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Abstract In practice, when tsunami approaches the coast
and the time for decision making and issuing warning alert is
limited, design formulas for fast estimation of tsunami run-
up characteristics are applied. The most famous and the most
used among them assume that incoming wave has a solitonic
shape. However, the exact shape of the incoming wave is
usually unknown. This is why it is important to know the
error caused by the wave shape uncertainty. In this paper,
we discuss how the uncertainty of the incoming wave shape
influences its run-up characteristics in different bays. Two
typical beach geometries: plane beach and U-shaped bay are
considered.
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1 Introduction

Tsunami science progressed verymuch after the catastrophic
2004 Indian Ocean tsunami. Existing tsunami early warning
systems (TEWS) have been improved and new ones, e.g.,
German–Indonesian tsunami early warning system (Lauter-
jung et al. 2010), have been developed. Although the propa-
gation of tsunami in the open ocean is no longer a problem,
the reliable estimate of tsunami run-up characteristics on a
beach still remains a challenge. To save calculation time,
instead of running detailed simulation of wave run-up in the
real coastal topography, simplified formulas for wave run-up
based on parameters of incoming wave are applied. These
formulas based on known analytical solutions for solitary
waves, e.g., run-up of a soliton (Synolakis 1987), or repre-
sent a set of pre-calculated amplification factors for different
incoming wave scenarios (Løvholt et al. 2012). However, in
all these cases the detailed shape of the incoming tsunami
wave remains unknown and its parameters (wave height and
wavelength) are either pre-computed using different hydro-
dynamic models or estimated from the first wave measure-
ments, such as DART buoys. As having reliable method for
calculation of tsunami run-up characteristics is critical for
estimation of tsunami inundation zone and impact on port
and coastal structures, it is important to introduce the confi-
dence interval related to the uncertainty in the wave shape.
This is done in the given paper for a set of solitary pulses
propagating in two different bottom geometries: the classi-
cal plane beach and a U-shaped bay.

The plane beach is the most studied bottom configura-
tion in tsunami run-up research. After the pioneer paper by
Carrier and Greenspan (Carrier and Greenspan 1958) who
obtained first rigorous mathematical results for long wave
run-up on a plane beach, a number of analytical solutions for
various shapes of incident waves have been found (Spielvo-
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gel 1975; Pedersen and Gjevik 1983; Synolakis 1987; Peli-
novsky and Mazova 1992; Tadepalli and Synolakis 1994;
Brocchini and Gentile 2001; Carrier et al. 2003; Kânoğlu
2004; Tinti and Tonini 2005; Kânoğlu and Synolakis 2006;
Antuono and Brocchini 2007, 2008, 2010; Didenkulova
et al. 2007a, b; Madsen and Fuhrman 2008; Didenkulova
2009). Even though the geometry sketch is rather sim-
ple, the problem is still far from being solved and more
research on wave run-up on a plane beach is still needed
(Pedersen et al. 2013).

However, estimates of run-up characteristics calculated
for a plane beach cannot be applied to long and narrow U-
shaped bays as it was observed during Samoa 2009, when
the observed run-up heights significantly exceeded the one
estimated by the formulas for a plane beach (Okal et al.
2010; Didenkulova 2013). Later, it has been demonstrated
that estimates of run-up characteristics performed using U-
shaped bay approach are in a good agreement with obser-
vations of tsunami run-up height in Pago-Pago, American
Samoa (Didenkulova 2013). All this suggests that U-shaped
bays should be considered independently. U-shaped bays
have been considered in studies by (Aranguiz and Shibayama
2013; Didenkulova and Pelinovsky 2011a, b; Rybkin et al.
2014; Vasskog et al. 2013).

In this paper we estimate an error related to the uncer-
tainty in tsunami shape, by considering a set of solitarywaves
climbing a plane beach or the coast of U-shaped bay. The
results for the plane beach have been previously obtained by
(Didenkulova et al. 2007a, 2008a) and we reproduce them
here to compare with the novel results for U-shaped bay. To
provide a feasible comparison, we reproduce main formu-
las and equations for solitary wave run-up on a plane beach
leaving the details aside. The calculations are performed in
the framework of nonlinear shallow water theory. The paper
is organized as follows. In Sect. 2, we give an insight to the
problem of wave run-up on a plane beach and discuss the
differences in run-up characteristics caused by uncertainties
in the incoming wave shape (the error related to the differ-
ence in wave shapes). Similarly, in Sect. 3, wave run-up in
U-shaped bay is described and the corresponding errors due
to run-up of waves of different shapes are calculated. Section
4 is devoted to the effects of wave asymmetry and steepness
of the incoming wave front. Main results are summarized in
Sect. 5.

2 Uncertainty in wave run-up characteristics on a plane
beach

In this section, we calculate run-up characteristics of bell-
shaped waves and parameterize the corresponding formulas
for long waves of “unknown” shape by reproducing main
results of (Didenkulova et al. 2007a, 2008a).

Fig. 1 Geometry sketch for wave run-up on a plane beach

Shallow water equations for a plane beach have the form:

∂η

∂t
+ ∂

∂x
[(−αx + η)u] = 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0, (1)

where η is the level oscillations, u is averaged over water
depth flow velocity, α is the slope angle, x-coordinate
directed onshore, t is time and g is the gravitational acceler-
ation. The geometry sketch is shown in Fig. 1.

Systemof Eq. (1) can be solved using the hodograph trans-
formation. This procedure was first described by Carrier and
Greenspan (1958), and later reproduced in different papers
cited in Introduction. According to this method, all original
variables (η, u, x, t) can be expressed through the “nonlin-
ear” wave function �(σ, λ) and new variables λ and σ :

η = 1
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)
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and the wave function, �(λ, σ ) satisfies to the cylindrical
linear wave equation

∂2�

∂λ2
− ∂2�

∂σ 2 − 1

σ

∂�

∂σ
= 0. (4)

Variables λ and σ have meaning of generalized coordinates.
As σ = 2

√
gH ≥ 0, where H = η − αx is the total water

depth, the point σ = 0 corresponds to the instantaneous
position of themoving shoreline. And, therefore, the function

r(t) = η(t, σ = 0) (5)

describes the desired oscillations of the vertical displacement
of the moving shoreline for any kind of initial condition. Fol-
lowing kinematical consideration, the velocity of the shore-
line motion, ur , can be found as a time derivative of Eq. (5):

ur (t) = 1

α

dr(t)

dt
. (6)
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Fig. 2 Examples of bell-shaped waves described by Eq. (7) for n = 2:
sine-like wave (blue dotted), soliton (red solid) and Lorentz-like (green
dashed line) (color figure online)

To study the impact of uncertainty of the incidentwave shape,
we consider 58 different waves (sine-like, soliton-like and
Lorentz-like)

η0(t) = A cosn(π t/T ), η0(t) = A sec hn(t/T ),

η0(t) = A[
1 + (t/T )2

]n , (7)

where A and T are amplitude and period of the incoming
wave, n = 1, 2, . . . , 20 for waves of all shapes except the
sine-like, for which n = 3, 4, . . . , 20. All waves described
by Eq. (7) have a bell-like shape with some small variations
in its shape (see Fig. 2). The influence of these variations is
studied here.

We are interested only in extreme characteristics of wave
run-up, such as maximal run-up and run-down heights, and
run-up and run-down velocities. To estimate the difference
in run-up heights caused by variations in the incoming wave
shape, the following parameterization has been suggested
(Didenkulova et al. 2007a, 2008a):

Rup = μR+A
√
L/λs, Rdown = μR−A

√
L/λs, (8)

where Rup and Rdown are maximal run-up and run-down
heights, respectively, L is the travel distance to shore, λs
is the “significant” wavelength defined at the 2/3 level of the
maximumwave height, andμR+ andμR− are thewave shape
coefficients. Numerical coefficients μ reflect differences in
shape of all considered waves [Eq. (7)] and allow their com-
parison. For example, using relation betweenwave amplitude
and its wave length for a soliton, and substituting the corre-
sponding coefficients μ in Eq. (8), one can obtain famous
expression for solitary wave run-up (Synolakis 1987). Also,
coefficients μ for Lorentz pulse (n = 1) coincide with those
in the formula obtained by Pelinovsky and Mazova (1992).

Similarly toEq. (8),we can introduceμU+ andμU−, wave
shape parameters in the expressions for extreme shoreline
velocities:
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Fig. 3 Wave shape parameter μR for different bell-type pulses climb-
ing plane beach: sine-like (blue circles), soliton-like (red squares) and
Lorentz-like (green triangles) (color figure online)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

n
µ U run-up

run-down

Fig. 4 Wave shape parameter μU for different bell-type pulses climb-
ing plane beach: sine-like (blue circles), soliton-like (red squares) and
Lorentz-like (green triangles) (color figure online)

Uup = μU+
AL

λs

√
g

αλs
, Udown = μU−

AL

λs

√
g

αλs
, (9)

where Uup and Udown are maximal run-up and run-down
velocities, respectively.

Parameters μR and μU for bell-shaped waves [Eq. (7)],
calculated using the asymptotic analysis (L/λs >> 1) [for
details see Didenkulova et al. (2008a)], are demonstrated in
Figs. 3 and 4. It can be seen from Figs. 3 and 4 that differ-
ences between different pulses for all these parameters are
relatively small and can be parameterized. The mean values
for shape parameters μR and μU averaged over the number
of pulses together with corresponding standard deviations
for different types of pulses and for the entire population are
given in Table 1.

Table 1 demonstrates that maximal run-up characteristics
show a veryweak dependence on the shape of the initial wave
and are influenced only by its amplitude A and wavelength
λs . Thus, expressions for maximal run-up characteristics can
be re-written using the mean values of the wave shape para-
meters:

Rup = 3.6A

√
L

λs
, Rdown = 1.6A

√
L

λs
,

Uup = 4.3
AL

λs

√
g

αλs
, Udown = 7

AL

λs

√
g

αλs
. (10)
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Table 1 Calculated shape
parameters for different waves
climbing plane beach

Sine-like Soliton-like Lorentz-like Total

μR+ 3.60 (1 ± 0.003) 3.55 (1 ± 0.01) 3.53 (1 ± 0.02) 3.56 (1 ± 0.02)
μR− 1.76 (1 ± 0.04) 1.56 (1 ± 0.06) 1.51 (1 ± 0.10) 1.60 (1 ± 0.10)
μU+ 4.59 (1 ± 0.04) 4.15 (1 ± 0.05) 4.07 (1 ± 0.06) 4.26 (1 ± 0.07)
μU− 6.98 (1 ± 0.001) 6.98 (1 ± 0.004) 6.99 (1 ± 0.01) 6.98 (1 ± 0.005)

Fig. 5 Geometry sketch for
wave run-up in a U-shaped bay

3 Uncertainty in wave run-up characteristics
in a U-shaped bay

As it has been noted in the Introduction, plane beach model
underestimates run-up heights in long and narrow bays (see
Didenkulova 2013), and in these cases U-shaped bay model
should be applied. Here, we consider a linearly inclined bay
of parabolic cross section, see Fig. 5.

The geometry of this bay is described by formula:

z(x, y) = −αx + y2

y0
, (11)

where y0 is an effective width of the channel. Assuming that
water flow in the bay is uniform over the cross section, 2D
nonlinear shallowwater equations for the bay can be reduced
to 1D equations (Zahibo et al. 2006; Didenkulova and Peli-
novsky 2011a):

∂H

∂t
+u

∂H

∂x
+ 2H

3

∂u

∂x
= 0,

∂u

∂t
+u

∂u

∂x
+g

∂H

∂x
= gα, (12)

where H(x, t) = η(x, t) − αx is a total depth along the
main channel axis, η(x, t) is water surface displacement, and
u(x ,t) is water flow averaged over channel cross section.

Equation (12) differs from the classical 1D shallow water
equations Eq. (1) only by an additional coefficient 2/3 in the
first equation, determined by the parabolic shape of the chan-
nel cross section. Similarly to the plane beach, described in
Sect. 2, using Riemann invariants and hodograph transfor-
mation, Eq. (12) can be reduced to a linear wave equation for
the wave function, �(λ, σ ) [similar to Eq. (4)]:

∂2�

∂λ2
− ∂2�

∂σ 2 − 2

σ

∂�

∂σ
= 0, (13)

where all desired variables are expressed through �(λ, σ )

[similar to Eqs. (2)–(3)]:

u = 1

σ

∂�

∂σ
, η = −1

g

(
u2

2
− 1

3

∂�

∂λ

)
, (14)

x = 1

gα

(
u2

2
+ σ 2

6
− 1

3

∂�

∂λ

)
, t = u − λ

gα
. (15)

In the U-shaped bay the variable σ is also related to the total
water depth along the main channel axis σ = √

6gH and
defines the position of the shoreline σ = 0.

The major difference of the described wave dynamics in
U-shaped bay (Zahibo et al. 2006; Didenkulova and Peli-
novsky 2011a) from the case of a plane beach (Carrier and
Greenspan 1958) is that U-shaped bay allows “nonreflect-
ing” wave propagation, so that waves propagate without
inner reflection from the sea bottom and reflect only from
the coastline. Mathematically, it corresponds to the trav-
elling wave solution, so that the wave propagates without
loss of energy and exerts abnormal wave amplification at
the coast (Didenkulova et al. 2008b; Didenkulova and Peli-
novsky 2011b). This feature also allows solving run-up prob-
lem exactly and finding run-up heights as a function of inci-
dent wave shape.

Rup = 2τ0 max

[
dη0
dt

]
, (16)

where τ0 is the travel time from a fixed point x = L to the
coastline.

As before, we are interested in influence of thewave shape
on wave run-up characteristics. For this, we consider again
the same types of bell-shaped impulses [see Eq. (7)] propa-
gating in the U-shaped bay. As in Sect. 2, we introduce shape
parameters for maximal wave run-up and run-down heights
μR±, and run-up and run-down velocities, μU±, based on

123



J. Ocean Eng. Mar. Energy (2015) 1:199–205 203

dependences in Eq. (16):

Rup/down = μR±
AL

λs
, Uup/down = μU±

AL
√
gαL

αλ2s
, (17)

where λs is the “significant” wavelength in theU-shaped bay.
Calculations of these parameters for different sets of bell-

shaped pulses Eq. (7) are shown in Figs. 6 and 7. As it was for
the plane beach, the error caused by variations in the incident
wave shape is minor (see Table 2). The largest variations are
observed for a run-up velocity, but even they do not exceed
12 %.

Different from the plane beach, maximal run-up and run-
down characteristics in the U-shaped bay coincide and lead
to a larger oscillations of the shoreline during tsunami event.

Based on calculated shape parameters shown in Table, we
can propose generalized formulas for run-up characteristics
of solitary pulses in U-shaped bays:

Rup/down = 4.30
AL

λs
, Uup = 4.56

AL
√
gαL

αλ2s
,
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Fig. 6 Wave shape parameter μR for different bell-type pulses prop-
agating in U-shaped bay: sine-like (blue circles), soliton-like (red
squares) and Lorentz-like (green triangles) (color figure online)
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Fig. 7 Wave shape parameter μU for different bell-type pulses prop-
agating in U-shaped bay: sine-like (blue circles), soliton-like (red
squares) and Lorentz-like (green triangles) (color figure online)

Udown = 10.78
AL

√
gαL

αλ2s
. (18)

It should also be noted that formulas for a plane beach
Eq. (10) and for U-shaped bay Eq. (18) can also be used for
pulses of negative polarity. In this case, the pares Rup and
Rdown and Uup and Udown should be swapped.

4 Wave asymmetry and steepness of the wave front

Although small variations in the incoming wave of symmet-
ric bell-like shape do not lead to significant changes in its
run-up characteristics, the influence of wave asymmetry can
be significant. It has been theoretically shown (Didenkulova
et al. 2007b) and confirmed experimentally in Didenkulova
et al. (2013) that increase in wave front steepness, defined as
maximum time derivative of the wave shape η[max(∂η/∂t)],
can increasemaximal run-up height substantially (see Fig. 8).
For a sine wave, this influence follows the square rooting law
for maximal wave run-up:

Rup ∼ √
s, (19)

where s is the front steepness of the deformed wave at the
beginning of the slope and s0 is the front steepness of the
initial (not deformed) wave.

This theoretical dependence is also supported by experi-
mental data Didenkulova et al. (2013). The experiment was
conducted in the 300m longLargeWaveFlume (GWK,FZK)
in Hannover, Germany. Sinusoidal waves were propagating
251 m in the basin of constant depth of 3.5 m and then were
climbing 1:6 slope. Figure 8 demonstrates that experimental
points nicely follow the theoretical curve.

Similar effects can also be observed in the U-shaped bay.
Due to general wave intensification in U-shaped bays, the
influence of wave front steepness on wave run-up char-
acteristics is also stronger. According to Didenkulova and
Pelinovsky (2011a), maximal run-up height has a linear
dependence on wave front steepness, so that formula (18)
can be re-written taking into account the effect of wave
asymmetry:

Rup = 4.30
AL

λs

s

s0
. (20)

Table 2 Calculated shape
parameters for different waves
propagating in U-shaped bay

Sin-like Soliton-like Lorentz-like Total

μR± 4.47 (1 ± 0.02) 4.25 (1 ± 0.03) 4.20 (1 ± 0.04) 4.30 (1 ± 0.04)
μU+ 5.16 (1 ± 0.07) 4.35 (1 ± 0.08) 4.24 (1 ± 0.08) 4.56 (1 ± 0.12)
μU− 10.43 (1 ± 0.01) 10.86 (1 ± 0.03) 11.01 (1 ± 0.05) 10.78 (1 ± 0.04)
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Fig. 8 Influence of wave front steepness on its maximal run-up and
run-down heights: solid line corresponds to the theoretical dependence
and crosses—to the experimental measurements

5 Conclusion

In this paper, we discuss how changes in the shape of incom-
ing tsunamiwave influence its run-up in different bay geome-
tries: plane beach and U-shaped bay.

It has beendemonstrated that for symmetric solitary pulses
formulas for run-up characteristics in both plane beach and
U-shaped bay are rather stable and can be generalized for all
positive or negative pulses. The corresponding formulas are
Eqs. (10) and (18). At the same time, asymmetry of the wave
and in particular the steepness of the wave front play cru-
cial role and increases run-up height substantially. In a plane
beach geometry tsunami run-up height is proportional to the
square root of the wave front steepness. In a U-shaped bay
which allows nonreflecting wave propagation (Didenkulova
and Pelinovsky 2009, 2011a), all processes are intensified
and influence of the wave front steepness on run-up height is
also stronger and is represented by linear dependence.

It should be noted that parameterization presented in this
paper works only for symmetric waves, such as bell-shaped
impulses of positive or negative polarity. For asymmetric
impulses, such as N -waves or nonlinear deformed waves,
additional parameters characterizing the wave shape should
be taken into account. As it is shown in this manuscript, for
nonlinear deformed waves such parameter is the wave front
steepness. More complicated wave shapes may also depend
on other additional parameters.
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