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Abstract In this study, an integrated numerical model is
developed and applied to simulate oscillatory boundary layer
flows and the corresponding sediment suspension. Themodel
solves the Reynolds-averaged Navier–Stokes (RANS) equa-
tions for flows and the transient transport equation for sed-
iment. The turbulence closure is accomplished by the base-
line (BSL) k–ω two-equationmodel. Themodel is capable of
simulating oscillatory boundary flows at different Reynolds
number regimes, namely, laminar, transitional and turbulent.
The model can provide detailed mean (ensemble average)
flow velocity, turbulence characteristics and sediment sus-
pension within the boundary layer. The numerical results
of mean flow velocity and turbulence kinetic energy are in
agreement with the available experimental data and analyt-
ical solutions. In addition, the calculated results of period-
averaged sediment concentration are also validated against
the measurement data, yet the instantaneous results exhibit
small phase differences. The proposed model improves the
predictive capability for sediment suspension within bound-
ary layers, which is helpful in defining a suitable model for
relevant practical applications in coastal engineering.

Keywords Boundary layers · BSL k–ω model · Velocity
profile · Suspended sediment concentration

1 Introduction

Theoscillatory boundary layer flowplays an important role in
coastal zones, which has significant influences on near-shore
sediment transport and the resulting morphological changes.
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This topic has been studied for many years through theoret-
ical analysis, experimental studies and numerical modeling.
Lamb (1932) presented the well-known ‘Lamb’s solution’
for linear wave-induced laminar boundary layer. Jonsson
(1963), followed by Jonsson and Carlsen (1976), are among
the first to perform experimental studies of oscillatory turbu-
lent boundary layers. Theymeasured the velocity distribution
over a rough boundary and inferred the bottom shear stress
from the measured velocity profiles. Sleath (1987) studied
the characteristics of oscillatory boundary layers experimen-
tally which included a large range of Reynolds number, Re

(2×103 to 3×105). Jensen et al. (1989) carried out a similar
experimental study to Sleath (1987) in a higher range of Re

(7.5 × 104 to 6 × 106) and obtained results for both smooth
and rough sinusoidal turbulent oscillatory boundary layers.

Lin and Zhang (2008) simulated the laminar boundary
layer under various waves using a three-dimensional hydro-
dynamic numerical model and provided accurate results for
all types of wave-induced laminar boundary layer flows. The
two-equation eddy-viscosity closure models have been used
since 1970s to simulate turbulent oscillatory boundary layer
flows. These models solve two coupled equations for the
production and the dissipation rate of the turbulent kinetic
energy. Among all the two-equation models, the k–ε model
is the most widely used. The first low Reynolds number k–ε
model was developed by Jones and Launder (1972), (here-
after referred to as JL k–ε model) and has subsequently
been improved and applied to oscillatory turbulent boundary
layer flows by many researchers (e.g., Hagatun and Eidsvik
1986; Justesen 1991; Sana and Shuy 2002; Foti and Scandura
2004). Sana and Tanaka (2000) tested the predictive capabil-
ity of five low Reynolds number k–ε models for oscillatory
boundary layer flows, and the comparison results with the
direct numerical simulation (DNS) by Spalart and Baldwin
(1989) revealed that the JL k–ε model (1972) provided supe-

123



134 J. Ocean Eng. Mar. Energy (2015) 1:133–144

rior numerical results to the other models. However, the JL
k–εmodel also showsdrawbacks of underestimating the peak
value of the turbulent kinetic energy (Sana and Tanaka 2000)
and overpredicting the turbulence length scale and the shear
stress levels in the near-bed region under adverse pressure
gradient conditions due to its poor sensitivity to the pres-
sure gradient (Wilcox 1988; Menter 1994). Many models
have been designed to overcome the shortcomings of the k–ε
model; one of the alternative models is the k–ω model devel-
oped byWilcox (1988), (hereafter referred to as Wilcox k–ω
model). It does not require damping functions, but employs
straightforward Dirichlet boundary conditions in the viscous
sublayer and allows a more suitable choice of dependent
variables by introducing an additional term to suppress the
increase rate of turbulence length scale; therefore, theWilcox
k–ω model can provide more accurate results for boundary
layers in an adverse pressure gradient than the k–ε model.
Many researchers (e.g., Suntoyo 2006; Fuhrman et al. 2013)
have appliedWilcox k–ωmodel to simulate oscillatory turbu-
lent boundary layer flows. However, the Wilcox k–ω model
produces results that strongly depend on the free streamvalue
of the turbulence variables, in particular ω, even at fairly low
free stream eddy viscosity levels (Menter 1992).

Because free stream dependency has not been found in
the k–ε model generally, Menter (1994) proposed a new tur-
bulence model called baseline k–ω model (BSL k–ω model
hereafter) to resolve the free stream dependency of Wilcox
k–ω model by a blending function between the Wilcox k–ω
model and the JL k–εmodel (in a k–ω formulation). The basic
idea of the BSL k–ω model is to keep the sound and accurate
formulation of theWilcox k–ωmodel in the near-wall region,
while taking advantage of the free stream independence of
the k–ε model in the outer part of the boundary layer. In
other words, the BSL k–ω model’s results are expected to
be similar to the k–ω model in the inner boundary layer, and
switch gradually to the JL k–εmodel toward the outer bound-
ary layer and in free shear flows. Suntoyo (2006) applied the
JL k–ε model, Wilcox k–ω model and the BSL k–ω model
in simulating the oscillatory turbulent boundary layer flows
and showed that the BSL k–ωmodel provides the best results
among the three models.

In the oscillatory boundary layer flows, sediment suspen-
sion is another important research topic. Besides substantial
experiments investigating the suspended sediment concen-
tration in oscillatory flow over the bed of sediment (e.g.,
Horikawa et al. 1982; Dick and Sleath 1991; Ribberink and
Al-Salem 1992), numerical studies have also been conducted
by many researchers. Both the k–ε turbulence closure (Savi-
oli and Justesen 1997; Ruessink et al. 2009; Hassan and Rib-
berink 2010; Zhang et al. 2011b, 2014), and the k–ω tur-
bulence closure (Guizien et al. 2003; Fuhrman et al. 2013)
have been successfully applied to sediment transport model-
ing. The second suspended sediment concentration peak over

the decelerating and flow reversal has been well predicted by
Savioli and Justesen (1997) who applied a standard (with-
out low-Reynolds-number effects) k–ε model (Rodi 1980)
in a fully rough turbulent oscillating boundary layer model
and proposed a modified reference concentration condition.
Zhang et al. (2011a, b) developed a new model for sedi-
ment transport and applied the k–ε model for turbulence
closure. The model showed overall good results compared
with experimental data, but it underestimated the near-bed
concentration during flow reversals (at phase 0◦ and 150◦).
Guizien et al. (2003) indicate that these are because the k–ε
model lacks sensitivity to strong adverse pressure gradient
that occurs during the decelerating cycle and causes shear
instability and turbulent separation. Therefore, a better tur-
bulence model is needed to pursue further improvement of
themodeling approach for sediment suspension in oscillatory
boundary layers.

As mentioned above, the BSL k–ω model combines the
advantages of both Wilcox k–ω model and JL k–ε model as
an integrated turbulence closure of them. It has been widely
applied to investigate the characteristics of oscillatory turbu-
lent boundary layer flows and the resulting sediment trans-
port, including velocity and turbulent intensity profiles (Sun-
toyo 2006; Rachman et al. 2013), eddy viscosity profiles
(Absi et al. 2012), shear stress distributions (Suntoyo 2006)
and net sediment transport (Suntoyo et al. 2008). However,
all of their work are focused on net sediment transport rate
rather than the instantaneous sediment concentration distrib-
ution, the latter of which will be achieved in this study, which
combines the Reynolds-averaged Navier–Stokes equations
for mean flow motion, the BSL k–ω model for turbulence
closure and the transient equation for sediment suspension.
The characteristics of oscillatory boundary layer flowswhich
change from laminar through transitional to turbulent and
the related sediment suspension are systematically investi-
gated. The comparison results (theoretical, experimental and
numerical) show that the model has the capability of simulat-
ing oscillatory boundary layers and suspended sediment in
different flows and bed conditions without tuning the coeffi-
cients.

2 Model description

2.1 Governing equation

The oscillatory boundary layer and the associated sediment
suspension are studied by an integrated numerical model.
The model is built upon a Cartesian coordinate, in which the
horizontal coordinate is given as x , and the vertical coordi-
nate is given as z. Figure 1 shows the definition sketch of
the laminar and turbulent boundary layer flows, and δL and
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Fig. 1 Definition sketch of the laminar and turbulent boundary layer

δT represent the laminar and the turbulent boundary layer
thickness, respectively.

The Reynolds equation for the stream-wise component of
flow in the x − z plane with a coordinate system shown in
Fig. 1 can be expressed as

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ

∂p

∂x
+ 1

ρ

(
∂τxx

∂x
+ ∂τxz

∂z

)
, (1)

where u and w are the velocities in the x and z directions,
respectively, t is time, ρ is the fluid density, p is the pres-
sure,and τxx and τxz are the shear stresses. Since the velocity
component w in the boundary layer is very small, the gradi-
ents of velocity and shear stress in the x-direction are small
compared with that in the z-direction. Therefore, for 1-D
incompressible unsteady flow, the motion equation within
the boundary layer can be simplified as follows:

∂u

∂t
= − 1

ρ

∂p

∂x
+ 1

ρ

∂τ

∂z
. (2)

Recent studies have shown that under progressive waves,
those moved terms may influence the streaming and net sed-
iment transport (Fuhrman et al. 2013). However, for oscilla-
tory flows in this paper, the simplifying process is justified
(Suntoyo 2006; Zhang et al. 2011b). In this paper, τ is used to
replace the notation τxz from here on for simplicity. Outside
the boundary layer, the shear stress vanishes where τ = 0 and
u = U ;U is the free stream velocity. Thus, in the free stream
domain, Eq. (2) reduces to

∂U

∂t
= − 1

ρ

∂P

∂x
, (3)

where P is the pressure at the upper edge of the boundary
layer. Assume the pressure gradient remains constant inside
the thin boundary layer, e.g., ∂P

∂x = ∂p
∂x .

Substituting Eq. (3) into Eq. (2) and introducing the
Boussinesq hypothesis (τ = ρ(ν + νt )∂u/∂z, where ν is the
kinematic molecular viscosity and νt is the eddy viscosity),
the governing equation can be expressed as:

∂u

∂t
= ∂U

∂t
+ ∂

∂z

(
(ν + νt )

∂u

∂z

)
. (4)

Within the oscillatory boundary layer, the sediment concen-
tration c is described as

∂c

∂t
= ws

∂c

∂z
+ ∂

∂z

(
εs

∂c

∂z

)
, (5)

where εs is the sediment diffusivity which is assumed to be
the sum of turbulent eddy viscosity νt and kinematic molec-
ular viscosity ν , i.e., εs = νt + ν, ws is the settling velocity
of suspended sediment, and sediment concentration effect
known as hindered setting will also be considered. In this
paper, van Rijn (1993) formula is adopted:

ws = (1 − c)4

⎧⎪⎨
⎪⎩

(s−1)gd2

18ν 1 < d ≤ 100µm
10ν
d

[
(1 + 0.01(s−1)gd3

ν2
)0.5 − 1

]
100 µm < d < 1,000µm

1.1 [(s − 1)gd]0.5 d ≥ 1,000µm

(6)

where s = 2.65 is the specific gravity of sediments, d the
median particle size and g the gravity acceleration.

In this paper, the BSL k–ω turbulence model proposed by
Menter (1994) is used to obtained νt . As described above, the
BSL k–ω model is a combination turbulence closure model
that gives results similar to the k–ωmodel ofWilcox (1988) in
the inner regime of the boundary layer, but changes gradually
to the k–ε model of Jones and Launder (1972) in the outer
region of the boundary layer. The blending between the two
models is realized by a blending function F1, which changes
gradually from 1 to 0 from the bottom to the free stream.
The Wilcox model and the transformed k–ε model are first
multiplied by the functions F1 and (1–F1), respectively, and
then summed up. Refer to Menter (1994) for the details of
the transformation and the blending process .

The BSL k–ω model equations are given as

∂k
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= ∂

∂z
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}
+ νt

(
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1

ω
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∂ω

∂z
(8)

vt = k

ω
, (9)

where k is turbulent kinetic energy and ω is the specific dis-
sipation rate, which is defined as ω = ε/(β∗k), and ε is the
turbulence dissipation rate. The k–ω model is able to pro-
vide more suitable dependent variables by introducing an
additional term, see the last term on the right-hand side of
Eq. (8), whose net effect is to suppress the increase rate of
turbulence length scale. In the presence of adverse pressure
gradient, the Jones–Launder turbulence length scale tends to
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Table 1 Parameters set up for
BSL k–ω model Turbulence model σkω σω β γ β∗ σω2

Original k–ω model (ψ1) 0.5 0.5 0.075 0.5532

Transformed k–ε model (ψ2) 1.0 0.856 0.0828 0.440

BSL k–ω model = F1ψ1 + (1 − F1)ψ2 0.09 0.856

be much larger than that of the k–ω model in the near-wall
region.

σkω, β∗, σω, γ, β and σω2 are model constants and some
can be obtained by simple linear superposition. Let ψ rep-
resent any constant in the Wilcox k–ω model, ψ2 for any
constant in the transformed k–ε and ψ the corresponding
constant of the BSL k–ω model. The relationship between
them is:

ψ = F1ψ1 + (1 − F1)ψ2. (10)

The model parameters given by Menter (1994) are listed
in Table 1:

The blending function F1 is defined as

F1 = tanh(A4
1) (11)

A1 = min

[
max

( √
k

0.09ωz
; 500ν
z2ω

)
; 4ρσω2k

Ckωz2

]
, (12)

where z is the distance to the surface and Ckω is the positive
portion of the cross-diffusion which is defined as

Ckω = max

(
2ρσω2

1

ω

∂k

∂z

∂ω

∂z
; 10−20

)
. (13)

2.2 Boundary conditions

2.2.1 The bottom

At the bottom z = 0, the no-slip condition is applied for flow
velocity

u = 0. (14)

The bottom condition for turbulence quantities k and ω are
given as follows,

k = 0, ω =
{
lim
z→0

6ν
β1z2

, when k+
s < 3.3

u2∗SR/ν, when k+
s ≥ 3.3

(15)

where β1 = 0.075, k+
s = ksu∗/ν, ks is the grain roughness,

and ks = 2.5 d is adopted for a flat bed of sand with median
size d (Nielsen 1979). u∗ is the friction velocity and u∗ =√

τb/ρ, where τb is the bottom shear stress. The parameter
SR is defined as

SR =
{

(50/k+
s )2, when k+

s < 25
100/k+

s , when k+
s ≥ 25

(16)

For sediment, a pickup function is employed to describe the
time-dependent vertical gradient of the near-bed sediment
concentration at a reference level z = za = 2d (Nielsen
1992):

∂c

∂z
= −ws

εs
Ca, (17)

where za is a near-bed reference height and Ca is the ref-
erence sediment concentration at za, and can be obtained
from the instantaneous Shields parameter by the formula of
Zyserman and Fredsøe (1994):

Ca = 0.331(θ − θc)
1.75

1 + 0.72(θ − θc)1.75
(18)

θ = u2∗
(S − 1)gd

, (19)

where θc is the critical value of the Shields parameter for
initial motion and can be obtained by the van Rijn (1993)
formula:

θc =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.24D−1∗ 1 < D∗ ≤ 4
0.14D−0.64∗ 4 < D∗ ≤ 10
0.04D−0.1∗ 10 < D∗ ≤ 20
0.013D0.29∗ 20 < D∗ ≤ 150
0.055D∗ D∗ > 150

(20)

where D∗ is the non-dimensional grain size given by D∗ =[
(s − 1)g/ν2

]1/3
d.

2.2.2 Upper edge of the boundary layer

The condition of no shear is applied at the upper edge of the
boundary layer z = zh . The gradient of velocity is equal to
zero, i.e.,

∂u

∂z
= 0. (21)

At the top boundary, zero flux conditions for both turbulence
and sediment concentration are imposed:

∂k

∂z
= 0 (22)

∂ω

∂z
= 0 (23)

wsc + εs
∂c

∂z
= 0. (24)
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Following Fredsøe et al. (1985), this vertical flux condition
can be simplified because of the limited vertical extent of the
oscillatory boundary layer. Equation (24) will always degen-
erate to:

c → 0, when z → ∞. (25)

Hence, Eq. (25) is implemented at z = zh in the present
work.

2.3 Numerical methods

In the present model, semi-implicit finite difference method
is used to solve Eqs. (4), (5), (7) and (8) using central differ-
ences in space, while forward difference is employed in the
edge boundary conditions. To achieve better solutions for the
thin oscillatory boundary layer, a stretched grid is applied by
allowing grid spaces to increase exponentially from the bed,
which are given as:

�z1 = (q − 1)zh/(q
n − 1) (26)

where q is the ratio between two consecutive grid spaces and
n is the total number of grid points (Suntoyo et al. 2008).
To establish a fully developed flow and a complete vertical
structure of sediment suspension, a computational domain zh
which is much larger than δT is applied. The initial condi-
tions of velocity and concentration are set to zero, and very
small values are given to k, ω and νt for the initial start.
k = 1

2ζU
2
0 , ω = k/νt with νt = ξν, the value of ζ is chosen

to be 2.5 × 10−4 and ξ is chosen to be 0.1 in the present
computations. For the flow with low Reynolds number, the
calculated value of k based on the present model will remain
low, representing that the flow is laminar. However, for the
flow with high Reynolds number, the calculated k will grow
and stabilize on the level corresponding to the turbulent flow.
The computation will carry on without additional parameter
adjustment and which flow regime it belongs to will be deter-
mined by the end results.

The entire computational procedure includes three steps.
The first step is to update the velocity u by solving Eq. (4).
The second step is to update the turbulence kinetic energy
k, the specific turbulence dissipation rate ω and the eddy
viscosity νt by solving the BSL k–ω Eqs. (7), (8). The third
step is to update the suspended sediment concentration by
solving Eq. (5).

3 Results and discussions

3.1 Bottom friction factor

The numerical model described above is applied to a series
of validations. A simple but useful means for validating the

present model (especially in the laminar to turbulent tran-
sition region) is to compare the bottom friction coefficient
fw (equivalently to the bed shear stress) as a function of
Reynolds number Re for hydraulically smooth flow, and rel-
ative bottom roughness A/ks for hydraulically rough flow,
between the model results and the existing results (numeri-
cal, experimental and theoretical). Re is theReynolds number
and equals toU 2

0 /σν,U0 is the maximum free stream veloc-
ity, A is the amplitude of the free stream motion and equals
to U0/σ, σ is the angular frequency and σ = 2π/T , where
T is the period of oscillation. The free stream has oscillating
flow with sinusoidal velocity variation in this study.

The bottom friction factor fw is defined as

fw = 2τ0
ρU 2

0

, (27)

where τ0 is the maximum bed shear stress. In the follow-
ing computations, the values of ρ = 998.2 kg/m3 and
ν = 1.004 × 10−6 m2/s for water at 20 ◦C and under one
atmospheric pressure are adopted.

For hydraulically smooth bed, numerical results of bot-
tom friction coefficient fw with variation of Re in the present
model are compared with the experimental results of Kam-
phuis (1975), Sleath (1987) and Jensen et al. (1989), as well
as DNS simulation results of Spalart and Baldwin (1989) in
Fig. 2.

Computed results are shown for Reynolds number from
103 to 107, including the laminar, transitional and turbulent
flows. Jensen et al. (1989) discovered that the transition from
laminar to turbulent flow takes place for the Re number in
the interval between 2.0 × 105 and 6.0 × 105. In Fig. 2,
when Re ≤ 2.0 × 105, the model results agree well with the
classical theoretical solution for laminar flows

fw = 2R−0.5
e . (28)

Under transitional condition where 2.0× 105 < Re < 6.0×
105, though slight difference exists between model results

Fig. 2 Comparisons of bottom friction factor for hydraulically smooth
bed as function of Re
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and DNS results of Spalart and Baldwin (1989), the model
results overall agree well with the experimental data.

Under turbulent condition where Re ≥ 6.0 × 105, the
model results are in good agreement with the empirical rela-
tion of Fredsøe and Deigaard (1992)

fw = 0.035R−0.16
e . (29)

For hydraulically rough bed, fw depends on the relative
bottom roughness A/ks . Same as before, numerical results
with variation of A/ks of the present model are compared
with experimental data of Kamphuis (1975), Jonsson and
Carlsen (1976), Sleath (1987) and Jensen et al. (1989) in
Fig. 3.

As shown in Fig. 3, the model provides a good series of
results that agree well with the empirical expression which
has been modified from the equation of Nielsen (1992) fw =
exp[5.213(A/ks)−0.194 − 5.977] to provide a better match to
the existing experimental data, given as

fw = exp
[
6.0(A/ks)

−0.175 − 6.8
]

(30)

The agreement among model results, experimental data and
theoretical solutions over a wide range of Re and A/ks indi-
cates that the model is able to provide good predictions of
the bottom friction factor (bed shear stresses) for different
oscillatory boundary flows (from laminar to transitional to
turbulent) under both hydraulically smooth and rough bed
conditions.

Fig. 3 Comparisons of bottom friction factor for hydraulically rough
bed as function of A/ks

3.2 Boundary layer flows in different Re regimes

In this section, the present model is applied to study the char-
acteristics of oscillatory boundary layer flows at different
Re. The reference case of the turbulent boundary layer flow
is based on the 13th test of Jensen et al. (1989), which has
Re = 6× 106 (see Case 1 in Table 2, hereafter referred to as
J13). In the following cases, the Reynolds numbers are set
to increase from 7.5 × 103 to 6 × 106, simulating the flows
under conditions from laminar to turbulent through transi-
tional process (as shown in Table 2).

In the simulation, a computational domainwith a height of
0.69 m is discretized into 80 grids with a minimum grid size
of 0.0001 m near the bottom and q = 1.12. A constant time
step �t = 1.0× 10−5 s is used to run the model for up to 15
wave periods to present a fully developedflow.The numerical
results of the lastwave period are used in the comparisonwith
the theoretical solution and experimental data for all cases in
this paper.

Figure 4 shows the comparisons of mean velocity distrib-
utions at different phases between numerical results, analyti-
cal solutions and available experimental data. It is found that
the numerical results are in satisfactory agreement with the
experimental data for oscillatory turbulent boundary layer
flow. Besides, the model results for laminar boundary layer
flow agree well with the analytical solution of Lamb (1932)

u = U0
[
cos(σ t) − exp(−αz) cos(−σ t + αz)

]
, (31)

where α = √
σ/2ν. In terms of the boundary layer thickness,

many formulae for both smooth and rough laminar and turbu-
lence boundary thickness have been proposed by researchers
(e.g., Sleath 1987; Jensen et al. 1989; Fredsøe and Deigaard
1992). The essentials of defining boundary thickness is how
to define the top boundary layer. Sleath (1987) defined the
top as the distance from the bottom to the point where defect
velocity amplitude is 5% of the free stream velocity ampli-
tude, and Jensen et al. (1989) defined it as the distance from
the bottom to the point where the maximum velocity occurs.
As we know, the boundary layer is very thin, so the thick-
ness difference between these definitions is very small. It is
shown that in Fig. 4, both the simulated laminar boundary
layer thickness δL3 for Case 3 and turbulence boundary layer
thickness δT1 forCase 1 agreewellwith the empirical relation
of Sleath (1987):

Table 2 Problem setup for
oscillatory boundary layers at
different Re

Case no. T (s) U0 (m/s) Re d (mm) Flow regime

Case 1 9.72 2.000 6.0 × 106 0.35 Turbulent

Case 2 9.72 0.340 5.0 × 105 0.35 Transitional

Case 3 9.72 0.073 7.5 × 103 0.35 Laminar
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Fig. 4 Comparisons of mean
velocity profiles for oscillatory
boundary flows at
σ t = nπ/6 (n = 0, 1, 2 . . . 5).
(Dashed line numerical results
for laminar flow, dashed dotted
line numerical results for
transitional flow, solid line
numerical results for turbulent
flow, circle theoretical solution
for laminar flow, dot
experimental data for turbulent
flow of J13, 1989)

Fig. 5 Comparisons of
turbulence kinetic energy
profiles for oscillatory boundary
flows at
σ t = nπ/6 (n = 0, 1, 2 . . . 5).
(Dashed line numerical results
for laminar flow, dashed dotted
line numerical results for
transitional flow, solid line
numerical results for turbulent
flow, dot experimental data for
turbulent flow of J13, 1989)

δL = 3

√
2ν

σ
(32)

δT = ks0.26

(
A

ks

)0.7

. (33)

Figure 5 shows the comparisons of turbulence kinetic
energy at different phases between numerical results and
the experimental data. The turbulence kinetic energy are all
reproduced well by the model, though there are slight under-
predictions at phase σ t = 30◦ and 150◦. Figure 6 shows the
eddy viscosity profiles at different phases. As expected, the
kinetic energy and eddy viscosity are very small for laminar
flow and increase rapidly from transitional flow to turbulent
flow. Figure 7 shows the comparisons of friction velocity
between the numerical results and the measured data. The
results by the present BSL k–ω model and the k–ε model of
Zhang et al. (2011a) are in generally good agreement with
the experimental data, whereas the k–ε model produced a
slight overprediction of friction velocity, which is in agree-
mentwith the findings of Sana andTanaka (2000) andMenter
(1994).

3.3 The suspended sediment concentration in oscillatory
flows

The capability of the integrated BSL k–ω model for pre-
dicting oscillatory boundary flows at different Re regimes
has been tested and verified. In the following, the model is
applied to simulate the sediment suspension under oscilla-
tory boundary flows. Comparisons are performed with the
tests of Horikawa et al. (1982) for Re = 9.22 × 105 (see
Case 4 in Table 3), Case 5 is a laminar flow, which is used
as a reference case for Case 4. Because the friction velocity
and the sediment diffusivity are very small for laminar flow,
the sediments with relative large grain size are not able to
be suspended easily. Therefore, to observe the sediment sus-
pension clearly in laminar flow, fairly fine sediment particles
are used for Case 5 (referred to Table 3).

In the simulations ofCase 4 and5, a computational domain
with a height of 0.335 m is discretized into 80 grids with a
minimum grid size of 0.000018 m near the bottom and a
constant stretching factor q = 1.1 is applied. A constant
time step of �t = 2.0 × 10−6 s is used to run the model for
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Fig. 6 The eddy viscosity profiles for oscillatory boundary flows at σ t = nπ/6 (n = 0, 1, 2 . . . 5). (Dashed line numerical results for laminar
flow, dashed dotted line numerical results for transitional flow, solid line numerical results for turbulent flow)

Fig. 7 Comparison of friction velocity among the present model’s
results (solid line), numerical results (dashed line) of Zhang et al.
(2011a) and experimental data (dot) of J13 (1989)

up to 15 wave periods to ensure that the sediment particles
are perfectly suspended and diffused.

Figure 8 shows the comparisons of mean velocity profiles
amongnumerical results of both the presentmodel andZhang
et al. (2011b), experimental data (Horikawa et al. 1982) and
the theoretical solutions (Sleath 1987) for Case 4 and Case 5.
The present model provides good agreements of the velocity
profiles for both laminar and turbulent flows. Besides, the
theoretical turbulent boundary layer thickness δT4 and the
theoretical laminar boundary layer thickness δL5 also match
well with the empirical solutions of Sleath (1987). For tur-

Table 3 Problem setup for oscillatory boundary layers and sediment
suspension

Case no. T (s) U0 (m/s) Re d (mm) Flow regime

Case 4 3.6 1.27 9.22 × 105 0.21 Turbulent

Case 5 3.6 0.12 8.23 × 103 0.125 Laminar

Case 6 7.2 1.70 3.31 × 106 0.21 Turbulent

bulent flow, Zhang’s model provides more or less the same
velocity results as the present model.

Figure 9 shows the comparisons between the numerical
results and the experimental data for time-dependent pro-
files of suspended sediment concentration at different phases
in a half period. Though there is a slight underprediction
at phase σ t = 150◦, the simulated sediment suspension
profiles generally agree well with the measured data. Espe-
cially near the bottom and at phase σ t = 0◦ and 150◦ where
the adverse pressure gradient is strong, the BSL k–ω model
shows much better prediction than the k–ε model of Zhang
et al. (2011b). Figure 10 shows the comparison between the
numerical results and the experimental data for sand flux pro-
files at different phases. The BSL k–ω model shows better
agreement once again. Though the k–ε model of Zhang pro-
vided more or less the same velocity profiles as the BSL k–ω
model, the BSL k–ω model shows better ability of predict-
ing the instantaneous suspended sediment characteristics. As
shown in Fig. 11, the time-averaged sediment concentration
in the turbulent oscillatory flow is well reproduced by both
BSL k–ω model and the k–ε model of Zhang et al. (2011b).
Figure 11 also shows that the sediment concentration in lam-
inar is very low (almost zero) due to the near-zero eddy vis-
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Fig. 8 Comparisons of mean velocity profiles for oscillatory boundary
flows at σ t = nπ/6 (n = 0, 1, 2 . . . 5). (Dashed line numerical results
for laminar flow Case 5, solid line numerical results for turbulent flow

Case 4, cross numerical results of Zhang et al. (2011b) for Case 4, circle
theoretical solution for laminar flow, dot experimental data for turbulent
flow of Horikawa et al. 1982)

Fig. 9 Comparisons of vertical distributions of suspended sediment concentration at σ t = nπ/6 (n = 0, 1, 2 . . . 5) among the present model’s
results (solid line), numerical results (dashed line) of Zhang et al. (2011b) and experimental data (dot) of Horikawa et al. (1982)

cosity in laminar flow, even though the sediment size is very
small. Figure 12 shows the time-dependent sediment concen-
tration at different levels z = 5 mm, z = 10 mm, z = 15 mm
and z = 20 mm for Case 4. The time t/T = 0 corresponds
to the phase 0◦ when the velocity changes the direction, and
t/T = 0.25 corresponds to the phase 90◦ when the velocity
reaches amaximum value. As can be seen, the simulated sed-
iment concentrations generally agree with the experimental
data of Horikawa et al. (1982). A phase lag exists between the

simulated and experimental results, and the phase lag exists
and increases with increase in elevation.

To further study the capability of BSL k–ω model in pre-
dicting sediment suspension, one more case is conducted. In
Case 6, a computational domain with a height of 0.465 m
is discretized by 80 grids with a minimum grid size of
0.000025 m near the bottom and a constant stretching fac-
tor q = 1.1 is applied. A constant time step is �t =
2.0 × 10−6 s, and the total simulation time is up to 15
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Fig. 10 Comparisons of vertical distributions of sand flux at σ t = nπ/6 (n = 0, 1, 2 . . . 5) among the presentmodel’s results (solid line), numerical
results (dashed line) of Zhang et al. (2011b) and experimental data (dot) of Horikawa et al. (1982)

Fig. 11 Comparisons of period-averaged suspended sediment concen-
tration between the numerical results (solid line) and the experimen-
tal data (dot) of Horikawa et al. (1982) for Case 4. Numerical results
(dashed line) of period-averaged suspended sediment concentration for
Case 5

wave periods to ensure that the sediment particles are per-
fectly diffused. Comparisons are made between the simu-
lated results of the present BSL k–ω model and the k–ε
model of Savioli and Justesen (hereafter referred to as SJ),
(1997), and the experimental data of Ribberink andAl-Salem
(1992).

Figure 13 shows the comparison of time-dependent sus-
pended sediment concentration for Case 6 at z = 5 mm,
z = 11 mm, z = 16 mm and z = 31 mm between the
numerical results and experimental data (Ribberink and Al-
Salem 1992) during one period. It can be observed that the

Fig. 12 Comparison of time-dependent suspended sediment concen-
tration at different levels for Case 4 between the present model’s results
(solid line) and the experimental data (dot) of Horikawa et al. (1982)

SJ k–ε model well predicted the presence of a second peak
at z = 5 mm and z = 11 mm due to the inclusion of a mod-
ified bed reference concentration. However, the model on
the whole underestimated the suspended sediment concen-
tration. Better than the SJ k–ε model, the simulating results
provided by the BSL k–ω model show good agreements
with experimental data, especially in the accurate predic-
tion of the peak value of sediment concentration over the
flow reversal. Similar to the behaviors in Case 4, Case 6
shows a phase lag between the numerical results and the
measured data, which increases with the increase in eleva-
tion. However, the period-averaged concentration for a stable
period in Fig. 14 shows good agreement with the experimen-
tal data.
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Fig. 13 Comparison of
time-dependent suspended
sediment concentration at
different levels between the
results of present BSL k–ω
model (solid line), k–ε model
(dashed line) of Savioli and
Justesen (1997) and the
experimental data (dot) of
Ribberink and Al-Salem (1992)

Fig. 14 Comparison of period-averaged suspended sediment concen-
tration for Case 6 among the present model’s results (solid line), numer-
ical results (dashed line) of Zhang et al. (2011a) and the experimental
data (dot) of Ribberink and Al-Salem (1992)

4 Conclusion

In this study, the oscillatory boundary layer flows and sed-
iment suspension have been investigated by an integrated
modelwhich solvesReynolds-averagedNavier–Stokes equa-
tions for flows and convection–dispersion equation for sed-
iments. The BSL k–ω model which retains the robust and
accurate formulation of the Wilcox k–ω model in the near-
wall region, and takes advantage of the free stream indepen-
dence of the JL k–ε model in the outer parts of the boundary
layer is adopted for turbulence closure. The model considers
the flow Reynolds number Re and bottom roughness ks auto-
matically and thus is capable of simulating laminar, transi-

tional and turbulent boundary layer flows accordingly based
on the flow and bed conditions provided.

The reliability and robustness of the proposed model are
validated by a series of numerical tests that include oscilla-
tory laminar, transitional and turbulent boundary layer flows
and the resulting sediment suspension. The prediction results
of the bottom friction factor, boundary layer thickness, veloc-
ity, kinetic energy and eddy viscosity under different types of
oscillatory boundary layer flows show good agreements with
the available experimental data, numerical results and ana-
lytical solutions. Besides, the model provides good results
of the friction velocity, the time-dependent suspended sedi-
ment concentration and the period-averaged suspended sed-
iment concentration, though there are small phase differ-
ences. Moreover, the model shows better instantaneous sedi-
ment concentration distribution prediction ability than the k–
εmodel and improves the predictive capability of aReynolds-
averaged Navier–Stokes (RANS) approach for turbulence
and sediment suspension in boundary layer flows, which is
helpful in defining a suitable model for relevant practical
applications in coastal engineering.

However, considering the complex natures of oscillatory
boundary flows and sediment transport, in this studywe focus
ourselves on the 1D modeling only. In future studies, the
methodology validated in this study will be extended to a 3D
model for practical problems, which solves the full Navier–
Stokes equations in the entire domain and can be used to
model large-scale hydrodynamics and beach morphology in
coastal waters.
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