can be considered as the forward speed. Thus,
if motion simulations of a body is desired which is not
moored or otherwise unrestrained from horizontal motions,
then restrictions in horizontal motions need to be artificially
imposed. This is presently done by evaluating the nonlin-
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ear F–K forces on the horizontally restraint location of the
hull. This, however, is not a serious drawback as in reality all
stationary structures have some sort of horizontal restraint
from mooring lines, risers, DP systems or tethers in case of
TLPs. Very long-duration stable results have been achieved
from the adopted approximate nonlinear method capturing
some of the important nonlinear features. Finally, detailed
comparative studies between the linear and the approximate
nonlinear solutions are presented to bring out the influ-
ence of steep large-amplitude wave effects on loads and
responses.

2 The hydrodynamic problem and its numerical
solution

The boundary value problem (BVP) is formulated based on
potential flow theory assuming fluid to be inviscid, incom-
pressible, and homogeneous and the flow is irrotational. Fluid
motions can thus be prescribed in terms of velocity potential
φ whose gradient is the fluid velocity vector −→v = ∇φ. Con-
sider a surface piercing body B in a fluid domain � bounded
on top by the free surface ∂�F , internally by instantaneous
wetted body surface ∂�B , on the bottom by a rigid bottom
surface ∂�D , and externally by a hypothetical vertical con-
trol surface ∂�C . Figure 1 shows the fluid domain and the
various boundaries. The right-handed Cartesian coordinate
system Oxyz has its origin ‘O’ on the undisturbed free sur-
face with Oz directing vertically upwards.

The BVP for φ is specified by the following equations:

∇2φ(x, y, z; t) = 0 on � (1)
∂φ

∂n
= −→

V H · −→n on ∂�B(t) (2)

∂φ

∂n
= 0 on ∂�D (3)

∂η

∂t
+ ∂φ

∂x

∂η

∂x
+ ∂φ

∂y

∂η

∂y
− ∂φ

∂z
= 0 on ∂�F (t) (4a)

∂φ

∂t
+ 1

2
(∇φ · ∇φ) + gη = 0 on ∂�F (t) (4b)

In addition, on the exterior control surface ∂�C a suitable
radiation condition needs to be applied. In the above, η is
the free surface elevation, ‘g’ is gravitational constant, ‘t’ is
time, ‘h’ is water depth,

−→
V H represents the velocity vector at

any point on the body surface, and −→n is the exterior normal
to the surface.

In a typicalNWTapproach, the numerical solution scheme
is formed by first writing the followingwell-known boundary
integral equation derived from application of Green’s second
identity to φ and the basic source G = 1/4πr using Eq. (1),

σ(P)φ(P) −
∫ ∫

∂�

(
φ(Q)

∂G(P, Q)

∂nQ

−G(P, Q)
∂φ(Q)

∂nQ

)
d(∂�)=0 (5)

Here, ∂� is the total boundary surface encompassing the
domain �, P and Q are field and source points, respec-
tively, r = |�x(P) − �x(Q)| and σ(P) is the solid angle on
∂� at P . The flat bottom surface ∂�D from ∂� in Eq. (5)
can be removed by modifying G, i.e. by taking image of Q
about this surface. As regards the exterior boundary, there
are several schemes available to remove ∂�C from ∂� in (5)
through implementation of a suitable exterior condition. In
the present work, this surface is removed from ∂� using a
numerical beach as will be discussed later. These modifica-
tions allow the integration in (5) to be applied only over the
free surface and the wetted body surface. Discretization of
∂� into surface panels and suitable assumption on variation
of the boundary variables φ and ∂φ/∂n over the panels can
transform (5) into a set of linear equations of the form:

Fig. 1 Computational domain
and coordinate system
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[A]
{

φ

∂φ/∂n

}
= [B]

{
∂φ/∂n
φ

}
(6)

Here, [A] and [B] are functions of the simple source and its
normal derivative integrated over the panels and thus purely
dependent ongeometry of ∂�. Equation (6), therefore, allows
determination ofφ on the body surface and ∂φ/∂n on the free
surface if ∂φ/∂n on the body surface andφ on the free surface
are known.

The MEL scheme for NWT simulation briefly proceeds
as follows. If at any instant the normal velocity ∂φ/∂n on
body surface and potential φ on the free surface are known,
then from (6) the unknown data of φ on the body surface
and ∂φ/∂n on the free surfaces can be determined. From
the evaluated φ on the body surface, using suitable differ-
ence schemes in time and space, pressures and thus forces
on the body can be found from Bernoulli’s equation. Time
integration of the body equations of motion will then give
∂φ/∂n on the body surface through the body condition Eq.
(2) for the next instant. Similarly, through integration of the
nonlinear free-surface constraints (4a, 4b) φ on the free sur-
face can be found. Note that in these time integrations, not
only the boundary data are evolving; the geometry of the
surfaces also advances to their new positions. The process
is now repeated as the solution progresses in time. This in
brief completes an overly simplified description of the non-
linear MEL solution for the full nonlinear wave–structure
interactions. In reality, however, there are numerous details
that require proper resolution if a successful solution is to be
achieved. These are associated with evaluation of the pres-
sure on the body surfacewhich requires evaluation of the time
derivative of φ, handling numerical instability that is associ-
ated with the evolving free surface, proper treatment of the
exterior boundary condition to ensure no reflection from this
surface, etc. Apart from satisfactory treatment of all these
details, another serious concern of the full nonlinear solution
scheme is the very large computing time that this method
demands. This arises from the need to solve the linear Eq.
(6) at every time step, perhaps multiple times depending on
the time-integration rules used. This is because as the geom-
etry is evolving both matrices [A] and [B] change at every
time step. It should also be noted that usually [A] and [B] are
full matrices and thus special solution schemes that apply to
tri-diagonal matrices cannot be used here. On the other hand,
if the surface over which (5) is applied remains invariant with
time, then (6) can be cast in the form:

{
φ

∂φ/∂n

}
= [A]−1[B]

{
∂φ/∂n
φ

}
(7)

The matrix [C] = [A]−1[B] in this case needs to be deter-
mined only once reducing Eq. (7) to only a simple matrix
multiplication at every time step. The purpose of the present

development is to use this simplification through suitable
approximations but based on practical considerations. For
3D large volume structures particularly with relatively small
water-plane areas, usually the radiated waves are much
smaller compared to incident waves. Similarly the diffracted
waves are also usually smaller compared to incident waves
for realistic 3D structures. Note that full reflection takes place
when waves are normally incident on a vertical wall. For 3D
structures, it can thus be conjectured that overall the dif-
fracted wave field will be of smaller amplitude compared to
the incident waves. Therefore a linearization approximation
for the radiation and diffracted wave fields may be justified
within practical limits of applicability.

With the above approximation, we now proceed as fol-
lows. First, the incident wave potential φI is taken out from
the total potential φ and the difference is defined as the φP :

φP = φ − φI (8)

φP is further decomposed into radiation potential (φR) and
diffraction potential (φD):

φP = φR + φD (9)

The boundary value problem for φ defined by [Eqs. (1)–(4b)]
applies for both φR and φD with the simplification that the
free surface and body boundary conditions are now linearized
and thus applied on the mean time invariant surfaces:

∂ηR

∂t
− ∂φR

∂z
= 0; ∂φR

∂t
+ gηR = 0 on z = 0

∂φR

∂n
= �VH · �n on ∂�B(0) (10)

∂ηD

∂t
− ∂φD

∂z
= 0; ∂φD

∂t
+ gηD = 0 on z = 0

∂φD

∂n
= −∂φI

∂n
on ∂�B(0) (11)

Here, ηR and ηD are the total radiated and diffracted wave
elevations associated with the corresponding potentials φR

and φD .
The integral relation (5) can now be applied separately to

φR and φD . To discard ∂�C from ∂� in (5) following Cointe
et al. (1990) and Tanizawa (1996) we introduce a damping
layer to an annular zone extending from R = R0 to R =
R1 = R0 + βR adjacent to the exterior surface ∂�C located
at R = R1 (here R = √

x2 + y2 is the radial distance). Over
this zone, the free-surface conditions are written as:

∂φ

∂t
= −gη − ν(Re)φ

∂η

∂t
= ∂φ

∂z
− ν(Re)η (12)
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where ν(Re) is a damping coefficient defined by:

ν(Re) = αω

(
R − R0

λ

)2

(13)

In Eq. (13) ω and λ are wave frequency and wave length,
respectively. Parameter α controls the strength of the damp-
ing and β the extent of the damping zone. These values
govern the effectiveness of the damping zone. The purpose of
this damping zone is to ensure that by the time the outgoing
waves from the bodywave reach the outer surface, both η and
φ reduce to zero. Itmay be remarked here that a proper imple-
mentation of the exterior condition is crucial in successful
development of a fully nonlinear MEL-type NWT simula-
tions, and research in this direction is still continuing as can
be seen from the recent survey of various schemes available
for treatment of this exterior surface by Kim et al. (2014). In
2D NWT, wave amplitudes do not decay with distance, but
in 3D NWT the outgoing wave amplitudes attenuate with the
radial distance and the absorbing or damping zoneworkswell
if properly tuned. In the present case since we are applying
this numerical beach for absorbing linearized radiated and
diffracted waves, the beach works very well with the values
of α = 1 and β ranging from 0.5 to 1 depending on wave
frequency, as the results below will demonstrate.

For the solution to progress in time, along with integration
of the free-surface constraints (10) and (11), the equations of
body motion also need to be integrated. The body motions
can be written in the Newtonian framework as:

[M]{�̈ξ} = {−→f } (14)

where {�ξ } is the body displacement and { �f } is the generalized
forces imposed on the body. { �f } is composed of hydrody-
namic forces { �fH }, hydrostatic forces { �fS} and any other
external forces like wind, current, mooring line load, etc. to
which the structure may be exposed. Computation of hydro-
dynamic forces at every time step requires determination
of the time derivative of the corresponding potentials, i.e.
∂φR/∂t and ∂φD/∂t terms. Evaluation of the time derivative
of the potential particularly in the context of fully nonlinear
floating body simulation is not trivial. If a straightforward
backward difference scheme is used for its evaluation, then
the solution develops numerical instability. The literature on
floating body simulations byMELmethod indicates that spe-
cial techniques have to be devised to determine this pressure
term to ensure numerical stability of the simulation algorithm
(Sen 1993; Tanizawa 2000). Noting that integral relation (5)
also applies for ∂φ/∂t if this term on the body surface can
be directly determined from such an integral equation with-
out resorting to numerical differentiation, then the numerical
instability problem can be avoided. Such a procedure will
require specification of the appropriate boundary conditions

for the ∂φ/∂t problem, in particular the body surface bound-
ary condition. This means that ∂2φ/∂t ∂n on the wetted hull
need to be stated. Such a condition was explicitly derived by
Tanizawa (1995, 2000) by defining acceleration potential.
This method for computing the time derivative of poten-
tial is termed acceleration potential method which has been
subsequently used by severalworkers in nonlinearNWTsim-
ulation studies (e.g. Koo and Kim 2004).

In the present case, we devise a scheme similar to this
acceleration potential method but due to the linearization of
the corresponding potentials (φR, φD), the implementation
is somewhat different and simpler than the original acceler-
ation potential method of Tanizawa (1995). We remark that
for the purely diffraction problem, computing ∂φD/∂t by
application of a backward numerical differentiation does not
pose any difficulty and no instabilities are encountered. It
is also straightforward to solve ∂φD/∂t through an integral
relation as the body condition for this problem is known
∂/∂n (∂φD/∂t) = −∂/∂n (∂φI /∂t). Same remarks also
apply for evaluation of ∂φR/∂t for the forced oscillation or a
purely radiation problem with specified body motions. Diffi-
culties related to numerical instability arises in evaluating the
∂φR/∂t term for the floating body motion simulations where
the equations of motion need to be integrated to establish the
body boundary condition.

The procedure devised in our work is as follows. For a
point fixed on the body, following Kang and Gong (1990),
the normal derivative of the time derivative of potential is
written as:

∂

∂n

dφ

dt
= �n ·

(
�̇vG + �̈θ × �rP − �̇θ × �vG

)
(15)

where vG and �̇θ are the translation and angular velocities of
the rigid body at the centre of gravity (CG) of the body, �rP is
the positionvector of the consideredpoint on the body surface
from the CG, and the symbol d/dt represents differentiation
following a fixed point. We can write:

�n ·
(
�̇v + �̈θ × �r − �̇θ × �v

)
=

6∑
i=1

aini (16)

where �n = (n1, n2, n3), �r × �n = (n4, n5, n6) and

ai =
(
�̇vG − �̇θ × �vG

)
i
, i = 1, 2, 3

= ( �̈θ)i−3, i = 4, 5, 6 (17)

where the subscript on the right-hand side of the vector quan-
tities in parenthesis represents the three components of the
vectors, respectively. The time derivative of the total potential
∂φ/∂t is now decomposed as:
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dφ

dt
=

6∑
i=1

ai
dφi

dt
+ dφ7

dt
(18)

The boundary conditions applicable to these component
potentials are: for i = 1, . . . , 6

∂

∂n

(
dφi

dt

)
= ni on ∂�B(t)

dφi

dt
= 0 on ∂�F (t) (19)

and

∂

∂n

(
dφ7

dt

)
= 0 on ∂�B(t)

dφ7

dt
= �VF · ∇φ − 1

2
(∇φ)2 − gz on ∂�F (t) (20)

where �VF is velocity of material points on the free surface.
Considering Eqs. (8) and (9), and the linearization of φR

and φD , we can write:

φ = φP + φI =
6∑

i=1

aiφi + φ7

=
6∑

i=1

aiφi + {
(φ∗

R + φD) + φI
}

=
6∑

i=1

aiφi + {
φ∗
7 + φI

}
(21)

In the above, φR = ∑6
i=1 aiφi + φ∗

R which means the total
radiation potential has been split into two partswithφ∗

R repre-
senting one part of it. This part combined with the diffraction
potential φD is written as φ∗

7 . This means φ∗
7 = φ∗

R + φD .
Since both φR and φD satisfy the linear free-surface con-
ditions as per the approximations used here, the boundary
condition for the time derivative of the φ∗

7 is obtained as:

∂

∂n

(
dφ∗

7

dt

)
= − ∂

∂n

(
dφI

dt

)
on ∂�B(0)

dφ∗
7

dt
= −g(ηD + ηR) on ∂�F (0) i.e. on z = 0 (22)

Because of linearization, in Eq. (22) as well as in Eq. (19)
d/dt ≡ ∂/∂t, and thus (19) also applies on the mean time
invariant position of body and free surface.

It is instructive here to provide an explanation for the need
to split the radiation potential and combine a part of it with the
diffraction potential. This arose purely from the requirement
of deriving the body boundary condition for radiation poten-
tial time derivative, i.e. the ∂/∂n (∂φR/∂t) term for fixed
collocation points on the body surface, which is necessary

for solving ∂φR/∂t directly through a discretized integral
relation similar to (5) to determine linear dynamic pressure
term. Note that our interest is actually the determination
of the total pressure ∂(φR + φD)/∂t . As no expression for
∂/∂n (∂φR/∂t) for fixed points on the body surface could
be arrived at, φR was split into two parts, one part is the
sum of the terms φi , i = 1, 6 and the other part is φ∗

R . The
expressions for the time derivatives of φi as well as φ∗

R com-
bined with φD (which is written here as φ∗

7 = φ∗
R + φD)

are now derived. This process thus enables determination
of components of total linear pressure from radiation and
diffraction directly from the solution of an integral relation
without resorting to any numerical differentiation. The free-
surface boundary conditions for the time derivatives of φi in
(19) indicate that these potentials can be called the infinite-
frequency components of the radiation potentials for unit
accelerations in different modes.

The hydrodynamic force �fH is obtained from integra-
tion of pressure over the body surface. Considering the
assumptions on the components of φ made above, this force
expression is obtained as:

�fH = −ρ

∫

∂�B (t)

[
∂φ

∂t
+ 1

2
(∇φ)2

] { �n
�r × �n

}
d∂�

= −ρ

∫

∂�B (0)

∂

∂t

[
6∑

i=1

aiφi + φ∗
7

] { �n
�r × �n

}
d∂�

−ρ

∫

∂�B (t)

[
∂φI

∂t
+ 1

2
(∇φI )

2
] { �n

�r × �n
}
d∂�

= �fRD + �f I (23)

The first term of 2nd line in Eq. (23) denoted as �fRD is the
force due to combined diffraction and radiation potentials,
evaluated on the mean body surface, and the second term
denoted as �f I is the Froude–Krylov (F–K) force. �fRD can be
written as:

�fRD = −ρ

∫

∂�B (0)

∂

∂t

6∑
i=1

aiφi

{ �n
�r × �n

}
d∂�

−ρ

∫

∂�B (0)

∂φ∗
7

∂t

{ �n
�r × �n

}
d∂� (24)

Using Eq. (17), the first term on R.H.S. of Eq. (24) denoted
as �f ∗

R in component form is:

f ∗
Ri = −ρ

∫

∂�B (0)

6∑
j=1

a jmi
∂φ j

∂t
d∂� (25)
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In Eq. (25) mi is the generalized normal which is equal to
ni for i = 1, 2, 3 and equal to (�r × �n)i−3 for i = 4, 5, 6.
Defining

αi j = ρ

∫

∂�B (0)

6∑
j=1

mi
∂φ j

∂t
d∂� (26)

Using (17), we can now write:

f ∗
Ri = −

6∑
j=1

ξ̈ jαi j +
3∑
j=1

( �̇θ × �vG) jαi j ; i = 1, 2, 3

= −
6∑
j=1

ξ̈ jαi j ; i = 4, 5, 6 (27)

In writing (27), we have used ξ̇i = (�vG)i , i = 1, 2, 3 and

= ( �̇θ)i−3, i = 4, 5, 6. For convenience, force in Eq. (27)
can be expressed in vector form as �f 1R + �f 2R with the first

term representing the force given by the �̈ξ jαi j term and note

that �f 2R contributes only to the linear forces but not to the
moments. By bringing �f 1R to the L.H.S. of the equations of
motion, (14) can be expressed as:

[[M] + [α]] {�̈ξ} = { �f ∗} (28)

where [α]{ξ̈} = −{ �f 1R}; { �f ∗} = { �f } − { �f 1R}. Note that { �f }
composes of the total hydrodynamic force { �fH }, hydrostatic
force { �fS}, and any other external forces such as moor-
ing restoring forces that may be present. In Eq. (28) part
of the radiation forces that are frequency independent and
depending only on the body geometry can be expressed
in the form −[α]{ ¨̄ξ} has been moved to the R.H.S and
combined with the rigid mass–inertia terms. The applica-
ble free-surface condition in determination of the terms in
[α] suggests these to be analogous to frequency-independent
added masses.

The force represented by the 2nd term of R.H.S. of
(24) composes of forces from the pressure term given by
∂φ∗

7/∂t = ∂φ∗
R/∂t + ∂φD/∂t , that is, this force is the com-

bined effect of diffraction and part of radiation. As regards
the F–K force �f I Eq. (23) expresses it as integration over
the wetted body surface. This raises the following ques-
tions. The first one is that the force/moment needs to be
described with respect to a body-fixed coordinate system.
However, the forces due to the radiation and diffraction are
being computed on the mean position of the hull which is
defined in inertial system. Transforming the evaluated forces
from body-fixed to inertial system and vice-versa are, how-
ever, easily achieved through transformation matrix [R] (and
its inverse given by its transpose). As the radiation and

diffraction forces, �fRD in (23) are based on linearization
assumption, these forces remain same in both the coordi-
nate systems under this approximation. Thus, the equations
of motion (14) can be written in the moving body coordi-
nate system, and the evaluated �fRD can be directly added
to the incident forces (see e.g. Sen 2002). The second ques-
tion is on the exact wetted surface. This surface should be
formed by the instantaneous location of the hull under the
combined wave profile of incident, radiation and diffraction
(indeed, in full nonlinear solutions, such decomposition itself
is not possible). Here, the forces are evaluated under the inci-
dent wave profile, which is consistent with the linearization
approximation of the radiation and diffraction effects as lin-
ear free-surface conditions on the surface z = 0 are applied
to these potentials.

The solution proceeds as follows. The αi j terms are
constant and independent of time requiring only one-time
evaluation. These are thus pre-computed before the time sim-
ulations starts. For the time-simulation procedure, for any
instance first we solve the φR and φD problems using (5)
from which ηD and ηR are found from time integration of
Eqs. (10) and (11) following anMELprocedure. For the same
time instant, we also solve the time derivative problem, and
find the force due to pressure term ∂φ∗

7/∂t , that is the 2nd term
of �fRD in (24).After evaluating and adding �f I (aswell as �f 2R),
the motion Eq. (14) are integrated and the solution advances
in time. A flowchart of the time-stepping procedure is shown
in Fig. 2. If it is desired to find the diffraction and radiation
forces, these can be computed independently by applying
appropriate numerical difference schemes to the evaluated
φD, φR on the body surface and integrating the resulting pres-
sures. Note that forces thus evaluated are not used in the time
advancement of the solution and, therefore, do not influence
numerical stability of the simulation algorithm.

As regards the hydrostatic forces, along with the incident
wave pressure the hydrostatic pressure term is also integrated
over the instantaneous wetted hull under the incident profile.
The body weight force is also to be considered in this case.
If a consistently linear solution is desired, then the incident
wave forces are determined on themeanwetted surface using
only the linear pressure term and hydrostatic restoring forces
are expressed by the well-known hydrostatic restoring coef-
ficient terms. The body weight in this case is not taken into
account as this is nullified by the buoyancy force for a body
in equilibrium.

3 Results and discussion

Computations are performed for three geometries, a rectan-
gular barge, a six-column twin pontoon semisubmersible,
and the S175 hull. Relevant data on geometric particulars
and the computational domain are shown in Table 1, and
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Fig. 2 A brief flowchart of the
time-integration procedure; the
superscripts in ηR , ηD and ξ̄

terms represent the iteration
level in the time integration
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Determine force components and thus force *{ }f in Eq. (27)
(After taking care of proper co-ordinate transformations for nonlinear F-K and hydrostatic forces)

Integrate free surface conditions (10, 11) and get (1) (1)( ), ( )R Dt t t tη η+ Δ + Δ

Integrate eqns. of motion (27) and get (1){ ( )}t tξ + Δ

Set applicable boundary conditions for the ,R D

z z
φ φ∂ ∂
∂ ∂

and 
*
7

dt
φ∂

problems using these 1st estimated 

values and re-compute the ( ) ( )( ), ( )k k
R Dt t t tη η+ Δ + Δ and ( ){ ( )}k t tξ + Δ

Solution 

Converged

Update time

t t t= + Δ and repeat

Fig. 3 displays the panelization of the body and free surface
(for the semisubmersible case, only a part of the free surface
is displayed). At the outset, to verify the developed MEL-
based time-domain simulation scheme, we carry out the fully
linearized calculation and compare the results with avail-
able computational and experimental results. The present
calculations are able to generate extremely long-duration
time-histories ofmotions over all frequencies. Figure 4 shows
sample results for motion time-histories of the semisub-

mersible and the S175 hull. As can be seen, the algorithm
remains stable and motion amplitudes are steady for the
entire duration of the simulation run time. Comparisons are
madewith theGreen function-based frequency-domain solu-
tion, available experimental data of Pinkster (1980) and the
Rankine panel-based method SWAN-2 (Sclavounos 1996).
For the present results, motion amplitudes are found from
long-duration motion histories similar to Fig. 4. Compari-
son of the motion RAOs for wave heading β = 13◦ for all
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Table 1 Particulars of the three
hull surface and relevant details
of the NWT domain

Main particulars Barge Semisubmersible S175 hull

Length (m) 150 100 (pontoon) 179

Breadth (m) 50 76 25.4

Draft (m) 10 20 9.5

Centre of gravity {0, 0, 0} {0, 0,−12.08} {−2.65, 0,−1.2}
GMT (m) 16.2 17.65 2.139

GML (m) 185.56 18.3359 208.86

Kxx (m) 24.2 30.55 8.75

Kyy (m) 39 30.89 44.45

Kzz (m) 39 41.74 44.45

No. of body panels 641 864 863

No. of free-surface panels 1768 2248 2426

Free surface size [i.e. diameter (m) ] 1200 2000 1600

three structures are displayed in Figs. 5, 6, and 7. The code
used for the frequency-domainGreen function calculations is
SOFORCE (Singh and Dhavalikar 2004), a code developed
at Indian Register of Shipping which has been fully tested
and benchmarked against other industry standard codes like
WAMIT.

The translational motions surge (ξ1), sway (ξ2), and heave
(ξ3) are non-dimensionalized by wave amplitude (ξa) and
the angular motions roll (ξ4), pitch (ξ5), and yaw (ξ6) are
non-dimensionalized by wave number and wave amplitude
(kξa where k given by 2π/λ is wave number, λ is wave
length). RAOs are plotted against non-dimensionalized fre-
quency ω

√∇1/3/g. As can be seen, the comparisons for all
three geometries in general show good agreement, partic-
ularly at higher frequency range. Semisubmersible results
show that the captured natural period in heave by two numer-
ical methods is different from the experimental results. For
S175 hull, roll predicted by the present method as well as
by frequency-domain code at the resonant frequency is con-
spicuously higher than SWAN-2 results because the former
two computations are performed without incorporating any
viscous roll damping unlike in SWAN-2 computations. Some
differences, however, do exist particularly with the SWAN-
2 code at the low-frequency range, but the agreement with
the frequency-domain Green function-based method which
is presently taken as standard method in offshore industry
for linear wave–structure interactions is good over the entire
frequency range. Considering that the three results are from
three different methods and the uncertainties that exist in
motions and loads for complex offshore configuration (see
e.g. Hiradis et al. 2014), the overall agreement between the
results can be termed good. Computations have also been
made for beam waves and head waves (90◦ and 180◦ head-
ing, respectively) and similar (and better) agreement is found
in all cases, comparable to the bow-quartering case (the bow-
quartering wave-heading results are presented here since at

this heading all six modes of motions are present; in beam
and head waves some of the motions are zero or negligible
due to geometric symmetry).

The present linear computations are also directly com-
pared with the SWAN-2 generated motion time-histories.
Figure 8 shows a sample comparison for the S175 hull in
head wave conditions. The height of this wave is taken very
small, Hw = 2m (Hw/λ ≈ 1/75) to ensure SWAN-2 to
produce linear results. As can be seen, results compare well
for both heave and pitch. Similar comparisons have been
made for many different frequencies and wave headings, and
agreements are found to be good in all cases. These results,
therefore, confirm that for linear wave–structure interactions
the present method is able to generate results comparable in
accuracy with results from available codes for realistic prac-
tical geometries.

We now proceed to the approximate nonlinear computa-
tions. The incident waves in these computations are taken
as the fully nonlinear steady waves defined by the Fourier
approximation-based numerical method given by Rienecker
and Fenton (1981). This numerical method generates steady
periodic nonlinear waves for steepness up to near breaking
range and is similar to the stream function-based nonlin-
ear water waves. For these calculations, however, we find
that if the body is free in six DOF and fully unrestrained
and, therefore, free to drift, the solution breaks down. The
drifted location of the body over which the exact F–K forces
are evaluated gets progressively shifted from the mean loca-
tion over which the linearized diffraction effects are being
computed. The problem of a freely drifting body is essen-
tially same as the forward speed problem where the forward
speed can be considered as the mean drift velocity. Since the
present formulation is for a floating body with mean zero
speed, the solution becomes invalid if the body is allowed to
drift freely. For a forward speed problem, solution schemes
based on Rankine panel method need to be formulated using
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Fig. 3 Body panels and free-surface panels a rectangular barge, b six-column semisubmersible and c S175 hull

a ship-fixed moving coordinate system. This is a different
problem in which the specification of the boundary value
problem itself gets modified through inclusion of forward
speed-dependent terms, in particular in the free-surface con-
ditions and the pressure term.

Almost all available 3D numerical methods for steepwave
interaction with floating structures consider either three DOF
motions of heave, pitch, roll or full six DOF with mooring
lines restraining the body from freely drifting (see Ma and
Yan 2009 and references therein). In a recent work by Watai

et al. (2015), where a similar Rankine panel approach was
applied for the fully linear problem of two side-by-side float-
ing bodies, the horizontal motions of one body was fully
restrained, and on the other body sway, yaw, and roll were
fully restricted and surge was restrained through a spring.
For the present approximate nonlinear calculations, it is clear
that the method cannot be applied if the body is allowed to
freely drift since the displaced location of the body needs to
remain as an oscillation or perturbation about the mean loca-
tion. In other words, the body’s horizontal motions need to
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Fig. 4 Time-histories of the motion responses from the fully linearized algorithm. a Semisubmersible motions for wave period (T ) = 14s, wave
height (Hw) = 12m, wave heading (β) = 135◦. b S175 hull motions for T = 12 s, Hw = 10m, β135◦

be restrained. In practical application, all stationary floating
objects have some restraining mechanism against free drift-
ing, either through mooring lines or DP systems or tethers
as in the case of a TLP (see e.g. Ma and Yan 2009; Chitrapu
andErtekin 1995). All these restrainingmechanisms produce
horizontal spring forces and moment on the body.

Allowing the body 3 DOF of heave, roll, and pitch is
essentially equivalent to taking infinitely large spring stiff-
ness in the horizontal plane restricting the horizontal motions
of surge, sway, and yaw completely. On the other hand, a soft
spring with low stiffness will allow all 6 modes of motions.
For the present scheme, numerical experiments have shown
that the influence of horizontal spring stiffness on the ver-
tical plane motions is negligible. Thus, if the interest is in
simulating heave, pitch, and roll motions only, then it is
possible to generatemeaningful results by restricting the hor-
izontal motions completely. Since one of our objective is to
generate long-duration motion time-histories for stationary
(zero-Froude number) floating bodies using the approximate

nonlinear method and be able to capture at least part of the
important nonlinear features associatedwith large-amplitude
waves, initially we perform computations by constraining
the body’s horizontal motions completely. Implementation
of this constraint in the algorithm is achieved by evaluating
the nonlinear F–K forces andmoments (in all sixmodes) over
the exact wetted surface and under the incident wave profile
formed by the body displaced in heave, pitch, and roll but
restricted from sway, surge, and yaw. Restricting the horizon-
talmotions in the evaluation of forcesmaybe taken as another
approximation in our blended nonlinear approach, physically
equivalent to attaching a horizontal spring of infinite stiffness
to the body. Note that in a consistent linear scheme, all forces
are evaluated at the mean location of the body. For the above
approximate nonlinear scheme, Figs. 9 and 10 displays the
heave, roll, and pitch motions of the S175 hull and the barge
in a wave of period (TP ) 12s, height (Hw) 10m, and head-
ing (β) 135◦. These and numerous other results for different
geometries have shown that the algorithm remains extremely
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Fig. 5 Six degree of freedom (DOF) motion RAOs of barge at β = 135◦
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Fig. 6 Motion RAOs of semisubmersible for wave heading (β) = 135◦
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Fig. 7 Motion RAOs of S175 hull for wave heading (β) = 135◦

Fig. 8 Heave and pitch time series results of the S175 hull for T = 10 s, Hw = 2m, β = 180◦

stable and is able to generate very long-duration motion his-
tories displaying steady periodic characteristics.

Having achieved long-duration results using the above
modified form of the approximate nonlinear calculations,
comparisons are now made to investigate the nature and
extent of nonlinearities in the response histories. In present-
ing these results, forces andmoments are non-dimensionalized
by the ρg∇ and ρg∇L where ρ is the density of sea water,

∇ is the mean under water volume and L is the body
length. For clarity only a part of time history is displayed,
although simulation is performed for over a very long dura-
tion, mostly exceeding 100 periods. In all plots, numerical
results computed based on linear formulation (incident F–K
force and hydrostatics restoring forces determined on mean
location) are termed as ‘linear’ and the results computed
based on approximated nonlinear formulation (incident F–
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Fig. 9 Heave, roll, and pitch motions of the S175 hull for wave parameters: T = 12 s, Hw = 10m, β = 135◦

K and hydrostatic forces are determined on the horizontally
restrained location) are termed as ‘approx. nonlinear’.

Figure 11 shows the heave and roll motion of the barge in
beamwaves forwave of period 12s (λ/L ≈ 1.49), and height
10m. Heave and pitch motions in head sea condition for the
same wave are shown in Fig. 12. It is seen that for this wave
in beam sea, nonlinear predictions of roll is slightly higher
than the corresponding linear results, but the pitch results are
less influenced by incident wave nonlinearity. However, in a
longer wave of period T = 18s. (λ/L ≈ 3.3) in head sea
condition shown in Fig. 13, nonlinearities have some influ-
ence both on the amplitude and on the frequency components
for pitch motions.

Figure 14 displays the F–K forces on S175 hull for a
wave of T = 12 s. (λ/L ≈ 1.25), Hw = 10m, β = 135◦.
This hull, unlike the barge has a significant flare and thus
incident forces as well as the hydrostatic restoring forces
are expected to have pronounced nonlinear characteristics.
As expected, results display considerable nonlinearities par-
ticularly in sway, roll, and yaw forces and moments. The

non-dimensional hydrostatic forces and moments are shown
in Fig. 15 which verifies similar nonlinear features. The
motions for this case shown in Fig. 16 also reflect similar
nonlinearities.

Figure 17 shows the comparison of motions of the freely
floating unmoored semisubmersible. Linear and approximate
nonlinear results shownegligible differences in the computed
vertical motions. Numerical simulations have also been per-
formed over a wide range of frequencies and wave heights,
and in general it is found that the influence of nonlinearities
as expected is largest for the S175 hull, followed by the barge
and least significant for the semisubmersible configurations
signifying that incident wave nonlinearities are mostly asso-
ciated with the above water hull geometry: the larger and
more flared this part is, the larger is the nonlinear influence.

We now showmotions of the semisubmersible with moor-
ing lines. A spread mooring with six lines is introduced and
mooring lines are modelled as linear springs. The stiffness
of each line is taken as 50kN/m which is a realistic value
for this size of a semisubmersible. The mooring forces are
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Fig. 10 Heave, roll, and pitch motions of the barge for wave parameters: same as in Fig. 9

Fig. 11 Heave and roll motions of the barge for wave parameters: T = 12 s, Hw = 10m, β = 90◦

then expressed as { �fM } = [cM ]{ξ} and the equivalent linear
restoring coefficients [cM ] are determined by adding the con-
tribution from each line after proper resolution, as outlined in
Faltinsen (1990). For this case, the F–K forces are determined
on the exact displaced wetted surface without any restriction
on its horizontal position. Figure 18 shows all the six modes

of motion. There is an initial transient in surge and sway
motions and these periods correspond well with theoretically
estimated natural periods in thesemodes. Investigations have
shown that these transients can be absorbedwithin a few peri-
ods (typically 2–5 periods) if a small damping of the order of
5% of critical damping is introduced in the horizontal mode
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Fig. 12 Heave and pitch motions of the barge for wave parameters: T = 12 s, Hw = 10m, β = 180◦

Fig. 13 Heave and pitch motions of the barge for wave parameters: T = 18s, Hw = 10m, β = 180◦

motions. The important observation from this result is that
long-duration simulation with exact F–K forces on the dis-
placed position of the hull is achievable if there is a physical
restriction imposed on the horizontal plane motions through
mooring lines. This particular case have shown insignificant
difference between the motions except in yaw, but in a much
longer wave of period 20s. shown in Fig. 19, all the three hor-
izontal plane motions show a mean offset of the body after
the initial transients have decayed.

As mentioned previously, the present method can be
applied straightforward for the multi-body case. In this case,
the body surface will consist of panels over body-1 followed

by body-2, etc. After determining the pressures over each
body panel, all that is needed is to integrate the pressures
over the respective body surfaces to determine the forces
and moments over each body, taking care of the fact that the
moments need to be defined with respect to the individual
body coordinate systems. The equations of motions for each
body can then be integrated independently. The details of
the free-surface elevations surrounding the bodies can also
be captured as the solution progresses. Figure 20 shows a
preliminary result for a shuttle tanker lying in parallel to an
FPSO with a 20m gap in between and the total perturbed
wave elevation (i.e. the free-surface elevation excluding the
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Fig. 14 Incident forces and moments on S175 hull for wave parameters: (T = 12 s, Hw = 10m, β = 135◦)

Fig. 15 Hydrostatic restoring forces/moments for the S175 hull for wave parameter: same as in Fig. 14
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Fig. 16 Heave, roll, and pitch motions of the S175 hull for wave parameter: same as in Fig. 14

Fig. 17 Heave, roll and pitch motions of the semisubmersible for wave parameter: T = 14s, Hw = 12m, β = 135◦

incident wave) for an incident wave which is a linear wave
of height 2m and period 9sec at 180◦ heading. The length,
breadth, and draft of the FPSOand the shuttle tanker are (325,
58, 30m) and (264, 46, 23m), respectively. It can be seen that
themethod could capture the increasedwave elevationwithin
the gap region.

Figure 21 shows preliminary results on air-gap studies
for a semisubmersible exposed to a nonlinear incident beam
wave of height 14m and period 10s. The plot shows the total
free-surface elevation as well as the total perturbed wave at
a given instant. The bottom plot reveals that the perturbed
wave height below the deck is relatively large compared to
the rest of the region and thus important in predicting the
under-deck clearance. Figure 22 shows the time-histories of

deck height (zD), free-surface elevation (η) and the air-gap
(zD −η) for a point located at the centre of the deck, that is at
the horizontal location (x, y) = (0, 0). Results are shown for
computations performed with both linear as well as steady
nonlinear incident wave with height 14m, period 10s. and
heading 90◦. Careful observation reveals that the minimum
air-gapobtained for nonlinear incidentwave is lower by about
0.5m as compared to the values obtained with linear wave
case. Figure 23 shows a similar comparison for a twin pon-
toon four-column semisubmersible. The semisubmersible in
this case has pontoon sizes of 90×15× 6.5m spaced at 60m,
and the columns are of diameter 9m longitudinally spaced at
69m. The deck of the semisubmersible is taken at 10m above
mean water line. The results are for incident wave of height
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Fig. 18 Six DOFmotions of the semisubmersible with mooring lines for wave (T = 14s, Hw = 12m, β = 135◦); (here approx. nonlinear implies
F–K force and hydrostatic restoring forces computed on exact wetted surface at displaced location)

10m, period 10s in heading of 135◦. and the point is located
at (x, y) = (−44.17,−26.17) which is the centre of the
free-surface panel adjacent to the inside of the aft-starboard
side column. As can be seen, here also the minimum air-gap
clearance for the computation with nonlinear incident wave
predicts about 0.5m lower as compared to the computation
with linear incident wave. These preliminary results, there-
fore, reveal the importance of nonlinearities in the incident
wave in predicting minimum air-gap clearance. The impor-
tance of nonlinearities in incident wave height for practical
air-gap predictions has also been discussed in Sweetman
(2004) where the incident waves used were Stokes 2nd order
wave. As discussed by the author, there are several levels of
approximate methods for practical air-gap predictions, and
incident wave nonlinearity is an important contributor to the
minimum air-gap. The present method can yield minimum
air-gap considering full nonlinear incident waves in the time
domainwhich turned out to be lower thanwhenprediction are

made with linear waves. Following the methods proposed in
Sweetman (2004), the results from regular nonlinear incident
computations can be statistically analysed to derive impor-
tant design information in irregular waves. Detailed studies
on multi-body simulations as well as under-deck clearance
including validation will be reported in subsequent work.
Here, these preliminary results are presented to demonstrate
the capability and versatility of themethod in yielding results
of practical importance.

It is also mentioned earlier that the present method allows
for a possibility of modelling partial nonlinear effects asso-
ciated with the diffracted wave field by a suitable mapping
of the wetted hull at every time step. The idea here is as fol-
lows. Referring to Fig. 24, the top diagram (a) shows the body
at its mean location along with a schematic panelization. It
is this geometry that is being used in the integral Eq. (5).
The bottom diagram (b) shows the body in its instantaneous
location under the nonlinear incident wave profile. The time
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Fig. 19 Six DOF motions of the semisubmersible with mooring lines for wave (T = 20 s, Hw = 16m, β = 135◦) (approx. nonlinear implies
same as described in Fig. 18)

invariant body panels in (a) can bemapped through a suitable
mapping procedure to the panels in the wetted surface (b),
i.e. collocation point Pi (0) is mapped to the point Pi (t). The
applicable body boundary condition for the diffraction poten-
tial expressed in terms of the incident wave normal velocity
∂φI /∂n [see Eq. (11)] is now evaluated for the point Pi (t)
based on the nonlinear incident wave potential and applied at
the point Pi (0) for the discretized solution. The procedure is
theoretically inconsistent, but it is expected to capture some
of the nonlinearities associated with the diffraction poten-
tial. In other words, this may give a closer approximation
to the nonlinear diffraction than using a fully linear diffrac-

tion. This procedure of mapping the underwater hull follows
from a similar idea used in the highest version of the LAMP
code, the LAMP-4 body-exact version in the 3D ship motion
calculations (Lin et al. 1994) which has also been imple-
mented by Singh and Sen (2007a, b) with reasonably good
results.

It should be noted that in the LAMP code, the mapping
of the exact hull to the computational domain is somewhat
different than what is proposed here because of the differ-
ence in the basic solution method. Whether such a procedure
will produce results closer to the full nonlinear solution can
only be confirmed after implementing such scheme and car-
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Fig. 20 FPSO and shuttle
tanker lying parallel with 20m
gap (top), and the free-surface
elevation for the total perturbed
wave field in a incident wave of
T = 9s, Hw = 2m, and
β = 180◦ (bottom)

rying out a detailed investigation in comparison to available
nonlinear results. A form of this implementation for the case
of wave diffraction for a bottom-mounted vertical cylinder
have shown that this procedure yields a time history of dif-
fraction forces with larger positive peak and lower negative
peak as wave amplitude increases (Sen and Srinivasan 2007).
The important point is that the method allows for possi-
bilities of such extensions which may be able to provide

improved estimates of large-amplitude wave effects on the
structures.

4 Concluding remarks

A time-domain simulation method is developed for studying
the interaction of large-amplitude nonlinear incident waves
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Fig. 21 Semisubmersible
exposed to a nonlinear incident
wave of T = 10 s, Hw = 14m,
β = 90◦; top plot shows the 3D
view of total free-surface
elevation and the bottom plot
shows the 2D contour plot of
perturbed wave elevation

with 3D floating structures. The method is formulated based
on a 3D MEL type of approach for solving the interaction
hydrodynamics of radiation and diffraction effects with sim-
plifying approximation of linearization of these potentials.
The introduced approximations allow meaningful practical
results to be obtained for realistic offshore and ship geome-
tries with reasonable and moderate computing resources
making the method suitable for routine industry usage. The
method is also versatile and in principle can accommodate
influence of external forces arising from other sources to
which the emerging complex offshore structures may be
exposed. There are also possibilities to account for certain
nonlinearities associated with the radiation and diffraction
throughmodification of the appropriate boundary conditions,
e.g. using a modified form of the body boundary conditions

for the diffraction potential [the 2nd Eq. of (11)] through a
mapping of ∂�B(t) to ∂�B(0), as briefly discussed here. The
versatility of this method also makes it suitable for studying
multi-body interactions, under-deck clearance study using
full nonlinear incident wave, etc. Presently some prelimi-
nary results are demonstrated to show the capabilities of the
developed tool, detail applications will be addressed in sub-
sequent works.

The present study comprises of the following elements in
the development process of a robust and generalized tool for
time-domain simulation of wave–structure interactions:

• Computational results based on linear formulation are
verified with results from other frequency domain and
time-domain solvers. Comparison of computed results
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Fig. 22 Time history of deck height, free-surface elevation (incident + perturbed) and the air-gap for a point at the centre of the deck located at
(x, y) = (0, 0) for an incident beam wave (90◦) with height 14m, period 10s. a Linear Airy’s wave and b full nonlinear numerical wave

Fig. 23 Comparison of air-gap clearance between computations performed with linear wave and nonlinear wave at horizontal location (x, y) =
(−44.17,−26.70); the incident wave is of height 10m and period 10s, heading of 135◦
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Fig. 24 Illustration for
mapping in applying the body
boundary condition for
diffraction potential

by the present scheme shows good agreement with other
solvers.

• Nonlinear interaction problem is pursued by taking
into account the nonlinearities arising from the inci-
dent wave F–K forces and nonlinear hydrostatic restoring
forces.

• Long-duration simulation in a steep nonlinear incident
wave is presented. Steady periodic long-duration simu-
lation results are achieved for both linear and nonlinear
formulation by devising techniques for computation of
the linear dynamic pressure terms, introduction of an arti-
ficial dissipative beach. The method is not suitable for a
freely drifting body. Thus if the body has no restraint
in the horizontal plane, then such restraints need to be
imposed artificially to restrict its motion in the horizon-
tal plane.

From the extensive computations carried out for three real-
istic geometries, the following observations could be made:

• In the nonlinear method, comparison of linear and non-
linear computations shows that for wall-sided structures
like a rectangular barge with large upper hull part, some
differences exist in the computed F–K forces while the
differences in the restoring forces are less significant but

the vertical motion response shows considerable varia-
tions from linear formulation results.

• For S175 containership hull, significant variations in the
F–K forces, restoring forces, and motions between lin-
ear and nonlinear computations can be observed. This
is clearly due to the flare of the hull resulting in the
so-called geometric nonlinearity. For such flared hulls,
large-amplitude motions cause a considerable change in
the wetted surface of the hull.

• For six-column twin pontoon semisubmersible, minor
variations between linear and nonlinear results are
observed for all wave headings, including F–K forces,
unlike in the case of a rectangular bargewhich also iswall
sided. This is perhaps due to the fact that the semisub-
mersible has low volume part above water plane, that is,
the variation in the exact wetted surface and themean sur-
face volume is relatively much small for this geometry.
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