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Abstract This paper investigates the wave energy con-
version performance of floating and submerged heaving
vertical-cylinder buoys. Two types of reactive control strate-
gies are evaluated for their effect on energy absorption in
irregular waves described by uni-modal spectra. Approxi-
mate near-optimal reactive control based on up-wave surface
elevation measurement and peak-frequency tuning are com-
pared for performance improvements over constant-damping
load. The paper describes time-domain calculations under
unconstrained oscillation in long-crested irregular waves
for two sets of buoy dimensions. Supporting analysis and
frequency-domain calculations suggest that near-optimal
control performs considerably better than peak-frequency
tuning for the submerged buoys and somewhat better for
the floating buoys. The relative contributions of the Froude–
Krylov and diffraction force components, andwave radiation
properties for the two configurations are found to be impor-
tant in this context.
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List of symbols

η(x, t) Wave surface elevation at position x and
time t

γ Phase difference between the Froude–
Krylov and the diffraction heave force
components

ω Wave/oscillation circular frequency
ωp Spectral peak frequency
A Incident wave amplitude
a(ω) Just the frequency-dependent added mass

in heave; a(ω) − a(∞)

ac(iω), bc(iω) Fourier transforms of the right-shifted,
causalized, individual impulse response
functions for a(ω) and b(ω)

b(ω) Radiation damping in heave
cd Linearized viscous damping coefficient
D Load damping in constant damping case
Dr = R/2; Draft (submergence depth) for

floating (submerged) buoy
Fd Diffraction force component in heave
Ff Wave-applied exciting force in heave
Fr Force applied by the power take-off
Ffk Froude–Krylov force component in heave
Fro Control force Fr required for maximum

power absorption
g Gravity acceleration
h Water depth at buoy location
hA, hR Impulse response functions used tomodel

actual device response
Hf Frequency response function in heave
hf Exciting force impulse response function

in heave
ho Impulse response function representing

the desired behavior
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hr Radiation impulse response function in
heave

Hs Significant wave height
Hfd Fourier transform of the right-shifted

‘causalized’ exciting force kernel
hl1, hl2, ha Impulse response functions defining the

resistive and reactive force applied in
near-optimal control

k Wave number
kh Stiffness constant including mooring and

hydrostatic restoring constant
m In-air mass of body
Pf Power absorbed at each k with peak-

frequency tuning
Pi Incident wave power per unit crest width
Pw Power absorbed at each k with near-

optimal control
PDa Average power absorbed under constant

damping in irregular waves
Pfa Average power absorbed under peak-

frequency tuning in irregular waves
Pwa Average power absorbed under approx-

imate near-optimal control in irregular
waves

R Buoy radius
S(ω) Incident wave spectral density
Te Energy period for the input spectrum
Uopt Hydrodynamically optimum velocity in

frequency domain
v Heave velocity
vm Actual velocity in heave under peak-

frequency tuning
vo Desired optimum velocity in heave
vact Actual velocity under near-optimum con-

trol in heave
vmx Shallow water limit for group velocity
a(∞) Infinite-frequency added mass in heave
a(ω) Added mass including the infinite-

frequency added mass

1 Introduction

The hydrodynamic behavior of floating axi-symmetric point
absorbers capturing energy from heave oscillations has been
studied since the early 1970s, see, e.g., McCormick (1981).
Control is particularly desirable for such devices due to their
narrow-band frequency response and short resonant peri-
ods. For such devices, Budal and Falnes (1980) introduced
a latching type control approach using real-time application
of clutching or braking forces. Since then, this approach has
been investigated by many authors, see Hoskin et al. (1985),
Falcao and Justino (1999), Perdigao and Sarmento (1989),

Korde (2001), and Babarit and Clement (2006), to name a
few. A heaving buoy type device driving a hydraulic power
take-off was considered more recently by Falcao (2008)
for optimized conversion in the time domain. Frequency-
domain ‘complex-conjugate control’ approaches comprising
adjustable reactive loading for selective tuning to changing
wave spectra have been studied since the mid-seventies, see,
e.g., Salter (1978), Nebel (1992) and Korde (1991). Such
an approach was tested recently on the Wavestar device in
Denmark (e.g., Hansen and Kramer 2011).

Real-time control for optimum velocity operation in irreg-
ular waves presents fundamental difficulties, as outlined in
Naito andNakamura (1985), and later in Falnes (1995). Since
wave radiation from body oscillation is causal, the radia-
tion impulse response function is also causal. Therefore, the
frequency-dependent added mass and radiation damping sat-
isfy the Kramers–Kronig relations. For optimum velocity
in irregular waves, the impulse response functions corre-
sponding to these two quantities need to be synthesized
and used independently, both of which are non-causal, one
being symmetric and the other anti-symmetric. In part for
this reason, control force synthesis at a given time instant
requires knowledge or prediction of velocity into the future.
Compromise solutions using velocity estimation based on
time-series analysis of past velocities were reported sev-
eral years ago by Korde (1999) and Korde et al. (2002).
Recently, systematic studies were reported Fusco and Ring-
wood (2012) on the relation between the device geometry
and the required ‘prediction horizon’. More recent work
followed an approach discussed in Naito and Nakamura
(1985) and Falnes (1995) and used up-wave surface elevation
measurements with right-shifted impulse response functions
to generate approximate instantaneous control forces, see
Korde (2014). Other approaches such as model predictive
control and adaptive control have also been considered.Many
of these were evaluated in a recent paper by Hals et al.
(2011). Other more recently reported approaches include the
simple and effective control strategy, Fusco and Ringwood
(2013), and a robust controller suitable in the presence of
model uncertainties and oscillation constraints, Fusco and
Ringwood (2014). Force and displacement constraints were
considered within a single framework in Bacelli and Ring-
wood (2012).

It is easy to see that control seeking tuning over an entire
spectrum would enable better energy conversion in bi- or
multi-modal spectra. However, for uni-modal and narrow-
band spectra, and especially for small heaving buoys, it can
be argued that peak-frequency tuning (such as reported in
Hansen and Kramer 2011) could produce comparable per-
formance with less effort. The comparative assessment of
different strategies in Hals et al. (2011) shows that, in longer
periods, the peak-frequency tuning approach would perform
comparably with other approaches seeking tuning over a
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Fig. 1 A schematic view of the floating and submerged cylindrical
buoy devices studied in this work. The floating and submerged configu-
rations thus assume the same immersed geometry at static equilibrium,
and the depth of submergence in the submerged case equals the draft in
the floating case. For small deflections, the above-water portion of the
floating buoy is assumed to be small

range of frequencies. This paper investigates this question
further, for floating and submerged heaving devices. The
findings are interpreted using an approximate analysis in the
frequency domain. Effect of oscillation constraints is not dif-
ficult to study by extending the approach of this paper, but
is not addressed in this paper. Only uni-modal spectra are
considered in this work. As discussed in Falnes and Hals
(2012), the floating and submerged configurations have con-
siderably different wave radiation properties impacting their
performance, especially in long waves.

Figure 1 shows a schematic diagram for the two situa-
tions studied in this paper. Section 2 summarizes the control
strategies used. Note that the time-domain calculations are
for unconstrained oscillation. Section 3 presents an approx-
imate analysis to help to interpret the time-domain results,
while Sects. 4 and 5 present and discuss principal results.

2 Control formulation summary

The control approaches used in this work are drawn from
Korde (2014). The following outline is intended only to pro-

vide a context for the subsequent discussion (see, e.g., Korde
2014 for details). The equation of motion for single-mode
unconstrained heave velocity in an irregular wave train is

[m + a(∞)] v̇ + cdv +
∫ ∞

0
hr(τ )v(t − τ)dτ

+ kh

∫ t

−∞
v(τ)dτ = Ff + Fr, (1)

where Ff represents the exciting force in heave, and Fr is the
force applied by the power take-off. Here the total radiation
force FR on the body [to be placed on the right side of Eq. (1)]
is expressed as:

FR(t) = −a(∞)v̇ −
∫ ∞

0
hr(τ )v(t − τ)dτ. (2)

The radiation impulse response function hr(t) is causal in
that only the past and present velocity affects the radia-
tion force. Thus, hr(t) = 0, t < 0. This implies that its
Fourier transform, H(iω), is analytic in the upper half of
the complex-frequency plane, seeWehausen (1992). Further,
since hr(t) is real-valued (velocity and radiation force being
real-valued), Hr(−iω) = H∗

r (iω). Further,

∫ ∞

−∞
hr(t)e

−iωtdt = Hr(iω) = b(ω) + iω [a(ω) − a(∞)] ,

(3)

where b(ω) is the frequency-dependent radiation damping,
and for convenience a(ω) = a(ω) − a(∞) is used below to
denote just the frequency-dependent added mass part. Thus,
as

lim
ω→∞ a(ω) = a(∞),

lim
ω→∞ a(ω) → 0. (4)

Note that there is a notational inconsistency in Korde
(2014) where the symbol a(∞) is used for the infinite-
frequency addedmass.As a consequence of causality of hr(t)
thus, b(ω) and a(ω) satisfy the Kramers–Kronig relations
Jeffreys (1984), Falnes (2002), and others.

As a result of the above,

b(ω) =
∫ ∞

0
hr(t) cosωtdt,

a(ω) = − 1

ω

∫ ∞

0
hr(t) sinωtdt. (5)

Note that the full Fourier transforms of b(ω) andωa(ω)must
be even and odd functions of time and equal in magnitude
(=hr(t)/2). Thus,
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hb(t) = 1

2π

∫ ∞

−∞
b(ω)eiωtdω,

ha(t) = 1

2π

∫ ∞

−∞
iωa(ω)eiωtdω (6)

are both non-causal.
The exciting force Ff(t) may be written in terms of the

wave surface elevation η at the device centroid xB as

Ff(t) =
∫ ∞

−∞
Hf(τ )η(xB; t − τ)dτ. (7)

With respect to η(xB; t), Hf is not causal, and Hf (t) �= 0, t <

0. For maximum energy absorption by an ideal single-mode
device without viscous losses and without oscillation con-
straints, the reactive terms in Eq. (1) need to be externally
forced out, and the rate of energy radiation from the device
needs to be equaled by the rate of energy absorption by the
power take-off. Thus, for maximum power absorption, the
force Fr(t) ≡ Fro(t) needs to be

Fro(t) = [m + a(∞)]v̇ + kh

∫ t

−∞
v(τ)dτ + Fc(t), (8)

where the first two terms contain the frequency-independent
inertia and stiffness effects only, and can be derived in real
time using velocity and acceleration measurements at the
current instant and no prediction is required. Fc(t) is the part
that needs to provide the correct power absorption rate and
cancel the remaining reactive effects. For the present device,
Fc(t) is chosen to balance the total inherent damping effects
(i.e., due to wave radiation and linearized viscous damping
(see, e.g., Fusco and Ringwood 2014).

Though Hf and hr (and consequently ha, and hb) are infi-
nite time-interval impulse response functions in theory, in
practice, they canbe truncated at finite t values (±tc forha and
hb and ±tf for Hf ) with small loss of accuracy. An approx-
imation is proposed based on Naito and Nakamura (1985)
[Equations (13)–(13”) therein] and Falnes (1995) [equation
(59) and discussion below equation (67)]. Thus,

Fc(t) ≈ −cdv(t) −
∫ tc

−tc
hb(τ )v(t − τ)dτ

+
∫ tc

−tc
ha(τ )v(t − τ)dτ. (9)

Note that when transposed to the left side of Eq. (1), the sec-
ond and third terms combine to give the required approximate
total anti-causal force. Further,

Ff(t) ≈
∫ t f

−t f
Hf(τ )η(xB; t − τ)dτ. (10)

Following Korde (2014) [Equations (48)–(52) therein],

Fc(t) = Fl(t) + Fa(t), (11)

where

Fl(t) = −
∫ 2tR

0
hl1(τ )η(xR; t − τ)dτ

−
∫ 2t f

0
hl2(τ )η(xA; t − τ)dτ (12)

and

Fa(t) =
∫ 2tR

0
ha(τ )η(xR; t − τ)dτ. (13)

The impulse response functions hl1, hl2, and ha here are
defined as in Eqs. (15) and (16) below. It should be noted
that the direct use of measurements η(xR; t) and η(xA; t) in
these time-domain calculations relies on the assumption that
most wave components in the approaching spectrum satisfy
the long-wave approximation for the body.

Relative to the location of the device xB, the surface ele-
vation is measured at

xA = xB−vmxtf ; and xR = xB−vmx(tc+tf); vmx = √
gh,

(14)

where vmx is the group velocity in shallow water of the
longestwaves in the spectrum(atwhichpropagationbecomes
non-dispersive), see Falnes (1995). In spectra dominated by
long swells, all waves significant for energy conversion are
here assumed to propagate at this speed. This approximation
implies that for both the floating and the submerged configu-
rations, the present control will perform better in spectra with
longer energy periods. Note that this single group-velocity
approximation is also used but not mentioned explicitly in
Korde (2014).

The impulse response functions hl1 and hl2 are found as

hl1(t) = 1

2π

∫ ∞

−∞
bc(ω)Hfd(iω)

2[cd + b(ω)] e
iωtdω,

hl2(t) = 1

2π

∫ ∞

−∞
cdHfd(iω)

2[cd + b(ω)]e
iωtdω, (15)

whereas

ha(t) = 1

2π

∫ ∞

−∞
iωac(iω)Hfd(iω)

2[cd + b(ω)] eiωtdω. (16)

The desired optimal velocity is found as

vo(t) =
∫ 2t f

0
ho(τ )η(xA; t − τ)dτ, (17)
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where

ho(t) = 1

2π

∫ ∞

−∞
Hfd(iω)

2[b(ω) + cd]e
iωtdω. (18)

The actual velocity under near-optimal control is

vact(t) =
∫ 2t f

0
hA(τ )η(xA; t − τ)dτ

+
∫ 2t f

0
hR(τ )η(xR; t − τ)dτ, (19)

with

hA(t) = 1

2π

∫ ∞
−∞

[cd + 2b(ω)]Hfd(iω)

2[cd + b(ω)][iωa(ω) + b(ω) + cd]e
iωtdω,

hR(t) = 1

2π

∫ ∞
−∞

[iωac(iω) − bc(iω)]Hfd(iω)

2[b(ω) + cd][iωa(ω) + b(ω) + cd]e
iωtdω.

(20)

Control force for peak-frequency tuning is

Fc(t) = −cdv(t) − b(ωp)v(t) + a(ωp)v̇(t). (21)

The velocity v = vm in peak-frequency tuning viaEq. (21)
is found as

vm(t) =
∫ 2t f

0
hfc(τ )η(xA; t − τ)dτ, (22)

where

hfc(t)

= 1

2π

∫ ∞
−∞

Hfd(iω)

iω[a(ω) − a(ωp)] + [b(ω) + b(ωp) + 2cd] e
iωtdω.

(23)

Equations (22) and (23) are used here for convenience in
calculations, though in experiments, b(ωp) and a(ωp) may
be continually adjusted using non-real time wave spectrum
information. Although the primary goal here was to compare
the approximate near-optimal control and peak frequency
tuning strategies, calculations were also carried out for a case
with no control and constant damping. Here,

Fr(t) = −Dv(t), (24)

where D denotes a non-optimized constant load damping
value, held constant through all spectra.

For an irregularwave input (generated using a 2-parameter
Pierson–Moskowitz-type spectrum), the average absorbed
power for the three cases was found as summarized below.
For the approximate near-optimal control,

Pwa = 1

T

∫ T

0
Fl(t)vact(t)dt, (25)

for peak-frequency tuning,

Pfa = 1

T

∫ T

0

[
b(ωp) + cd

]
v2m(t)dt, (26)

while for constant damping,

PDa = 1

2

∫ T

0
Dv2(t)dt. (27)

All impulse response functions above, including hl1,
hl2, ha, ho, hA, and hR are evaluated using a numeri-
cal implementation of the inverse Fourier transforms in
Eqs. (15), (16), (18) and (20), respectively.

3 Floating and submerged buoys

Assuming linearity, the heave exciting force can be expressed
as:

Ff = Ffk + Fd, (28)

where Ff , Ffk and Fd are all complex. The Froude–Krylov
component Ffk represents the contribution of the incident-
wave velocity potential, and the diffraction component Fd
represents the contribution of just the diffraction effects. Fur-
ther,

|Ff |2 = |Ffk|2 + |Fd|2 + 2|Ffk||Fd| cos γ, (29)

where γ is the phase difference between the two components
Ffk and Fd. It may be noted that only the magnitudes of
the individual terms in Eq. (29) are compared here to gain
an understanding of their relative contributions to the total
exciting force and radiation damping. No direct calculation
requiring γ is performed in this paper.

Figure 2 shows the heave exciting force components for
the floating and the submerged buoys. As kR → 0, Fd → 0
for both cases. However, over the wider kR � 1 region, the
principal difference between the two is due to the relative con-
tribution of the Froude–Krylov component Ffk.While Ff k is
the dominant term for the floating case for kR � 1, for the
submerged case, its contribution over kR � 1 is compara-
ble to that of Fd or smaller. In fact, for a floating cylinder of
radius R = 10 m, and draft Dr = R/2 = 5m, the total excit-
ing force variation is dominated by the Froude–Krylov force
even at the spectral peak frequency for a swell-dominated
two-parameter spectrum, here with significant wave height
Hs = 1 m and energy period Te = 13 s (see also Budal and
Falnes 1980).

Note that it is only the bottom surface area of the buoy
that contributes to the heave exciting force in the case of the
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Fig. 2 Exciting force components in heave; Froude–Krylov compo-
nent, diffraction component, and total force. Also shown is the incident
wave spectrum for Hs = 1 m and Te = 11 s. ‘Wave spectrum’ in the
legend refers to spectral density. Vertical scale represents exciting force
components in N and spectral density in m2s ×16 × 103. At small kR
values, the Froude–Krylov component dominates for the floating case

floating cylinder. On the other hand, for a submerged cylin-
der R = 10 m, height D = 5 m, and depth of submergence
Dr = D, both the top and the bottom surfaces contribute
to the heave exciting force. For a submerged cylinder height
D/R < O(1), this implies that the Froude–Krylov compo-
nent is small, and that the diffraction component, though
small, may even be the dominant term. Correspondingly,
given the reciprocity between exciting force on body sur-
face and far-field radiation, the radiation properties in heave
for the two configurations are also different.

It is well known that, for single-mode devices, optimum
conversion without oscillation constraints and without vis-

cous losses requires, in addition to resonance, that the energy
conversion rate as given by the load damping match the
energy radiation rate as determined by the radiation damp-
ing, Evans (1981). Radiation damping is a crucial parameter
for this reason. In addition, larger radiation damping implies
that optimum conversion requires smaller velocity. Since
large velocities are physically challenging, larger radiation
damping values are desirable, especially at lower frequen-
cies where greater energy is available. For these reasons,
it is of interest to compare the radiation damping values at
the spectral peak frequencies for the floating vs. submerged
cylindrical buoys.

At optimum conversion, the absorbed power at each wave
number is

Pw(k) = 1

2
b(k)|Uopt(k)|2, (30)

whereUopt denotes the hydrodynamically optimum velocity
in frequency domain. An application of Haskind–Hanaoka
relations suggests (Wehausen1971, see also, e.g.,Yeung et al.
2012)

b(k) = k

8Pi
|Ff(k)|2, (31)

where Pi is the incident wave power per unit crest width.
Figure 3 shows the radiation damping for the cylinder with
R = 10 m with an example incident 2-parameter Pierson–
Moskowitz-type wave spectrum with Hs = 1.0 m, and
Te = 13 s superimposed. In light of the comments following
Eq. (29), it may be expected that the radiation damping in
larger waves is dominated by the Froude–Krylov force for
the floating buoys, whereas for the submerged buoys, it is
dominated by the diffraction force. As the Froude–Krylov
component is large near kR → 0 for floating buoys, radi-
ation damping peaks at a lower kR for the floating buoy
in Fig. 3. On the other hand, for the submerged buoys, the
radiation damping peaks at a greater kR, closer to where
the diffraction force peaks. It may also be recalled that, as
kR(kDr) → 0, the two faces of the submerged buoy coun-
teract each other’s wave radiation, Falnes and Hals (2012).
It should be mentioned that the sharp corner observed near
kR → 3 in Fig. 3 is due to an approximation used to treat
an ‘irregular frequency’ arising in the numerical calculations
for the floating buoy HYDRAN (2012).

For deep water conditions, with k = ω2/g, of particular
note are the b(k) values near ω(k) → ωl, where ωl is the
lower frequency at which the spectral density S(ω) → 0.
With ωp denoting the spectral peak frequency, an inspection
of swell-dominated spectra with relatively long tails shows
that |ωp − ωl| � |ωh − ωp|, where ωh denotes the higher
frequency at which S(ω) → 0. The value of b(k) at kp, the
peak wave number, could be expressed using a Taylor series
expansion about ωl :
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Fig. 3 Radiation damping in heave and the incident wave spectral den-
sity for Te = 13 s. ‘Spectrum’ refers to spectral density in m2 s. Vertical
scale here represents damping values in Ns/m and spectral density in
m2s × a scaling constant. Owing to the large presence of the Froude–
Krylov component near kR → 0 for the floating buoy, the radiation
damping peaks at lower kR compared with the submerged case. The
‘kink’ near kR → 3 for the floating buoy is due to an approxima-
tion used to treat an ‘irregular frequency’ in the numerical code used
HYDRAN (2012)

b(kp) = b(kl) +
[
db

dk

]
k=kl

(kp − kl)

+ 1

2!
[
d2b

dk2

]
k=kl

(kp − kl)
2 + · · · . (32)

Since (kp−kl) < O(10−1) for swell-dominated narrow-band
spectra,

b(kp) ≈ b(kl) +
[
db

dk

]
kl

(kp − kl). (33)

3.1 Floating buoys

For the floating buoys in the region kR � 1,

Ff ≈ Ffk, (34)

where Ffk can be estimated using

Ffk = ρgAπR2e−kDr . (35)

For kDr ∼ O(10−1) (e.g., for a peak period Tp = 12 s, with
ωp = 0.523 rad/s leading to k = 0.028 ⇒ kDr = 0.056 for
R = 2 m, Dr = R/2 and kDr = 0.14 for R = 10 m, Dr =
R/2 for the same peak period). Using a series expansion for
the exponential,
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Fig. 4 Contribution of the different force components to radiation
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Ffk = ρgAπR2
(
1 − kDr + (kDr)

2

2! − (kDr)
3

3! + · · ·
)

,

(36)

and keeping terms up to O(10−2),

Ffk ≈ ρgAπR2
(
1 − kDr + (kDr)

2

2!
)

, (37)

the leading order term is seen to be ρgAπR2.

When Ff ≈ Ffk at low frequencies (wave numbers), a
low-frequency approximation for b(k) can be written as:

b(k) ≈ k

8Pi
|Ffk|2. (38)
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Fig. 5 The heave velocity of the R = 10 m buoy in a spectrum with
Hs = 1 m, Te = 13 s. Note that the velocity under peak frequency
tuning is closer to the velocity under approximate near-optimal control
for the floating buoy than for the submerged buoy. Oscillations are left
unconstrained

Since Pi = ρg2A2/(4ω) = ρg3/2A2k−1/2/4, usingEq. (35),
for small k

b(k) = 1

2
ρg1/2k3/2π2R4e−2kDr . (39)

For the floating cylinder, Eqs. (32), (33), and (39) lead to

db

dk
= 1

2
k1/2ρg1/2π2R4

(
3

2
− 2kDr

)
e−2kDr . (40)

With a series approximation,

b(kp) ≈ 3

4
k3/2l ρg1/2π2R4

[
1 − 2klDr + 2(klDr)

2
]

×
(
1 + 1

2
klDr

)
(41)
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Fig. 6 The heave velocity of the R = 2 m buoy in a spectrum with
Hs = 1 m, Te = 13 s. Note that the difference between the velocities
with peak frequency tuning and approximate near-optimal control is
greater for the submerged buoy. No constraints are applied
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and

(
db

dk

)
k=kp

≈ 1

2
k1/2l ρg1/2π2R4

[
1 − 2klDr + 2(klDr)

2
]

×
(
3

2
− klDr

)
. (42)

3.2 Submerged buoys

For the submerged buoys in heave, Fd and Ffk may be compa-
rable over kR � 1.Here, the depth of submergence Ds is the
same as its height ≡ Dr. Further, with Dr = R/2, kDr � 1.
It is known that Fd ∼ kR(kDr) over kR(kDr) � 1. The
following steps demonstrate why the Froude–Krylov com-

ponent here also varies as kR(kDr) and is not as large as in
the floating case.

Ffk = ρgAπR2
(
−e−kDr + e−2kDr

)
. (43)

Using series expansions for both exponentials and keeping
terms up to second order,

Ffk ≈ ρgAπR2
(

−kDr + 3

2
(kDr)

2
)

. (44)

The leading-order term for the submerged vertical cylinder
is thus −ρgAπR2(kDr), which is ∼ O(10−1) smaller than
that for the floating cylinder.

As no single force component dominates for the sub-
merged buoy, and both diffraction and Froude–Krylov com-
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Fig. 7 The instantaneous power absorption by the R = 10 m float-
ing buoy in a spectrum with Hs = 1 m, Te = 13 s. Note the vertical
axis scale difference on the third plot. Power absorption is considerably

more efficient for the cases with approximate near-optimal control and
peak frequency tuning than for the case with constant damping
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ponents are ∼ O(kDr) smaller than the force on the floating
buoy, b(k) and (db/dk)k=kl for the submerged buoy are at
least ∼ O(kDr) smaller than the corresponding quantities
for the floating buoy. Then, b(kp) at the peak frequency for
the submerged buoy is also at least O(kDr) smaller than for
the floating buoy, for kpDr � 1.

3.3 General

It is interesting to note from Fig. 3 that although the radiation
damping for the floating buoy peaks at a lower kR value, the
actual peak magnitude for floating buoy is less than that for
the submerged buoy (see also Fig. 2, showing that the total
exciting force for the submerged buoy is about 2.5 times that
for the floating buoy as kR → 1). The floating buoy radi-
ates as a monopole in heave with only one face contributing.

As kR decreases below kR < 0.2, however, the monopole
behavior of the heaving floating buoy leads to more wave
radiation than the submerged buoy in heave. As discussed
in Falnes and Hals (2012), the submerged buoy also radi-
ates as a monopole in heave with a radially symmetric wave
field, but the top and bottom faces counteract each other’s
action.

Figure 4 compares the contributions of the various force
components to the radiation damping for both floating and
submerged buoys. The entry ‘cross-term’ in the legend refers
to just the magnitude of product term in Eq. (29). As pointed
out analytically above for the floating buoy, the contribution
of the Froude–Krylov force component dominates at kDr �
1 (kR � 0.5), while all three are comparable for that range
for the submerged buoy (see for instance the variations over
kR ≤ 0.25 in Figs. 3 and 4).

100 200 300 400 500 600

0

0.5

1

1.5

2

2.5

3
x 10

5

t (s)

P
w

 (
W

)
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Fig. 8 The instantaneous power absorption by the R = 10 m submerged buoy in a spectrum with Hs = 1 m, Te = 13 s. Note the vertical axis
scale difference on the third plot. Both cases without control perform considerably better than the case without control
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As mentioned, for the submerged buoy, b(k) peaks at a
larger k, at which the incident power spectral density value
maybevery small in swell-dominated spectra. Thus, in swell-
dominated spectra, tuning the damping to match b(kp) and
using this value for the entire spectrum is disadvantageous
for the submerged buoy as it means rejecting a large amount
of power over the k > kp range that could have been absorbed
with larger damping values. Near-optimum velocity con-
trol is thus likely to produce appreciably better results than
peak-frequency control for the submerged buoy. This point
is discussed further in Sect. 5.

In contrast, note that b(kl) for the floating buoy is greater
and has a greater rate of increase at kl, so that b(kp) is consid-
erably greater than for the submerged buoy. Therefore, for
the floating buoy, matching the load damping to b(kp) for
the entire spectrum is comparatively less disadvantageous.

Hence, peak-frequency tuning for the floating buoy may pro-
duce power absorption results that are not very much lower
than with near-optimal control.

4 Calculations

Calculations were carried out for two floating and submerged
cylindrical buoys. The radii were R = 2 m for the smaller
buoy and R = 10mfor the larger.Note that diffraction effects
may be considered negligible for the smaller size in swell-
dominated spectra. In each case, the draft was set at D = R/2
for the floating buoys, while for the fully submerged config-
uration, the depth of immersion of the top surface was set at
D = R/2,which was also taken to be the height of the cylin-
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(a) Floating Buoy: Near-Optimum Control; R = 2 m
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(c) Floating Buoy: Constant Damping; R = 2 m

Fig. 9 The instantaneous power absorption by the R = 2 m buoy in a spectrum with Hs = 1 m, Te = 13 s. Note that the vertical scale is different
in the plot with constant damping. Further, the cases with control perform considerably better than the constant damping case
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der in the submerged configuration (see Fig. 1). A schematic
for this device is shown in Fig. 1. The goal was to consider
a size where diffraction was small, and a larger size with
greater diffraction. The hydrodynamics software HYDRAN
(HYDRAN 2012; Ertekin et al. 1993) was used to obtain
the added mass, radiation damping, and exciting force varia-
tions for heave oscillation in both the floating and submerged
configurations (see also Korde and Ertekin 2014; Nolte and
Ertekin 2014). Time-domain calculations were carried out
to evaluate the power absorption performance under the two
control strategies discussed here, (1) near-optimal real-time
control, and (2) non-real time peak-frequency control. These
were compared both with each other and with a case where
damping was held constant at 8 kNs/m in all spectra and no
control was applied.

Results were obtained for several uni-modal (i.e., with
a single, dominant peak frequency) 2-parameter Pierson–
Moskowitz-type spectra generated using the two parameters
Hs and Te. For the results discussed here, Hs = 1 m, and
Te values 9 s, 13 s, and 18 s were used. The corresponding
irregular wave signals were obtained using the approach of
Korde (2014) based on inverse Fourier transformation of the
complex amplitude frequency variation and random phase
between [0, 2π ]. No displacement/velocity constraints were
used in the time-domain calculations. Of particular interest
to the calculations were (1) desired heave velocities under
near-optimal control, (2) actual velocity using the present
approach to near-optimal control, and (3) velocity under
peak-frequency control, and (4) absorbed power variations
under near-optimal control as applied, peak-frequency con-
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(a) Submerged Buoy: Near-Optimum Control; R = 2 m
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(c) Submerged Buoy: Constant Damping; R = 2 m

Fig. 10 The instantaneous power absorption by the R = 2 m buoy in a spectrum with Hs = 1 m, Te = 13 s. Note the vertical axis scale difference
on the third plot. Further, the cases with control perform considerably better than the constant damping case
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trol, and constant damping. Calculation windows are set at
10 min in each case.

Frequency-domain calculations for absorbed power were
also carried out to verify the findings from the time-domain
calculations. All results here were obtained for both the float-
ing and the submerged configurations. The following section
discusses all of these results.

5 Discussion of results

As discussed in the previous sections, the configurations
studied here have different wave-radiation properties. The
floating cylinder heaving buoy radiates with its bottom sur-
face only and resembles a point-source likemonopole in long

waves (for kR < 0.2). On the other hand, although the heav-
ing submerged cylinder buoy also radiates as amonopole, the
top and the bottom faces counteract each other (kR < 0.2).
This provides one explanation for their different behaviors
under the two control approaches of this work. It is recalled
that the present study only considers uni-modal spectra. In
spectra with multiple peaks, control seeking reactive cance-
lation and optimum damping in real time can be expected to
perform better than peak-frequency control tuned to one of
the peaks. However, the goal here is to investigate conditions
under which peak-frequency tuning may be a good practical
choice.

As pointed out above and discussed in Sect. 3, wave-
radiation properties (specifically the radiation damping and
its rate of variation in the low-frequency range) are impor-
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Fig. 11 Power Absorption with the two control strategies over a frequency-range without displacement constraints (floating buoy, R = 10 m). For
all three values of Te the power absorption is comparable under optimal control and peak-frequency control
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tant to the difference in the relative effectiveness of the two
control strategies. As Fig. 3 shows, near the peak period,
the radiation damping value for the floating buoy is b(kp) =
3.12× 105 Ns/m. This is about 62 % of the maximum radia-
tion damping value for the floating buoy. For the submerged
buoy its value is b(kp) = 8.65 × 104 Ns/m, which is about
3 % of the maximum radiation damping value. It appears
that setting the load damping at the peak-frequency radiation
damping value will be significantly more representative of
‘optimal’ behavior for the floating buoy than the submerged
buoy for this radius and spectral peak frequency. This differ-
ence will be enhanced for spectra with peaks at still lower
kR values, and reduced for spectra with peaks at greater
kR values. On the whole, it seems reasonable to expect
that for heave-mode conversion, the performance gains from

unconstrained near-optimal control over unconstrained peak-
frequency control will be greater for the submerged buoys
than for the floating buoys. This point is considered further
in the following.

It is worth recalling that the time-domain application of
Sect. 2 works best in long-wave dominated spectra due to
the use of a single (maximum) group velocity vmx for all fre-
quencies. It is assumed here that this approximation affects
both the floating and submerged buoys equally, and in future
work it would be of interest to investigate whether the two
configurations respond differently to the present single group
velocity/long-wave assumption. Figure 5 shows the velocity
results for the R = 10 m buoy when floating and submerged.
Figures 7 and 8 show the power results for the 10-m buoy
when floating and submerged in a spectrumwith Hs = 1.0 m
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Fig. 12 Power Absorption with the two control strategies over a frequency-range without displacement constraints (floating buoy, R = 2 m). For
all three values of Te the power absorption is comparable under optimal control and peak-frequency control
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and Te = 13 s. In Fig. 5, for the floating case, the actual
velocity with approximate near-optimum control is seen to
be very close to the desired near-optimum velocity vo. The
velocity with peak-frequency control vm is also found to be
close to vact. On the other hand, for the submerged buoy,
the difference between vm and vo is greater. This confirms
the expectation above that peak-frequency control performs
comparably to near-optimal control for the floating buoy,
though falling short for the submerged buoy. The velocity
results are similar for the R = 2 m buoy (Fig. 6), though
for the Te = 13 s spectrum, the difference is now more pro-
nounced for the submerged case given the smaller kpDr value.
Larger differences can be expected for the 10-m submerged

buoy in spectra with Te values for which the kpDr value is
smaller (see Sect. 3).

Figure 7 shows the absorbed power variation for the 10-m
floating buoy for the same spectrum (Te = 13 s). The dif-
ference in absorbed power with the two control strategies is
seen to be small for this case as measured by the average
capture efficiencies (5 and 4.8 %, respectively, for near-
optimal and peak-frequency tuning control). For comparison,
the lowermost plot shows the absorbed power variation for a
constant non-optimized pure damping load (note that the ver-
tical scales are different for this plot). The average absorbed
power and capture efficiency are found to be much lower for
this case.
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Fig. 13 Power Absorption with the two control strategies over a frequency-range without displacement constraints (submerged buoy, R = 10 m).
For this submerged buoy with R = 10 m, a greater difference is observed between the two cases with control in the spectra with longer energy
periods
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Equivalent results for the submerged buoys are shown
in Fig. 8. Near-optimal control performs better than peak-
frequency tuning, and the difference between the two is
expected to widen with increasing Te. Similar behavior is
observed for the R = 2 m buoy (Figs. 9, 10), although the
smaller kpDr values lead to greater improvements with near-
optimal control. Practical implementation of the first two
force terms in Eqs. (8) and (21) may require processing of
noisy accelerometer signals, so that extensive filtering and
direct displacement sensing may be necessary in practice.

Figures 11, 12, 13 and 14 provide some insight into the
findings from the time-domain calculations above. Calcu-
lations were carried out in different spectra for absorbed
power under the two control strategies. Displacement and

velocity were left unconstrained here. The first few figures
show the absorbed power without constraints at different
frequencies for floating buoys. For the three spectra consid-
ered (Hs = 1 m; Te = 9 s, Te = 13 s, and Te = 18 s)
near-optimal control performs only somewhat better than
peak-frequency tuning, the difference being greatest over the
high kR range where diffraction effects become more signif-
icant. This behavior is observed for both 2-m and 10-m radii
in all three spectra. These results reflect the time-domain
finding that vm closely follows vact even if the control is only
tuned to the spectral peak, and other points discussed above
in relation to the floating cylinder buoys in heave. Further,
consistent with the time-domain results, with the displace-
ments unconstrained for the submerged buoys, the power
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Fig. 14 Power Absorption with the two control strategies over a frequency-range without displacement constraints (submerged buoy, R = 2 m).
Optimal control is seen to perform considerably better in all three spectra for the smaller submerged buoy with R = 2 m
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increase with near-optimal control over peak-frequency con-
trol is considerably greater here. It should be noted, however,
that due to the very high velocities for both floating and sub-
merged buoys, unconstrained behavior for the R = 2 m buoy
(as well as the R = 10 m buoy in long energy periods) is
mostly only of theoretical interest.

To summarize, it appears reasonable to propose that for
small heaving absorbers with a dominant Froude–Krylov
component in low-amplitude long waves, peak-frequency
tuning may be adequate in long-wave dominated uni-modal
spectra. Thus, for such heaving absorbers small enough to be
considered monopole radiators, peak-frequency tuning may
be a more practical choice if the expected wave climates
are dominated by long swells at low amplitudes. Heaving
radiators such as the submerged buoys with two radiat-
ing surfaces counteracting have less effective radiation and
smaller Froude–Krylov forces at long periods, and appear
to perform better in low-amplitude long waves under con-
trol seeking a phase match over the entire spectrum than
under peak-frequency tuning. Waves in the range kR ≤ 0.2
may be considered long waves here, and these points are
more likely relevant to wave amplitudes small enough not
to require displacement constraints. In the presence of dis-
placement constraints preventing a full-amplitude response,
control seeking a phase match over entire long-wave domi-
nated spectra should probably be preferred for both floating
and submerged heaving absorbers. However, the authors’
work on this aspect is still ongoing and may be reported
in a future paper.

6 Conclusions

The focus of this paper was on heaving, cylindrical (verti-
cal) buoys being used for wave energy conversion relative
to a stationary reference. Two reactive control strategies
were examined for operation in long-crested irregular waves
described by long-period single-peak spectra. A strategy
leading to a time-domain implementation based on direct
use of up-wave surface elevation measurements was com-
paredwith a non-real time tuning approachwhere the reactive
forces were tuned for resonance and optimum damping at
the spectral peak frequency. Calculations were carried out
for two buoy sizes, one with negligible diffraction and other
where diffraction effects were greater. Based on an approx-
imate analysis, it was found that the dominant presence of
the Froude–Krylov force component for the heaving floating
buoys implied that in spectra where low-frequency/long-
period swells predominate, the approximate near-optimum
time-domain strategy performs somewhat better than the
peak-frequency tuning strategy. On the other hand, for the
submerged buoys, because of the relatively small radia-
tion over kR < 0.2 and large relative contribution of the

radiation/diffraction as kR > 0.2, correct tuning at each fre-
quency becomes important, and near-optimal control in the
time domain enables considerably better power absorption
thanpeak-frequency tuning.Approximate frequency-domain
analysis was carried out to enable further insight into this
finding.
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