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Abstract In some tsunamiwaves travelling over the ocean,
such as the one approaching the eastern coast of Japan in
2011, the sea surface of the ocean is depressed by a small
metre-scale displacement over a multi-kilometre horizontal
length scale, lying in front of a positive elevation of com-
parable magnitude and length, which together constitute a
down-up wave. Shallow water theory shows that the lat-
ter travels faster than the former, leading to an interaction,
whose description is the issue addressed in this paper, using
model equations of the Korteweg–de Vries type. First, we
re-examine the undular bore solutions of the Korteweg–de
Vries equationwhich describe howan initial depressionwave
deforms into a depression rarefaction wave followed by an
undular bore of large elevation waves riding on this depres-
sion. Then we develop a new extended Korteweg–de Vries
equation some of whose solutions can be used to describe
the interaction of an elevation wave chasing a depression
wave. These show that the two waves coincide at a given
position and time producing amaximum elevation. Typically
this amplitude is larger than the initial displacement magni-
tude by a factor which can be as large as two, which may
explain anomalous elevations of tsunamis at particular posi-
tions along their trajectories. It is physically significant that
for these small amplitude waves, no wave breaking occurs
and there is no excess dissipation. Then, following the transi-
tion, the elevation wave moves ahead of the depression wave
and the distance between them increases either linearly or
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logarithmically with time. The implications for how these
down-up tsunami waves reach the shoreline are considered.

1 Introduction

Tsunamis are generated by submarine earthquakes, and
sometimes by landslides or volcanic eruptions. In general
the tsunami wave at the source can be either a wave of
depression, or of elevation, or a combination of these, see
the recent assessments byDutykh andDias (2007), Arcas and
Segur (2012) and Dias et al. (2014). As the wave propagates
shorewards over the continental slope and shelf, and finally
impacting the shoreline, the increasing effect of nonlinear-
ity will lead to quite different set of behaviours depending
on the wave polarity, see Carrier et al. (2003) and Fernando
et al. (2008) for instance. Although the depression waves can
cause as much or more damage than elevation waves, they
have not been studied as much as elevation waves. However,
their potential importance has been noted in the theoreti-
cal studies by Tadepalli and Synolakis (1994, 1996), in the
analysis of field data by Soloviev and Mazova (1994) and in
the experiments ofKobayashi and Lawrence (2004), Klettner
et al. (2012), Rossetto et al. (2011) and Charvet et al. (2013).

Most studies of the connection between the incident wave
shape and polarity, and the consequent shoreline impact,
have used the linear and nonlinear shallow water equa-
tions, see Tadepalli and Synolakis (1994, 1996), Carrier et
al. (2003), Madsen and Schaffer (2010) and Didenkulova
and Pelinovsky (2011) for instance. In particular, we espe-
cially note in the context of this paper the analyses using
the nonlinear shallow water equations by Didenkulova
(2009), Didenkulova et al. (2006, 2007), and Pelinovsky
(2006) which demonstrate the role of initial nonlinear steep-
ness in increasing the eventual runup height, and that by
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Didenkulova et al. (2014) who found that this nonlinear
steepness effect was enhanced when the initial wave was one
of depression. However, although these models have proved
valuable and insightful, they are non-dispersive and hence
do not capture the effects of wavenumber dispersion as the
tsunami waves develop shorter length scales in their propa-
gation shoreward. In particular when shocks are predicted by
these models, the discontinuity needs to be resolved either
with some turbulent wave-breaking model, or by the inclu-
sion of some wave dispersion. The latter choice is the focus
of this paper, where our aim is to exhibit some exact solutions
of certainmodel equations, whose range of dynamical behav-
iour is potentially interesting in the context of tsunamis when
these involve depression waves, and interactions between
depression and elevation waves.

The combination of weak nonlinearity and weak linear
dispersion leads typically to a Korteweg–de Vries (KdV)
equation, or to a Bousinesq system, see Segur (2007) and
related articles in the compilation by Kundu (2007) for the
tsunami context. However, much of the tsunami literature
has focussed on the classical solitary wave solution, which
is always a wave of elevation. Hence, in this paper, we use a
suite ofKdV-type equations to examine howwaves of depres-
sion evolve. In particular, we will find that this brings out
the important role of the undular bore solutions of the KdV
models, as found in some tsunami observations and numeri-
cal simulations, see Arcas and Segur (2012) and Grue et al.
(2008) for instance. It is pertinent to note here that the cri-
tique of the validity of KdV models by Madsen et al. (2008),
Madsen and Schaffer (2010) and Arcas and Segur (2012),
amongst others, are based on solitary wave dynamics, and
we suggest that this is a quite restrictive view of the value of
KdV theories.

In Sect. 2 we re-examine the KdV equation, Eq. (1) below,
both for a constant depth, and for variable depth, with the
main aim of demonstrating the structure of depressionwaves,
and the role of the undular bore solutions. Then in Sect. 3
we present an extended KdV equation model, expressed in
terms of an augmented dependent variable, which contains
both quadratic and cubic nonlinearity, with coefficients of the
same positive sign as the linear dispersive term. This model
is admittedly phenomenological in that while the form of
the nonlinear terms can be rigorously justified, the disper-
sive regularisation with a linear term is admittedly ad hoc
and probably cannot be obtained with a systematic asymp-
totic expansion. This model is formally fully nonlinear, with
weak linear dispersion, and in that sense can be regarded as a
unidirectional version of the two-way Su-Gardner equations
(see El et al. 2006 for a description of these equations). This
extended KdV equation contains families of 2-soliton solu-
tions and also breather solutions, which demonstrate striking
interactions between depression waves and elevation waves.
This interaction typically produces an elevation amplitude

which is larger than the initial displacement magnitudes by a
factor which can be as large as two. We conclude in Sect. 4.

We are especially concerned with the scenario when the
approaching tsunamiwave, propagatingwith a speed cwhich
depends on the depth h, and also on the wave amplitude, con-
sists of a depression wave of magnitude �h � h and hor-
izontal length scale L0 � h, in front of an elevation wave
of comparable magnitude, constituting a down-up wave, or
isosceles N -wave in the terminology of Tadepalli and Syno-
lakis (1994). This configuration was observed in the Sumatra
tsunami of 2004, see Ioulalen et al. (2007) and Grilli et al.
(2007), and that in Tohoku in 2011 seeMori et al. (2013), and
was examined in experiments by Klettner et al. (2012) moti-
vated in part by these observations. Such a structure depends
of course on the shape of the co-seismic bottom displace-
ments, see the theoretical analysis byDutykh andDias (2007)
for instance. Shallow water theory implies that the elevation
will travel faster with a speed difference �c ∼ √

g�h, and
then after a time t∗ ∼ L0/�c the waves undergo a transition.
First, the two parts coincide and produce a maximum eleva-
tion β�h, where based on the afore-mentioned 2-soliton and
breather solutions, we estimate that 1 ≤ β ≤ 2 and β = 2
when the depression and elevation waves are of equal ampli-
tude magnitudes. Second, the elevation wave then moves
ahead of the depression wave and the distance between them
increases in proportion to (t − t∗) or log (t − t∗) for the 2-
soliton or breather solutions, respectively. These estimates
may explain anomalous elevations of some tsunamis at par-
ticular positions along their trajectories, noting that for these
small amplitude waves, there is very little dissipation.

2 Korteweg–de Vries equation

The Korteweg–de Vries equation on a variable depth is

ζt + cζx + cx
2

ζ + 3c

2h
ζ ζx + ch2

6
ζxxx = 0. (1)

Here ζ(x, t) is the free surface elevation above the undis-
turbed depth h(x), while c(x) = √

h(x) is the linear long
wave phase speed, using non-dimensional units based on a
length scale h0 and a time scale

√
h0/g. Equation (1) was

derived for surface gravity waves by Johnson (1973a, b) and
an analogous general equation for both surface and internal
waves by Grimshaw (1981). The first two terms in (1) are the
dominant terms and by themselves describe the propagation
of a linear long wave with speed c. The derivation uses the
usual KdV balance in which the ∂/∂x ∼ ε � 1, A ∼ ε2,
and weak inhomogeneity is added so that cx/c scales as ε3.

Equation (1) is in the form appropriate for an initial value
problem. For application to tsunami waves, it is useful to cast
it into a form describing evolution along the wave path. Thus,
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a form asymptotically equivalent to (1) is

ζτ + hτ

4h
ζ + 3

2h
ζ ζξ + h

6
ζξξξ = 0, (2)

where τ =
∫ x

0

dx ′

c(x ′)
, ξ = τ − t. (3)

Here τ is a time-like variable measuring travel time along the
wave path, and in variable depth, h = h(τ ). This governing
Eq. (2) can be cast into several equivalent forms.

η = h1/4ζ so that ητ + 3

2h5/4
ηηξ + h

6
ηξξξ = 0. (4)

This form shows that Eq. (2) has two integrals of motion with
the densities proportional to η = h1/4ζ and η2 = h1/2ζ 2.
These are often referred to as laws for the conservation of
“mass” and “momentum” (more correctly, wave action flux).
Another useful form is

U = 3η

2
, Uσ + 6UUξ + h9/4Uξξξ = 0, (5)

σ = 1

6

∫ τ

0

dτ
′

h5/4(τ ′
)

= 1

6

∫ x

0

dx ′

h7/4(x ′)
. (6)

In this formulation we assume that h = 1 when the depth is
constant and then h < 1 when the wave moves up a slope.

On a constant depth the KdV equation (5) has the well-
known soliton (solitary wave) solution

U = A sech2(K (ξ − Vσ)), V = 2A = 4K 2. (7)

Here we are concerned with the “initial” value problemwhen
U = U0(ξ) atσ = 0.Note that this is in fact a specification of
a wave at an initial location, and the equation then describes
the spatial evolution. It is well known that if U0(ξ) ≥ 0
(elevation), then several solitons are generated, but if instead
U0(ξ) ≤ 0, (depression) then no solitons are generated, and
instead the solution disperses with the front being described
by a nonlinear Airy-type function. This has the shape of an
initial depression, followed by a series of elevation waves
riding on a negative pedestal, see El (2007), Segur (2007)
and Arcas and Segur (2012) for instance.

Consider, for example, the case when U0(ξ) = ±G(ξ),
respectively, an initial wave of elevation, or depression,
whereG(ξ) ≥ 0 is a localised pulse, for instance a Gaussian.
Then in the elevation case, N rank-ordered solitons are pro-
duced, with N amplitudes, together with some trailing dis-
persing radiation. When N is large, the soliton amplitudes
are distributed according to the law

A ∼ ξ

2σ
, 0 <

ξ

4σ
< GM = 2maxG(x). (8)

In particular the leading emerging solitarywave has an ampli-
tude of 2GM , see El (2007).

In the depression case the long-time evolution can bemod-
elled as a rarefaction wave [an exact solution of (5)] given
by

U = 0, ξ > 0,

U = ξ

6σ
, −L(σ ) <

ξ

6σ
< 0,

U = 0 ,
ξ

6σ
< −L(σ ),

where 3σ L2 = M =
∫ ∞

−∞
|G(ξ)| dξ. (9)

Here L(σ ) is determined by conservation of mass. This solu-
tion is an N -wave, and at ξ = 6σ L , there is jump L from
the negative level −L to 0. This is resolved by an undular
bore whose leading wave is a solitary wave of amplitude 2L ,
relative to the pedestal of −L , see Grimshaw (2001) and El
(2007) for instance. Thus the amplitude of this leading soli-
tary wave is 2(M/3σ)1/2. This can be larger than the lead-
ing solitary wave from an elevation initial condition, when
σ < M/3G2

M . Note that here M,GM are independent para-
meters, and this estimate suggests that the leading elevation
wave on a depression wave emanating from a depression ini-
tial condition will be greater than the leading elevation wave
from an elevation initial condition when M is large, but GM

is small. The laboratory experiments of Hammack and Segur
(1978) exhibit this behaviour, see their Figs. 2 and 3, also
reproduced in the review by Arcas and Segur (2012).

When there is a slope, there are no analogous asymptotic
solutions available. However it is known that a single solitary
wave will deform adiabatically as h−1, see El et al. (2012)
and the references therein. However, the numerical study by
El et al. (2012) indicates that a KdV undular bore of ele-
vation propagating up a slope develops a quite complicated
structure, but the leading solitary wave does deform as h−1.
When the initial wave is one of depression, then the rarefac-
tion wave of depression (9) again holds even when h in Eq.
(5) varies. Hence we would again expect an undular bore to
develop at the trailing edge, with the leading solitary wave in
the undular bore deforming adiabatically. Indeed, this behav-
iour was found in the experiments by Klettner et al. (2012)
describing of an initial depression up a slope, see their Fig. 5
especially.

3 Extended Korteweg–de Vries equation

3.1 Derivation

The extended Korteweg–de Vries equation (eKdV) for water
waves on a constant depth is an extension of (1) when a cubic
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nonlinear term is included:

ζt + cζx + 3c

2h
ζ ζx + αζ 2ζx + ch2

6
ζxxx = 0. (10)

The coefficient α can be found from the literature, see
Marchant and Smyth (1990) for instance, or more directly
by noting that in the absence of dispersion, the Riemann
invariant solution from nonlinear shallow water theory
is

Rt + V Rx = 0, R = U + 2C, V = U + C,

C = √
h + ζ , L = U − 2C = −2

√
h. (11)

Here R, L are the right-going and left-going Riemann invari-
ants, and the left-going wave has been set to the constant
background. Hence,

ζt + V ζx = 0, V = 3
√
h + ζ − 2

√
h

= c + 3c

2h
ζ − 3c

8h2
ζ 2 + · · · . (12)

Hence we infer that α = −3c/8h2, which is the opposite
sign to that needed for the eKdV equation to have breather
solutions.

However, noting that the coefficient α is not unique, here
we adopt a different approach. First we note that (11) can be
expressed in terms of V :

Vt + VVx = 0. (13)

Indeed, this is exact and shows that in terms of the variable
V , α = 0. More generally the Riemann invariant equation
(12) can be written as

Zt + V Zx = 0 Z = Z(ζ ), V = V (Z), (14)

where Z(ζ ) can be chosen arbitrarily. We choose Z so that

V (Z) = c + 3c

2h
Z + 3cβ

2h2
Z2. (15)

Here β > 0 can be chosen arbitrarily. Then combining this
with the expression for V (ζ ) in (12) defines the function
Z(ζ ):
(
1 + ζ

h

)1/2

− 1 = Z

2h
+ βZ2

2h2
,

so that Z(ζ ) = ζ −
(
1

4
+ β

)
ζ 2

h
+ · · · . (16)

Thus in the limit when ζ � h, we infer that (16) is a near-
identity transformation as then Z ≈ ζ .

The nonlinear hyperbolic equation (14) with V (Z) given
by (15) is a valid right-going solution of the nonlinear shallow
water equations. Next we consider its dispersive regularisa-
tion and here we make the ad hoc assumption that a linear
dispersive term will suffice, noting that this is certainly valid

in the small-amplitude limit. Thus we obtain the following
eKdV equation for the augmented variable Z :

Zt + cZx + 3c

2h
Z Zx + 3cβ

2h2
Z2Zx + ch2

6
Zxxx = 0. (17)

Since the dispersive term has been approximated by a lin-
ear term, but we have kept the fully nonlinear relationship
between Z and ζ in (16), this is a phenomenological model.
In this sense it can be regarded as a unidirectional version
of the two-way Su-Gardner equations (see El et al. 2006 for
a description of these equations). Nevertheless, we suggest
that its solutions may be relevant, at least in part, to the study
of down-up tsunami waves. Importantly in this application,
we can choose β > 0 and so this model eKdV equation has a
positive coefficient of the cubic nonlinear term. Next we put
(17) into canonical form:

Z = hv

β
, x − ct= β̂hX, t= 6β̂3hT

c
, β̂ =

{
2β

3

}1/2

, (18)

vT + 6vvX + 6v2vX + vXXX = 0. (19)

The transformation (16) then becomes

(
1 + ζ

h

)1/2

− 1 = 1

2β
(v + v2). (20)

Note that −1 < ζ/h < 0 only when −1 < v < 0, and
the minimum value of the left-hand side is −1, while the
minimum value of the right-hand side is −1/4β when v =
−1/2. Hence we must choose β ≥ 1/4, but otherwise β is
a free parameter. The choice β = 1/4 allows a full range
of negative values of ζ , but otherwise the range of ζ/h is
bounded below by ζmin/h = −1/2β +1/16β2. Importantly,
note that solutions for which v < −1 are such that ζ/h > 0.
It is useful to note that choosingβ � 1 implies that ζ/h � 1,
assuming that v is order unity, and then the left-hand side of
(20) can be approximated by ζ/2h.

3.2 Solitons and breathers

The eKdV equation (19) is integrable and has an associ-
ated inverse scattering transform and families of soliton and
breather solutions, see Grimshaw et al. (2010) for instance.
The soliton and breather solutions can be found using a vari-
ety of methods, including the Darboux transformation, see
Slunyaev (2001), and the Hirota bilinear method, see Chow
et al. (2005). The latter yields

v = 2

{
tan−1

(
g

f

)}
X

= 2

f 2 + g2
( f gX − g fX ) , (21)

where f, g are expressed in terms of exponential functions,
sometimes including algebraic terms.
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3.2.1 1-soliton solution

The 1-soliton solution is given by

g = 1 + sa exp (γY ), f = 1 + sb exp (γY ) ,

Y = X − γ 2T, a, b = 1 ± γ√
1 + γ 2

, s = ±1,

v = γ 2

1 + s
√
1 + γ 2 cos h(γY )

. (22)

Here s = ±1 corresponds to an elevation wave of amplitude
A = √

γ 2 + 1− 1 and a depression wave of amplitude A =
−√

γ 2 + 1− 1, respectively. As γ varies over the range 0 <

γ < ∞ the elevation wave amplitude lies in the range 0 <

A < ∞, while the depression wave amplitude lies in the
range −2 > A > −∞. For the same speed, the depression
wave has the larger amplitude magnitude, but for the same
amplitudemagnitude, the elevation wave is faster. In general,
the elevation wave with index 1 is faster than the depression
wave with index 2 when γ1 > γ2, but will have the smaller

amplitude magnitude when
√
1 + γ 2

1 − 1 <

√
1 + γ 2

2 + 1,

which is always the case when γ 2
1 < 8, and remains the case

unless γ 2
1 is sufficiently large, and sufficiently greater than

γ 2
2 .
Importantly, the terms depression and elevation relate to

the augmented variable v and not to the original variable
ζ . Although the 1-soliton solution (22) does generate a 1-
soliton solution for ζ through the transformation (20), both
the depression and elevation waves for v have positive ampli-
tudes for ζ . This is as it should be, since for water waves
(in the absence of strong surface tension) we do not expect
to find steady solitary waves of depression. Both the eleva-
tion soliton and the depression soliton for v generate steady
solitary waves for ζ with the same speed γ 2 in the X, T
variables, but with different profiles and amplitudes. The
elevation soliton (s = 1 in (22)) generates a solitary wave
of elevation for ζ with a monotonic profile on each side of
the crest, which in the limit of small amplitudes γ → 0
reduces to the expected KdV solitary wave. On the other
hand, the depression soliton (s = −1 in (22)) generates a
solitary wave with two negative side-lobes, corresponding
to the domain 0 > v > −1, and then a central elevation
corresponding to the domain −1 > v > −1 − √

1 + γ 2

whose amplitude is greater than the amplitude of the ele-
vation soliton. Although such a steady solitary wave is not
expected to exist in the full waterwave problem, it is nonethe-
less interesting in the present context as indicating that a
depression wave followed by an elevation wave can have
a larger central amplitude than the corresponding elevation
wave.

3.2.2 2-soliton solutions

Now consider a 2-soliton solution with far-field parameters
γ1, γ2, given by, adapted from (11) in Chow et al. (2005):

g = 1+s1a1 exp (φ) + s2a2 exp (ψ)+s1s2a12 exp (φ + ψ),

f = 1+s1b1 exp (φ) + s2b2 exp (ψ)+s1s2b12 exp (φ + ψ),

φ = γ1X − γ 3
1 T, ψ = γ2X − γ 3

2 T,

an, bn = 1 ± γn√
1 + γ 2

n

, n = 1, 2,

a12, b12 = (γ1 − γ2)
2

(γ1 + γ2)2

[1 ± (γ1 + γ2) − γ1γ2]√
1 + γ 2

1

√
1 + γ 2

2

. (23)

Without loss of generality, take γ2 > γ1. In the far field as
T → ±∞ the soliton limits are found by either fixing the
phase φ and letting ψ → ∓∞ for the index 1, or fixing the
phase ψ and letting φ → ±∞ for the index 2. The outcome
is, for index 1,

g ∼ 1 + s1a1 exp (φ), f ∼ 1 + s1b1 exp (φ), T → ∞,

g ∼ a2+s1a12 exp (φ), f ∼ b2+s1b12 exp (φ), T → −∞,

(24)

and for index 2,

g ∼ a1+s2a12 exp (ψ), f ∼ b1+s2b12 exp (ψ), T → ∞,

g ∼ 1+s2a2 exp (ψ), f ∼ 1 + s2b2 exp (ψ), T → −∞.

(25)

Note that common factors in f, g can be removed. Each of
these are easily recognised as the corresponding 1-soliton
solutions, but with a phase shift from T → −∞ to T → ∞,
given by

exp (−�φ), exp (�ψ) = (γ2 + γ1)
2

(γ2 − γ1)2
. (26)

This agreeswith the expression (11) inSlunyaev (2001).Note
that�φ < 0,�ψ > 0, so the faster wave is shifted forwards
and the slower wave is shifted backwards.

Our interest here is in the case when the depression wave
precedes the elevation wave as T → −∞, so that the depres-
sion and elevationwave have indices 1, 2, respectively, that is
s1 = −1, s2 = 1. Then the elevation wave will catch up with
the depression wave, and there will be an interaction at the
approximate location X = 0, T = 0. Taking account of the
phase shifts (26) this can be refined to X = X int, T = Tint
where

(γ 2
2 − γ 2

1 )X int = −γ 2
1 �φ

2γ1
− γ 2

1 �ψ

2γ2
,

(γ 2
2 − γ 2

1 )Tint = −�φ

2γ1
− �ψ

2γ2
. (27)
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Further, we can deduce from the preceding expressions that
if the two waves are located a distance 2X0 apart at a time
±T0 as T → ±∞, then

2X0 ≈ (γ 2
2 − γ 2

1 )T0. (28)

Note that both expressions (27, 28) will fail when γ2 → γ1.
Slunyaev (2001) (see Eq. (10)) provides an estimate that
at the interaction centre the amplitude is A2 − A1, where
A1 < 0, A2 > 0 are the far-field amplitudes. The interaction
is like that of a breather, and at the centre there is enhanced
elevation, lying between 2min[A1, A2] and 2max[A1, A2].
This is twice the far-field value when |A1| = A2. A set of
typical results are shown in Figs. 1 and 2 for the cases when
γ1 = 0.7, γ2 = 3.0 and γ1 = 1.3, γ2 = 3.4, respectively.
These represent two solitons of nearly equal amplitudes,
A1 = −2.22, A2 = 2.16 and A1 = −2.64, A2 = 2.54,
respectively, so that the depression wave is slightly larger
in magnitude, but considerably slower in speed. Then in
Figs. 3 and 4 we plot the cases when γ1 = 0.7, γ2 = 0.72
and γ1 = 1.3, γ2 = 1.5 so that now the speeds are quite
close, but the elevation wave is faster, while the ampli-
tudes are quite different with a much larger depression wave,
A1 = −2.22, A2 = 0.23 and A1 = −2.64, A2 = 0.8,
respectively. These cases are similar to Figs. 3 and 4 of Slun-
yaev (2001), but there the speeds were much faster.

As for the 1-soliton solution, each expression (23) for a 2-
soliton solution for the variable v generates a corresponding
2-soliton-like structure for ζ through the transformation (20).
Although in the far field these solutions separate into two
distinct solitary waves for ζ as described in Sect. 3.2.1, our
main interest here is in the interaction shown in the central
panels of Figs. 1, 2, 3 and 4. Significantly in each of these
v varies from a minimum negative value of around −1 to
a maximum positive value ranging from 2 to 5. Then the
negative values of v will correspond to negative values of ζ

and the positive values of v to positive values of ζ so that the
qualitatively the structure shown will be similar for ζ .

3.2.3 Breather solutions

Thebreather solution canbe foundby formally puttingγ1,2 =
m ± in, m, n > 0 in (23), see (14) in Slunyaev (2001), or
(13) in Chow et al. (2005). The outcome is, obtained here by
setting s1 = s2 = 1 and adjusting the phases appropriately,

g = 1 − n2

m2

1 + 2m − (m2 + n2)

1 − 2m + (m2 + n2)
exp (2mθ)

+ 2(ξ cos (n�) − η sin (n�)) exp (mθ),

f = 1 − n2

m2

1 − 2m − (m2 + n2)

1 − 2m + (m2 + n2)
exp (2mθ)

+ 2 cos (n�) exp (mθ),

a

b

c
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Fig. 1 Plot of (23) for γ1 = 0.7, γ2 = 3.0 at t = −10, 0.06, 10 from
top to bottom. The arrows in a and c indicate the direction of the waves,
and their lengths are proportional to the respective speeds, γ 2

1,2

θ = X − (m2 − 3n2)T, � = X − (3m2 − n2)T,

ξ = 1 − (m2 + n2)

1 − 2m + m2 + n2
, η = 2n

1 − 2m + m2 + n2
. (29)
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Fig. 2 Plot of (23) for γ1 = 1.3, γ2 = 3.4 at t = −10, 0.04, 10 from
top to bottom. The arrows have the same meaning as in Fig. 1

The breather has two phases, θ and �. It is localised in the
phase θ and propagates with a speed C = m2 − 3n2, and
oscillates in the phase�with a frequencyn�,� = 3m2−n2.
In the reference framemovingwith speedC , setY = X−CT
and then � = n(Y − 2(m2 + n2))T . Hence in this frame it
has a period
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Fig. 3 Plot of (23) for γ1 = 0.7, γ2 = 0.72 at t = −50, 5.95, 50 from
top to bottom. The arrows have the same meaning as in Fig. 1

P = π/n(m2 + n2). (30)

In the limit n � m there are many crests inside the envelope
and it resembles an envelope wave packet. In the opposite
limit when n � m, it resembles a 2-soliton interaction, see
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Fig. 5 of Slunyaev (2001) or Fig. 4 of Chow et al. (2005).
This is the case of interest here and describes the interaction
of two solitons of opposite polarity and almost equal speeds.
Hence the depression soliton has the larger amplitude. The
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Fig. 4 Plot of (23) for γ1 = 1.3, γ2 = 1.5 at t = −50, 0.5, 50 from
top to bottom. The arrows have the same meaning as in Fig. 1

greatest distance apart is

L = 2

m
log

2m

n
. (31)

The double pole solution can be found by again choosing
special phases and taking the limit n → 0 in (29), see Chow
et al. (2005):

g = 1 − 1 + 2m − m2

m2(1 − m)2
exp (2mθ)

+ 2[(1 − m2)� + 2] exp (mθ)

(1 − m)2
,

f = 1 − 1 − 2m − m2

m2(1 − m)2
exp (2mθ) + 2� exp (mθ),

θ = X − m2T, � = X − 3m2T = θ − 2m2T . (32)

A typical result is shown in Fig. 4 of Chow et al. (2005). In
the far field as T → −∞ this is an elevation wave chasing
a larger amplitude depression wave. They coincide around
T = 0, and then as T → ∞ the elevation wave goes ahead.
In detail, for fixed phase θ , as T → ±∞, the solution col-
lapses to two singlewaves, each approximately a singlewave,
propagating with speed V ∼ m2, and hence with expected
amplitudes ∼ ±√

1 + m2 − 1, see (22). Each wave phase
can be described asymptotically for large |T | by

mθ ∼ ±sign{T } log (Km2|T |), so that V ∼ m2 ± 1

m|T | ,
(33)

where the alternate signs refer to the faster/slower wave,
respectively. K is a positive constant to be determined and
depends both on which wave is being considered, and on
which limit, that is either T → ±∞. The speeds become
equal in the long time limit, and the two waves separate as
log |T |. From (32), we canwrite v = 2N/D, D = f 2+g2 >

0, and

N = f gX − g fX = �[α3 exp (3mθ) + α1 exp (mθ)]
+ [β3 exp (3mθ) + β2 exp (2mθ) + β1 exp (mθ)],

α3 = −4(1 + m2)

(1 − m)3
, α1 = 4m2

(1 − m)
. (34)

Note that α3 < 0, α1 > 0 when 0 < m < 1, and
α3 > 0, α1 < 0 when m > 1. These expressions can
be evaluated on the trajectories (33), where we note that
then � ∼ −m2T with a logarithmic error. As T → −∞,
exp (mθ) ∼ (Km2|T |)∓1, and as T → ∞, exp (mθ) ∼
(Km2|T |)±1, for the faster and slower waves, respectively.
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It then follows that, for the faster wave,

N ∼ α1

K
, D ∼ (1 + 2

K
)2 + (1 + 2a1

K
)2, T → −∞,

N ∼ −m8K 3α3T
4, D ∼ m8K 2T 4

{( f1K + 2)2 + (g1K + 2α1)
2}, T → ∞. (35)

Here f1, g1 are the coefficients of the term exp (2mθ) in
the expressions (32) for f, g, respectively. In both limits,
the amplitude is a constant as required, and is positive for
0 < m < 1 and negative for m > 1. For the slower wave,

N ∼ m8K 3α3T
4, D ∼ m8K 2T 4

{( f1K − 2)2 + (g1K − 2α1)
2}, T → ∞.

N ∼ −α1

K
, D ∼ (1 − 2

K
)2 + (1 − 2a1

K
)2, T → −∞,

(36)

Again, in both limits, the amplitude is a constant as required,
and is now negative for 0 < m < 1 and positive for m > 1.
Note that only the leading order term in N is needed here in
all cases, and the term in [· · · ] is not needed. Also we see that
|2N/D| depends on K and in all cases is zero as K → 0,∞
and has a maximum value when

K = 2(1 + m2)1/2

|1 − m| , Cases f−, s+ ;

K = 2m2|1 − m|
(1 + m2)1/2

, Cases f+, s−. (37)

Here the notation f±, s± denotes the faster or slower wave
as T → ±∞, respectively. Then evaluation of the corre-
sponding amplitudes 2N/D at these values of K are indeed
±√

1 + m2 − 1 according as the wave is one of elevation
or depression, as expected. Using these expressions we can
deduce from (33) that the faster and slower wave have phase
shifts from T → ∞ to T → ∞ of ±�θ where

�θ = log { 1 + m2

m2(1 − m)2
}. (38)

Finally, we can deduce from the phase expressions (33) that
if the two waves are located a distance 2X0 apart at a time
±T0 as T → ±∞, then

mX0 ≈ log (2m3T0). (39)

Plots of (32) for m = 0.7, 1.3 are shown in Figs. 5 and
6, respectively. Note that Fig. 5 is similar to Fig. 4 of Chow
et al. (2005), and also to the 2-soliton solution shown in
Figs. 3 and 4 above, although note that as discussed above,
the time scale of approach and separation are quite different
for this breather case. The amplitudes at t = ±50 are in
good agreement with the theoretical predictions as t → ±∞
indicating that the asymptotic state has been reached. In Fig. 5
where 0 < m < 1 the faster wave is one of elevation and the
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Fig. 5 Plot of (32) form = 0.7 at t = −50, 1.3, 50 from top to bottom.
The arrows have the same meaning as in Fig. 1

slower wave is one of depression. At the time of interaction,
which is close to T = 0 and can be estimated from the
phase shifts (38), we see that these waves combine into a
large elevation whose height is approximately given by the
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Fig. 6 Plot of (32) for m = 1.3 at t = −50,−1.15, 50 from top to
bottom. The arrows have the same meaning as in Fig. 1

absolute sum of the amplitudes at infinity, which is given
here by 2

√
1 + m2. This scenario is reversed in Fig. 6 where

m > 1 as now the faster wave is one of depression and the
slower wave is one of elevation, with the consequence that

at the time of interaction the waves combine into a large
depression whose amplitude is approximately −2

√
1 + m2.

Again, as for the 2-soliton solution, the expression (32) for
a breather solution for the variable v generates a correspond-
ing breather-like structure for ζ through the transformation
(20). Our main interest here is in the interaction shown in the
central panels of Fig. 5 where significantly v varies from a
minimum negative value of around −1 to a maximum posi-
tive value ranging from 2. Then the negative values of v will
correspond to negative values of ζ and the positive values of
v to positive values of ζ so that the qualitatively the structure
shown will be similar for ζ . However, this in not the case for
the middle panel of Fig. 6 where the large negative peak for
v will generate a more complicated structure for ζ .

4 Discussion and applications

In this paperwehave used the traditionalKdVmodel (Sect. 2)
and a new eKdV model (Sect. 3) to examine the dynamics
of a down-up wave, that is a depression wave followed by an
elevationwave.This approachdiffers from the extensive liter-
ature on N -waves found using the usual non-dispersive non-
linear shallow water equations, in that these models impor-
tantly include the effects of weak linear wave dispersion. We
note that Arcas and Segur (2012) recently called attention
to the necessity to invoke wave dispersion when describ-
ing tsunami waves of depression. The KdV model, whether
for a constant depth, or on a slope, indicates that an initial
depression develops into a depression wave followed by a
series of elevation waves riding on this negative pedestal, see
Arcas and Segur (2012) for instance, and the leading wave
may have an amplitude magnitude twice that of the leading
depression. We have already noted that this scenario is qual-
itatively similar to that seen in the wave tank experiments
of Klettner et al. (2012) where an initial wave of depression
travelled up a slope. When the expressions in Eq. (9) and
the following text are translated to the original dimensional
variables through the transformations in Eqs. (3)–(6), we find
that the predicted height of the leading solitary wave is 2Ld ,
Ld = 2(4Mdh/3xd)1/2, riding relative to a pedestal of −Ld

where Md is the initial total displaced volume, and xd is the
distance travelled. From Fig. 5a of Klettner et al. (2012) we
estimate that Md = 0.03m2 and then when xd = 20.68m
we find that Ld = 0.04m, in quite good agreement with the
observed value of about 0.05m. Note that here we have not
taken account of the wave amplification over the slope,and
this would account for the underestimate. Indeed at the loca-
tion xd the depth in the wave tank has decreased from 0.8
to 0.7m and assuming the adiabatic expression of h−1 for
a solitary wave, this would increase our estimate of Ld to
Ld = 0.046m.
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However, in these KdV models this combination of a
depression and elevationwaves is an unsteadywave train, and
so the complete structure eventually fully disperses. Hence
in a search for models supporting more persistent structures,
we have invoked a higher-order model, the eKdV equation
(17), or in scaled form (19). Although this eKdV model
supports interacting depression and elevation waves through
families of 2-soliton and breather solutions, we must note
that as already discussed, this is a phenomenological model
and its application to water waves requires caution. Specifi-
cally, there are two issues concerning the application of this
model. First, we note again that the balance of terms in (17)
is such that the nonlinear terms have a larger magnitude than
the linear dispersive term. If a small-amplitude hypothesis is
invoked to remedy this, then the outcome is that the cubic
nonlinear term is suppressed vis-a-vis the quadratic nonlin-
ear term. This then eliminates the depression soliton, the 2-
soliton solution, when comprising both elevation and depres-
sion waves, and the breather solution of interest here, as all
these require a balance between the quadratic and cubic non-
linear terms. Second, although onemight accept that (17) and
(19) can be used in the ad hoc sense that the role of the linear
dispersive term is to provide a weak dispersive regularisation
of the fully nonlinear equation (14) which is valid within the
fully nonlinear shallow water framework, the application to
waterwaves requires use of the relationship v(ζ ) expressed in
(20), and then again Z ≈ ζ only when ζ � h. Nevertheless,
we maintain that portions of these solutions have qualitative
features which resemble laboratory and field observations of
some tsunami waves and suggest that this eKdV model does
have value when properly interpreted. In particular we focus
on the interaction scenarios displayed in the middle panel of
Figs. 1, 2, 3, 4 and 5 as here the solutions are predominately
positive and as discussed above the relationship v(ζ ) in (20)
leads to a qualitatively similar scenario and hence to useful
physical interpretation.

The expressions presented in Sect. 3.2 provide a complete
explicit description of the interaction of depression and eleva-
tion waves (in the v-variable), and from these we can extract
the essential information on the timescale for the interac-
tion, and the wave amplitude at the centre of the interaction
(expressed in terms of the ζ -variable on using the transforma-
tion (20). There are two main kinds of 2-soliton interaction:
one in which the depression and elevation components have
similar amplitudes, shown in Figs. 1, 2 and the other in which
the two components have similar speeds, shown in Figs. 3, 4.
The double-pole breather solution, shown in Figs. 5, 6, is
essentially a limit of the 2-soliton interactionwhen the speeds
are identical. From the analytical expressions we can esti-
mate a dimensional transition time, taking account of the
scaling (18) and using the transformation (20) in the small-
amplitude limit. Thus suppose that initially an elevationwave
of amplitude�h2 is located at x = −L0 behind a depression

wave of amplitude −�h1 located at x = +L0. The speed of
each wave can be estimated from (12) as c(1 ± �h1,2/2h).
From the 2-soliton model these two approach each other lin-
early in time, see (28), and interact at a time and place given
by

t∗ ≈ 4hL0

cζint
, x∗ ≈ 4hL0

ζint
, where ζint = �h2 + �h1.

(40)

Here we also assumed that �h1,2 � h, and ζint is the esti-
mated elevation at the interaction site. On the other hand,
from the double-pole breather model, the approach is loga-
rithmic in time and the corresponding expressions for t∗, x∗
can be deduced from (39). However, then the interaction time
and place are increased exponentially due to the slower log-
arithmic approach, and we find that these alternative expres-
sions are not as applicable as (40). For instance, based on
the available data recorded near Phuket Island for the Suma-
tra 2004 tsunami, see Ioulalen et al. (2007) and Grilli et al.
(2007), we choose �h2 = 3m,�h1 = 3m, h = 25m,
L0 = 8 km, and then t∗ = 142min, x∗ = 133 km and
ζint = 6m. These estimates indicate that the peak interac-
tion is close to the shoreline, although the bottom slope has
not been taken into account, which would slow the wave
interaction down and so reduce x∗. A similar scenario can
be deduced from tide gauge data north of Sendai for the
Tohoku 2011 tsunami, see Fujii et al. (2011), Shimozono
et al. (2012) and Klettner et al. (2012). Here we choose
�h2 = 4m,�h1 = 4m, h = 50m, L0 = 16 km as rep-
resentative values, and then t∗ = 301min, x∗ = 200 km
and ζint = 8m. In this case these estimates indicate that the
tsunami would reach the shore before the peak interaction
occurs.

In conclusion, we suggest that the scenarios we have
described here, both for the KdV and the eKdV models, are
useful for understanding and possibly predicting the behav-
iour of down-up tsunami waves. In particular, as the plots we
have shown demonstrate, there is a potential that the nonlin-
ear interaction between the depression and elevation com-
ponents can produce a striking elevation at the location of
the interaction. It is to be emphasised that this outcome is
more devastating than that caused by an incident elevation
wave alone of the same initial height. Although here we have
focussed on the 2-soliton and breather solutions of the eKdV
equation (19) we note that it was shown by Grimshaw et al.
(2010) using a combination of the inverse scattering trans-
form and numerical simulations, that initial conditions con-
sisting either solely of a depression, or a combination of a
depression with an elevation, will generically generate soli-
tons of opposite polarity and breathers. Finally, although here
we essentially used only qualitative information obtained
from the eKdVmodel to describe tsunami depression waves,
it would be interesting to test this model further, for instance
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by comparison with numerical simulations of the full equa-
tions and also by extension of the model to variable topog-
raphy. Also we remind that the KdV and eKdV models are
developed for non-dissipative flows without any wave break-
ing and as such conserve momentum flux asymptotically.
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