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Abstract The Green–Naghdi (GN) wave models are cate-
gorized into different levels based on the assumptions made
for the velocity field. The low-level GN model (Level I GN
model or called the GN-1 model) is a weakly dispersive,
strongly nonlinear wave model. As the level goes up, the
high-level GN model becomes a strongly dispersive, strongly
nonlinear wave model. This paper introduces the algorithm
to solve the Green–Naghdi wave models of different levels
in three dimensions. The high-level GN (GN-3 and GN-4)
models are applied to three-dimensional wave problems for
the first time. Three test cases are considered here. First one
is on the wave evolution in a closed basin. The symmetry,
in the x and y directions in this case, verifies that the algo-
rithm introduced here works well. The GN-3 results are also
compared with the linear analytical results for a small wave
elevation in a closed basin, and the agreement is good. The
last two cases involve wave diffraction problems caused by
an uneven seabed. In both of the last two cases, the GN-3
model is proved to be the converged GN model. The agree-
ment between the GN-3 model and the experimental data
and numerical predictions of the fully nonlinear Boussinesq
model of others is also very good.
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1 Introduction

The GN theory adopts a shape function representation that
approximates the vertical structure of the velocity field; no
other assumptions and approximations are introduced. The
GN models are categorized into different levels because of
the different vertical velocity assumptions used at each level.
The governing equations are the depth-integrated form of
Euler’s equations. Both the bottom boundary condition and
the nonlinear free-surface boundary conditions are satisfied
exactly. No restriction is used in the rotationality of the flow
field. The GN theory was first introduced about 40 years ago
(Green et al. 1974; Green and Naghdi 1976). Ertekin et al.
(1986) utilized the GN-1 model to simulate waves generated
by ships and made the GN-1 model more applicable to real-
world problems.

The GN model was extended to deep-water waves by Web-
ster and Kim (1991). Demirbilek and Webster (1992) applied
the GN-2 model to time-domain simulation of wave transfor-
mation problems for the first time. Due to the rapid increase
in algebraic complexity at higher levels, the GN models up
to Level III have been derived (Shields and Webster 1988;
Demirbilek and Webster 1992, 1999), but the applications
of the GN-3 model, and even higher models, were made in
two-dimensions in recent years by Zhao et al. (2014a) who
showed that high-level GN models are strongly nonlinear,
strongly dispersive wave models. We mention that a sim-
plified form of the GN model, introduced by Webster et al.
(2011), was used by Zhao et al. (2014a) in two dimensions.
The traditional form of the high-level GN models (Demir-
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bilek and Webster 1992) is quite complicated to be applied
to wave analysis.

Le Métayer et al. (2010) proposed a hybrid numeri-
cal method using a Godunov-type scheme to solve the
Green–Naghdi model for dispersive shallow-water waves.
Chazel et al. (2011) derived a three-parameter Green–Naghdi
model for uneven bottoms. Zhang et al. (2013) showed that
properties of the so-called Boussinesq–Green–Naghdi equa-
tions may be substantially improved for a given order of
approximation using asymptotic rearrangements. However,
the numerical results of the models developed by Chazel et al.
(2011) and Zhang et al. (2013) did not provide as good results
as the converged high-level GN models (Zhao et al. 2014a).

Xu et al. (1993) applied the deep-water GN-2 model to
three-dimensional irregular wave propagation problems. An
iterative scheme is used in their research, but unfortunately it
is not easy to apply their scheme to high-level shallow-water
GN models. Only the GN-1 model has been utilized in three-
dimensional problems (Neill and Ertekin 1997; Ertekin and
Sundararaghavan 2003) until now. The three-dimensional
GN-2 model is applied to wave transformation problems by
Zhao et al. (2010). They did not give the algorithm in their
paper, and since GN-2 equations are rather complicated, this
prevented extension of the calculations to the GN-3 equa-
tions. The even higher-level GN (such as GN-3 and GN-4)
models have not yet been applied to any wave-flow problems.
Recent research on simplified form of high-level GN equa-
tions (Webster et al. 2011) and its successful application to
two-dimensional wave problems (Zhao et al. 2014a, b) make
the application of the three-dimensional GN models possible.

The irrotational version of the GN equations (IGN equa-
tions in short) were derived by Kim et al. (2001) and have
recently been applied to some shallow-water wave problems
at high levels by Ertekin et al. (2014).

The main motivation for this study is to introduce the
algorithm for three-dimensional GN equations and apply the
three-dimensional GN model to some nonlinear and unsteady
wave problems. The intent of this paper is not to include
very large waves and all the ranges of kh, where k is the
wave number and h is the water depth. In Sect. 2, high-level
three-dimensional GN equations are introduced. Section 3
presents the algorithm used in solving the GN equations. Sec-
tion 4 introduces the boundary conditions that are used in this
study. Some test cases simulated by the three-dimensional
GN models are presented in Sect. 5. These are followed by
the conclusions in Sect. 6.

2 GN models

In this work, three-dimensional wave problems are consid-
ered. (x, y) are the horizontal and z is the vertical coordinate
and the origin of the coordinate system is located on the still-

water level. In the GN approach, the horizontal velocities
u, v and the vertical velocity w are given by

u(x, y, z, t) =
K∑

n=0

un(x, y, t)z
n, (1a)

v(x, y, z, t) =
K∑

n=0

vn(x, y, t)z
n, (1b)

w(x, y, z, t) =
K∑

n=0

wn(x, y, t)z
n, (1c)

where un, vn, wn (n = 0, 1, . . . , K ) are the unknown veloc-
ity coefficients. In this work, we use z = β(x, y, t) to rep-
resent the free surface and z = α(x, y) to represent the sea-
floor, assumed to be stationary here (this is not necessary in
general in the GN theory). The reduced set of differential
equations for Level K GN (referred to as GN-K ) theory are
as follows (see Webster et al. 2011):

∂β

∂t
=

K∑

n=0

βn
(

wn − ∂β

∂x
un − ∂β

∂y
vn

)
, (2)

∂

∂x
(Gn + gS1n) + nEn−1 − αn ∂

∂x
(G0 + gS10) = 0

(n = 1, 2, . . . , K ), (3a)

∂

∂y
(Gn + gS1n) + nFn−1 − αn ∂

∂y
(G0 + gS10) = 0

(n = 1, 2, . . . , K ), (3b)

where

En =
K∑

m=0

(
∂um
∂t

S2mn + ∂um
∂x

Qmn + ∂um
∂y

Rmn + umHmn

)
,

(4a)

Fn =
K∑

m=0

(
∂vm

∂t
S2mn + ∂vm

∂x
Qmn + ∂vm

∂y
Rmn + vmHmn

)
,

(4b)

Gn =
K∑

m=0

(
∂wm

∂t
S2mn + ∂wm

∂x
Qmn + ∂wm

∂y
Rmn + wmHmn

)
,

(4c)

Qmn =
K∑

r=0

ur S3mrn, Rmn =
K∑

r=0

vr S3mrn,

Hmn =
K∑

r=0

wr S4mrn, (4d)
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S1n =
∫ β

α

zndz, S2mn =
∫ β

α

zm+ndz, (4e)

S3mrn =
∫ β

α

zm+r+ndz, S4mrn = m
∫ β

α

zm+r+n−1dz, (4f)

uK = 0, vK = 0, (4g)

wn = −1

n

(
∂un−1

∂x
+ ∂vn−1

∂x

)
(n = 1, 2, . . . , K ), (4h)

w0 = −
K∑

n=1

αn
(

wn − ∂α

∂x
un − ∂α

∂y
vn

)
+ ∂α

∂x
u0 + ∂α

∂y
v0,

(4i)

where m, r and n are nonnegative integers, g is the gravita-
tional acceleration, and t is time. The GN-K equations, Eqs.
(2) and (3), are solved for the unknown values β, u0, u1, . . .

and v0, v1, . . ..

3 Algorithm

Following Zhao et al. (2014a), for the GN-K (K is the level),
Eqs. (3a) and (3b) can be expressed by

Ã
u
ξ̇
u
,xx + B̃u ξ̇

u
,x + C̃u ξ̇

u = f̃u, (5a)

Ãvξ̇
v

,yy + B̃vξ̇
v

,y + C̃vξ̇
v = f̃v, (5b)

where the superscript u and v are used to differentiate the
x and y directions of the conservation of momentum. The
dot over ξ indicates the local time derivative. In the x direc-
tion, the GN momentum equation, Eq. (5a), for example,
can be written as ξu = [u0, u1, . . . , uK−1]T. Similarly,
ξv = [v0, v1, . . . , vK−1]T in the y direction. The subscript
comma stands for differentiation with respect to the indi-
cated variable. ξu

,x and ξu
,xx , for example, indicate the first

and second derivatives of ξu , respectively. Ãu , B̃u and C̃u

are K × K matrices, and f̃u is a K -dimensional vector. Ãu,

B̃u, C̃u and f̃u are functions of α, β, ξu , ξv and their spatial
derivatives, although this dependence will not be shown here
for simplicity.

The finite central-difference method is used here for spa-
tial derivatives. The (x, y) domain over which a solution
to the GN equations is desired is uniformly discretized by
(�x,�y) intervals. The ith point on the grid will be denoted
by xi = i�x for i = 1, 2, . . . , nx and y j = j�y for
j = 1, 2, . . . , ny. For a given j , ξ̇

u
(i, j)(i = 1, 2, . . . , nx)

can be obtained by solving Eq. (5a). Details on numerical
solution of Eq. (5a), can be found in Zhao et al. (2014a). Sim-
ilarly, for a given i , we can obtain ξ̇

v
(i, j)( j = 1, 2, . . . , ny)

from Eq. (5b). Time is also assumed to be discretized with
intervals �t , such that tk = k�t (k = 1, 2, . . . ). We use the
fourth-order Adams predictor–corrector scheme to march in
time.

4 Boundary conditions

In this section, the boundary conditions along the boundaries
that surround the domain are presented. These boundary con-
ditions complete the definition of the boundary-value prob-
lem, which can be solved using a numerical method such as
the finite-difference method.

4.1 Wave-maker boundary

In this study, it is assumed that the boundary of the domain
is chosen in such a way that the wave enters normal to this
entrance boundary. At this boundary, the values of the sur-
face elevation β, the velocity coefficient uk and vk (k =
0, 1, . . . , K − 1) are specified. We do these at the wave-
maker by use of the stream-function wave theory (Chaplin
1980; Rienecker and Fenton 1981). When the wave-maker
is located at x = 0 m and the waves propagate in the pos-
itive x direction, the below quantities at x = −�x , −2�x
and −3�x should be known around the wave-maker. These
quantities are

β(0, j) = β2D(−�x), (6a)

β(−1, j) = β2D(−2�x), (6b)

β(−2, j) = β2D(−3�x), (6c)

uk(0, j) = uk
2D(−�x), (6d)

uk(−1, j) = uk
2D(−2�x), (6e)

uk(−2, j) = uk
2D(−3�x), (6f)

vk(0, j) = 0, (6g)

vk(−1, j) = 0, (6h)

vk(−2, j) = 0, (6i)

where, k = 0, 1, . . . , K − 1 and j = 1, 2, . . . , ny. We
use seven points to discretize the first-order, up to third-
order, spatial derivatives, such as uk,xxx . Therefore, we need
to know these values at these three locations x = −3�x ,
−2�x and −�x (i.e., uk(−2, j), uk(−1, j) and uk(0, j)).
The superscript ‘2D’ means these values are calculated from
the two-dimensional stream-function wave theory, such as
β2D and uk2D.

123



124 J. Ocean Eng. Mar. Energy (2015) 1:121–132

Only the regular waves are generated in this study. The
stream-function theory directly yields the wave heights,
β2D(−�x), β2D(−2�x), β2D(−3�x). However, the vari-
ables uk2D(−�x), uk2D(−2�x) and uk2D(−3�x) are deter-
mined by a least-squares matching method (Zhao et al.
2014a).

When the wave-maker is located at y = 0 m and the waves
propagate in the positive y direction, the following quantities
are given in a similar way:

β(i, 0) = β2D(−�y), (7a)

β(i,−1) = β2D(−2�y), (7b)

β(i,−2) = β2D(−3�y), (7c)

uk(i, 0) = 0, (7d)

uk(i,−1) = 0, (7e)

uk(i,−2) = 0, (7f)

vk(i, 0) = uk
2D(−�y), (7g)

vk(i,−1) = uk
2D(−2�y), (7h)

vk(i,−2) = uk
2D(−3�y), (7i)

where, k = 0, 1, . . . , K − 1 and i = 1, 2, . . . , nx .

4.2 Reflected-wave-absorbing boundary

In the GN simulations, we need to absorb the reflected waves
caused by the slope or obstacle to prevent these reflections
from interfering with the wave-maker. Mayer et al. (1998)
introduced a method to absorb the left-going reflective waves
caused by the breakwater. Zhao et al. (2014a) used this
method in two-dimensional GN simulations. Here, we use
the same method with extensions.

In this study, the length of this zone for absorbing reflected
waves is L1. The theoretical solution in this zone is βa , uka

and vk
a (k = 0, 1, . . . , K − 1). The solution obtained from

the GN equations are β, uk and vk (k = 0, 1, . . . , K − 1).
For example, the wave-maker is located at x = 0 m, and the
generated waves are right-going. The reflected wave absorb-
ing region should be located in 0 ≤ x ≤ L1. We use the
following new values instead of the solved ones:

βnew = cdampβ + (1 − cdamp)β
a, (8a)

uk
new = cdampuk + (1 − cdamp)uk

a, (8b)

vk
new = cdampvk + (1 − cdamp)vk

a, (8c)

where, k = 0, 1, . . . , K − 1 and

cdamp = 3
( x

L1

)2 − 2
( x

L1

)3
. (9)

When the x position changes from x = 0 to x = L1,
the value of cdamp changes from 0 to 1. Therefore, the wave
elevation will change from βa at x = 0 to β at x = L1. The
procedure for the velocity coefficient is similar to the above.
This procedure helps absorb the reflected waves. When the
wave-maker is located at y = 0 m and waves are propagat-
ing in the positive y direction, the reflected wave absorbing
region should be located in 0 ≤ y ≤ L1, and the treatment
is similar.

4.3 Radiation-wave-absorbing boundary

When the waves generated by the wave-maker propagates to
the other end of the computational domain, we need to absorb
the waves. When the wave-maker is located at x = 0 m, we
need a damping zone at the right end of the computational
domain to absorb the transmitted waves. The length of this
zone is L2. In this zone (L − L2 ≤ x ≤ L), we use βnew,
uknew and vk

new to replace the solved β, uk and vk . The
expressions are

βnew = cdampβ, (10a)

uk
new = cdampuk, (10b)

vk
new = cdampvk, (10c)

where, k = 0, 1, . . . , K − 1 and

cdamp = 3

(
L − x

L2

)2

− 2

(
L − x

L2

)3

(11)

When the x position change from x = L − L2 to x = L ,
the value of cdamp change from 1 to 0. Therefore, the wave
elevation and wave velocity are all zero at x = L . When
the wave-maker is located at y = 0m, the radiation wave
absorbing region should be located in L − L2 ≤ y ≤ L , and
the treatment is similar.

4.4 Wall boundary

The wall condition is given by the fact that there is no normal
flow across the boundary. This is written as

u · n = 0, (12)
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where, n represents the unit normal to the wall. In this paper,
the wall is positioned along the x direction or the y direction
depending on the problem. For example, the wall is posi-
tioned at y = 0 (i.e., j = 1). The region above the wall
(y > 0) is the computational domain. We need the wave ele-
vation and the velocity coefficient below this wall ( j = 0,
−1 and −2). They are given by

β(i, 0) = β(i, 2), (13a)

β(i,−1) = β(i, 3), (13b)

β(i,−2) = β(i, 4), (13c)

uk(i, 0) = uk(i, 2), (13d)

uk(i,−1) = uk(i, 3), (13e)

uk(i,−2) = uk(i, 4), (13f)

vk(i, 0) = −vk(i, 2), (13g)

vk(i,−1) = −vk(i, 3), (13h)

vk(i,−2) = −vk(i, 4), (13i)

where, k = 0, 1, . . . , K − 1 and i = −2,−1, . . . , nx + 3.

5 Test cases

In this section, we will present the results of high-level GN
models in three dimensions in three test cases. Results are
compared with some existing laboratory experiments, and
with the available theoretical and numerical solutions of the
problems.

5.1 Wave evolution in a closed basin

To study the accuracy of the three-dimensional GN model and
the algorithm used here, we first consider the problem of the
wave evolution in a closed basin of size Lx = Ly = 7.5 m.

We consider the domain −Lx/2 ≤ x ≤ Lx/2, −Ly/2 ≤
y ≤ Ly/2 bounded by reflective vertical walls. Within this
domain, we take the initial condition to be a superelevation
of the surface η0(x, y), above an otherwise constant water
depth h0 = 0.45 m. For the case shown here, the initial
surface elevation is of Gaussian shape defined by

η0(x, y) = H0exp[−2(x2 + y2)], (14)

where H0 = 0.01h0 = 0.0045 m in this test case. We start
from GN-1 model and also we need GN-2 model to compare
with GN-1 model for convergence test. Grid size of �x =

-0.004
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GN-2

(a)
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β 
(m

)

t (s)

GN-1
GN-2

(b)

Fig. 1 Time histories of wave elevation at two points. a x = 0 m and
y = 0 m and b x = −Lx/2 and y = −Ly/2

�y = 0.15 m and time step size of �t = 0.05 s are used
here. The comparison between the GN-1 results and GN-2
results on wave elevation at two points is shown in Fig. 1.
These two points are: point (a) at x = 0 m and y = 0 m,
i.e., the center of the computational domain, and point (b) at
x = −Lx/2 and y = −Ly/2, i.e., the corner.

We observe that there are big differences between the GN-
1 model and GN-2 model. Therefore, we conclude that the
GN-1 results are not the converged GN results. The GN-1
model can only simulate weakly dispersive waves (kh < 1.0).
Webster et al. (2011) has shown that as the level of the GN
model goes up, the GN model could become a strongly dis-
persive wave model, see Fig. 1 of Webster et al. (2011). GN-
2, GN-3 and GN-4 models have different dispersive limits,
they are kh < 2.5, kh < 5.5 and kh < 9.0, respectively.
We need to increase the level to GN-3 to see whether the
GN-2 results are the converged GN results or not. The com-
parison between the GN-2 results and GN-3 results on wave
elevation at the central point and the corner are shown in
Fig. 2.
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Fig. 2 Time histories of wave elevation at two points. a x = 0 m and
y = 0 m and b x = −Lx/2 and y = −Ly/2

We observe that the differences between the GN-2 model
and GN-3 model are quite smaller than the differences
between the GN-1 model and GN-2 model. However, there
still are some small differences between the GN-2 and the
GN-3 results. This means the GN-2 results are not the con-
verged GN results. And we have to increase the level to GN-4
to check whether the GN-3 model can provide the converged
GN results. The comparison between GN-3 results and GN-4
results on wave elevation at the central point and the corner
are shown in Fig. 3.

We observe that the GN-4 results shown in Fig. 3 are
almost the same as the GN-3 results. We could not find any
difference between the GN-3 results and GN-4 results from
Fig. 3. Therefore, we regard the GN-3 results as the converged
GN results for this case. We then use GN-3 results to compare
with the linear analytical solution of this problem (Wei and
Kirby 1995). The comparison is shown in Fig. 4.

Due to the small initial wave amplitude, H0 = 0.01h, the
agreement between the GN-3 results and the linear solution of
the problem is good. The initial superelevation is symmetric
about the center of the basin (x = 0 m, y = 0 m). As a result,
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(a)
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(m
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t (s)

GN-4
GN-3

(b)

Fig. 3 Time histories of wave elevation at two points. a x = 0 m and
y = 0 m and b x = −Lx/2 and y = −Ly/2

the surface at anytime should be symmetric about the center.
The contours of the free surface at t = 50 s calculated by
GN-3 model are shown in Fig. 5.

The axisymmetric contours of wave evolution about the
center of the basin, seen in Fig. 5, reveals that the momentum
equations in the x direction work as well as in the y direction.
Since no water can escape from the basin, the water volume
should remain constant in time. The total volume at t = 0 s
is 25.31957 m3. During the first 100 s, the changes in volume
is less than 1.0 × 10−7 m3 for the GN model, showing that
mass is conserved accurately.

5.2 Wave propagation over a three-dimensional slope
(Berkhoff et al. 1982)

Berkhoff et al. (1982) conducted laboratory experiments on
wave diffraction due to a three-dimensional slope, on which
an elliptic shoal was placed. We will also use this case to test
the three-dimensional GN models. The numerical simulation
domain used in these tests is shown in Fig. 6, indicating the
dimensions and water depth.
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Fig. 4 Time histories of wave elevation at two points. a x = 0 m and
y = 0 m and b x = −Lx/2 and y = −Ly/2
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Fig. 5 Surface contours at t = 50 s, illustrating rotational symmetry
of evolving waves

The center of the shoal is at x = 0 m and y = 0 m. The
slope-oriented coordinates (x ′,y′) are related to the compu-
tational coordinates as follows:

x ′ = x cos(20◦) − y sin(20◦), (15a)

y′ = x cos(70◦) + y sin(70◦). (15b)

z = -0.45

-0.40
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-0.10

-10 -5  0  5  10
x (m)

-10

-5

 0

 5

 10

 15

y 
(m

)

x

y

Fig. 6 Bottom contours for the experiments of Berkhoff et al. (1982)

The origin of theoxy and theo′x ′y′ coordinates is the same
point shown in Fig. 6. The water depth on the bed slope is
described by

hs = 0.45 − 0.02(y′ + 5.84) for y′ ≥ −5.84, (16a)

hs = 0.45 for y′ < −5.84. (16b)

We note that the minimum water depth used in the GN cal-
culations is h = 0.1 m.

For the points located on the shoal, i.e.,

(
x ′

4

)2

+
(
y′

3

)2

< 1, (17)

the water depth is defined by

h = hs + 0.3 − 0.5

√

1 −
(
x ′
5

)2

−
(

y′
3.75

)2

. (18)

The wave-maker is located at y = −14 m. At the location
of the wave-maker, the constant water depth is h = 0.45 m,
the wave height is H0 = 0.0464 m and the period of the
incoming wave is T = 1 s. Two wave absorbers are used
in the GN calculations. One, located in the region −14 ≤
y ≤ −10 m, prevents the reflected waves to interfere with
the wave-maker. Another wave absorber, located at 14 ≤
y ≤ 24 m absorbs the wave in the open boundary to prevent
reflected waves moving back into the numerical wave tank.
We find that kh = 1.88 at the wave-maker, and this value
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Fig. 7 Comparison on the relative wave height among the GN models, the fully nonlinear Boussinesq model (Wei et al. 1999) and the experimental
data (Berkhoff et al. 1982). a y = 1 m, b y = 3 m, c y = 5 m, d y = 7 m, e y = 9 m, f x = 2 m, g x = 0 m and h x = −2 m

is beyond the capability of the GN-1 model. Therefore, we
use the GN-2, GN-3 and GN-4 models to do the simulations
in this case. The grid space �x = �y = 0.1 m, and the
time step �t = 0.0333 s are used for the calculations in this
case. The numerical calculations are performed for 1,100
time steps. The GN results are presented in Fig. 7.

Relative wave heights (H/H0) along eight sections (x =
1, 3, 5, 7, 9 m and y = 2, 0,−2 m) are shown in Fig. 7. We
mention that H means the wave height at the local position,
and it was calculated by averaging the wave height in the last
100 s of the calculations. The predictions of the GN-2 model
shows some differences with that of the GN-3 model. The
GN-4 results are almost on top of the GN-3 results, as seen
in Fig. 7. Therefore, we conclude that the GN-3 results are
the converged GN results in this case. We observe that both
the GN-3 model and the fully nonlinear Boussinesq model
(Wei et al. 1999) shows good agreement with the experi-
mental data (Berkhoff et al. 1982). The Boussinesq model
(Wei et al. 1999) shows closer agreement with the laboratory
measurements of the maximum wave height along the sec-

tion y = 9 m, while the GN-3 results are in better agreement
with the laboratory measurements of the width of the profile
(see Fig. 7e).

5.3 Wave transformation over a circular shoal (Chawla and
Kirby 1996)

Chawla and Kirby (1996) conducted a series of physical
experiments for wave transformation over a circular shoal.
Their experiments consist of test cases of regular waves and
directional random waves, including breaking and nonbreak-
ing cases. To study the combined wave refraction/diffraction
in two horizontal dimensions, we present comparisons with
the nonbreaking monochromatic wave cases. Figure 8 shows
the setup of the computational domain.

As shown in Fig. 8, a circular shoal is placed on an oth-
erwise flat bottom in the basin. The domain dimensions
−3 ≤ x ≤ 28 m and 0 ≤ y ≤ 18.2 m in Fig. 8 are used in
the GN calculations. The part 0 ≤ x ≤ 20 m in Fig. 8 corre-
sponds to the physical wave tank used in Chawla and Kirby
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Fig. 7 continued
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Fig. 8 Bottom contours for the experiments of Chawla and Kirby
(1996)

(1996). We extend the x range in the numerical wave tank
to include the two wave-absorbing regions. −3 ≤ x ≤ 1 m
region is used to absorb the reflected waves by the shoal
back to the wave-maker, and 18 ≤ x ≤ 28 m region is
used to absorb the waves on the right end of the domain. At
x = −3 m, monochromatic waves are generated, and they
propagate in the positive x direction over the circular shoal.
The center of the shoal is located at x = 5 m and y = 8.98 m.

The perimeter of the shoal is defined by

(x − 5)2 + (y − 8.98)2 = (2.57)2. (19)

And the water depth on the submerged shoal is given by

h = h0 + 8.73 −
√

82.81 − (x − 5)2 − (y − 8.98)2, (20)

where h0 = 0.45 m is the constant water depth of the wave
basin.

The wave height of the incoming wave is H0 = 1.18 cm,
and the wave period is 1.0 s. On the top of the circular shoal,
the water depth is h = 8 cm. We find that kh = 1.89 at
the wave-maker, which is beyond the capability of the GN-1
model. Therefore, we use the GN-2, GN-3 and GN-4 models
to simulate this case. We choose a uniform grid spacing of
�x = �y = 0.1 m in both the x and y directions. Time
step of �t = 0.0333 s is chosen in the calculations. We
run this case for 1, 000 time steps. The comparison of the
relative wave height (H/H0) between the GN model and the
fully nonlinear Boussinesq model of Chen et al. (2000), and
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Fig. 9 Comparison of the relative wave height among the GN models, the fully nonlinear Boussinesq model (Chawla and Kirby 1996) and the
experimental data (Chawla and Kirby 1996). a y = 8.98 m, b x = 3.8 m, c x = 5.0 m, d x = 6.2 m, e x = 8.0 m, f x = 9.7 m and g x = 11.2 m

the laboratory measurements (Chawla and Kirby 1996) at
different locations in the tank are shown in Fig. 9.

We observe that there are some differences between the
predictions of the GN-2 and the GN-3 models, while as seen
in Fig. 9, the GN-3 and GN-4 predictions are almost the same.
Therefore, we regard the GN-3 model as the converged GN
model for this case. A close agreement between the GN-3
results and the experimental data (Chawla and Kirby 1996)
is observed. In this case, the H/H0 ratio reaches the value
of H/H0 = 2.7, as seen in Fig. 9a, indicating a strongly
nonlinear wave condition compared to the case discussed in
Sect. 5.2. The close agreement between the calculations, by
both the GN-3 model and the Boussinesq model (Chawla
and Kirby 1996), observed along the transects at x = 3.8,
x = 5.0, x = 6.2, x = 8.0, x = 9.7 and x = 11.2 m (see
Fig. 9b–g) implies that the combined refraction/diffraction
effects are captured successfully by these models. The shoal
center is located at the y = 8.98 m (the width of the tank
is 18.2 m), which is slightly closer to one of the side walls
(y = 0 m). Therefore, the distribution of wave height in the
y direction is not symmetric, which can be seen in Fig. 9b–g.

6 Summary

The numerical method to solve the three-dimensional, high-
level GN equations and the boundary conditions used in
the GN models are introduced for the first time. Here,
we present three test cases to study the accuracy of the
GN models. The first case is on wave evolution in a
closed basin. The GN-3 results show good agreement
with the linear analytical solution for small wave heights.
The symmetric contour of the free surface shows that
the algorithm performs well in both the x and y direc-
tions.

In the second test case, we numerically recreate the exper-
iments of Berkhoff et al. (1982) on wave diffraction due to
a three-dimensional slope (with an elliptic shoal placed on
the slope). The GN-3 model, as the converged GN model
in this case, agrees well with the Boussinesq model (Wei
et al. 1999) and the experimental data (Berkhoff et al.
1982).

In the last case, the experiment of Chawla and Kirby
(1996) is simulated by the GN-2, GN-3 and GN-4 mod-
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Fig. 9 continued

els. Comparisons between the GN results of different levels
shows that the GN-3 model is the converged GN model in
this case. A close agreement between the GN-3 model, the
laboratory data (Chawla and Kirby 1996) and the Boussinesq
model (Chen et al. 2000) is observed.
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