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Abstract In the present study we present a general method-
ology for estimating the hydrodynamic (added-mass and
damping) coefficients of a fully submerged (below a free-
surface) elongated axisymmetric ocean-going body (approx-
imated by a prolate spheroid) in water of finite depth (rigid
even sea bottom). Using the same approach, we also provide a
solution for the corresponding linearized diffraction problem
and analytically determine the exciting hydrodynamic forces
and moments exerted on the body due to obliquely incident
monochromatic surface waves. A comprehensive series of
numerical simulations is presented for the relevant hydro-
dynamic parameters depending on the wave encounter fre-
quency and angle of incidence, including body submergence
and slenderness-ratio as well as the water depth. Numerical
validations are also provided as limiting cases for spherical
shapes in finite water and for spheroidal geometries in water
of infinite depth.

Keywords Prolate spheroids · Spheroidal harmonics ·
Multipole expansions · Green’s function · Oblique
diffraction · Hydrodynamic coefficients

1 Introduction

The hydrodynamics of axisymmetric bodies of revolution
have been studied for decades. In that respect, the most effi-
cient and difficult to develop methods are those based on
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linearized analytical approaches. In most of the cases, the
difficulties are associated with the laborious mathematical
elaboration that is required. As a result, the majority of the
existing studies use several simplifications, out of which the
most popular are the geometry and the water depth. It is evi-
dent that the bulk of the publications on the hydrodynamics
and in particular on the radiation and the diffraction prob-
lems, of axisymmetric bodies concern perfectly symmetric
spherical objects. Those are indeed the most commonly used
geometries and it is a fact that they have been thoroughly stud-
ied covering all possible hydrodynamical aspects for both
deep (infinite) and finite (constant) water depths.

Havelock (1955) was probably the first to provide an
analytic solution to the heave radiation problem of a half-
immersed sphere in deep water. Accordingly, Hulme (1982)
improved and extended the work of Havelock (1955) to
the case of sway. Gray (1979) considered only the scat-
tering problem for a submerged sphere in a sea of infi-
nite water depth by formulating the problem as an integral
equation. Srokosz (1979) used a different line of approach
for a submerged sphere to study simultaneously the heave
and sway radiation problems in deep water by adopting
the method of multipoles, which was first suggested by
Ursell (1950) for submerged circular cylinders oscillating
below a free-surface. Finally Wang (1986) employed the
method of Havelock (1955) to solve both the radiation
and the diffraction problems for a submerged sphere. How-
ever, the assumption of an infinite water depth was again
considered.

As far as the hydrodynamics of spheres is concerned,
Thorne (1953) pioneering contribution on multipole poten-
tials for both deep and finite water depths, made the sub-
sequent efforts easier. Among the studies which employed
Thorne (1953) multipole expansions for submerged spheres
were those due to Linton (1991), Wu et al. (1994), Rahman
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(2001) and Das and Mandal (2008) (in chronological order).
All these studies assumed the general case of finite (con-
stant) water depth over a rigid flat bottom. In particular, Lin-
ton (1991) solved both the diffraction and radiation problems,
Wu et al. (1994) evaluated the hydrodynamic loads including
the drift forces, Rahman (2001) considered only the exciting
forces, whilst Das and Mandal (2008) tackled only the radi-
ation problem, but assuming that the sphere was submerged
below an ice cover floating on the free surface. Thorne (1953)
multipole potentials were also employed for spheroids, both
oblate (Chatjigeorgiou 2012) and prolate (Chatjigeorgiou
2013). In particular, Chatjigeorgiou (2012, 2013), succeeded
to transform the multipole potentials associated with the infi-
nite water depth case, originally expressed in spherical and
polar coordinates, to prolate and oblate spheroidal coordi-
nates in order to apply the Neumann body boundary con-
dition. Both studies however considered only axisymmetric
spheroids (semi-major axis perpendicular to the free surface)
and only the diffraction problem.

Although the corresponding linearized hydrodynamic
problems employing spherical shapes have been all well
treated in the literature, both for deep and finite water depths,
related studies on more practical shapes of ocean going vehi-
cles that can be simulated mathematically as prolate spher-
oids are not very common. In fact, to the authors’ best knowl-
edge, only cases of deep water have been considered so far for
the diffraction and radiation problems of submerged spher-
oids. Throughout this paper the term “spheroid” will refer
to prolate spheroids of arbitrary eccentricity and in partic-
ular to the non-axisymmetric configuration, namely when
the horizontal semi-major axis is parallel to the free surface,
which is apparently the most relevant case. The diffraction
problem for submerged spheroids in deep water was con-
sidered by Wu and Eatock Taylor (1987) and Chatjigeor-
giou and Miloh (2013), whereas Chatjigeorgiou and Miloh
(2014a) included the effect of forward speed as well. In
the former study (Wu and Eatock Taylor 1987) the authors
considered only head seas and provided data for a limited
range of frequencies. Accordingly, Wu and Eatock Taylor
(1989) extended their deep-water formulation to study both
the oblique diffraction and the radiation problems. Wu and
Eatock Taylor (1987, 1989) based their formulation on the
numerical solution of a Fredholm integral equation of the sec-
ond kind, involving a source/sink distribution over the surface
of the spheroid that was originally proposed by Farell (1973)
for tackling the hydrodynamic wave resistance problem. For
solving the wave diffraction problem by prolate spheroids
in infinite water depth, Chatjigeorgiou and Miloh (2013,
2014a) followed a different line of approach. In particular
they used the method of interior image singularities devel-
oped by Miloh (1974). In fact, obtaining analytic solutions
for the wave diffraction (Wu and Eatock Taylor 1987; Chatji-
georgiou and Miloh 2013, 2014a), radiation (Wu and Eatock

Taylor 1989) and the wave resistance (Farell 1973) problems
by non-axisymmetric submerged spheroids became feasible
by virtue of the expansion of the monochromatic wave poten-
tial in spheroidal harmonics, as originally proposed by Have-
lock (1954).

The current study aims at covering the lack of analytic
formulations for the classical hydrodynamic linearized free-
surface radiation and oblique wave diffraction problems of
submerged spheroids in finite water depths. To this end, we
follow the methodology recently presented in Chatjigeor-
giou and Miloh (2014b) and tackle both the hydrodynamic
diffraction and the radiation problems in one single effort.
The solution is achieved by using the ultimate image sin-
gularity system of external spheroidal harmonics distributed
along the major axis of the spheroid between its two foci. For
the finite water depth case however, the governing Green’s
function is different and the complications are accordingly
reflected in the effort required for developing an efficient
solution algorithm.

The organization of the paper is as follows: In Sect. 2
we present the general linearized working equations for both
radiation and diffraction problem and in Sect. 3 we give a
general expression for the Green’s function using spheroidal
harmonics for the combined case. The solution of the radia-
tion problem, including explicit expressions for both added-
mass and damping coefficients in terms of exciting frequen-
cies, submergence and water depth, is given in Sect. 4. Also
presented in Sect. 5 are general expressions for the hydro-
dynamic forces and moments exerted on the body due to
a monochromatic wave-train at oblique angle of incidence
with respect to the body’s major axis. An extensive set of
numerical simulations is then given and plotted in Sect. 6,
both for the various hydrodynamic coefficients and excit-
ing forces and moments acting on the spheroid depending
on problem parameters such as: encounter frequency, depth
of submergence, water depth, angle of wave incidence etc.
Validations against solutions for spherical geometries or for
spheroids operating in water of infinite depth are also given,
including simulations for the extreme case of a bottom seated
elongated spheroidal-like shape. We conclude in Sect. 7 with
a short discussion and summary.

2 Formulation of the hydrodynamic problem

The prolate spheroid is assumed to be immersed under a free
upper surface and above a flat bottom of finite depth h. A
left-handed Cartesian (x, y, z) coordinate system is consid-
ered, fixed on the free surface with the vertical z axis point-
ing in the gravity direction. The immersion of the center of
the spheroid relatively to the (x, y, z) system is f . Thus,
the body fixed Cartesian system is (x, y, z∗)(z∗ also point-
ing downwards) with z = z∗ + f . The semi-major axis of
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the body is parallel to the free surface defining the so-called
“non-axisymmetric” case. The transformation between pro-
late spheroidal and Cartesian coordinates for the body fixed
system is

x = cμζ (1)

y = c
√
ζ 2 − 1

√
1 − μ2 sinψ (2)

z∗ = c
√
ζ 2 − 1

√
1 − μ2 cosψ (3)

where c is the half distance between the foci with c =√
a2 − b2 and a, b are the semi-major and the semi-minor

axis respectively. We have chosen to employ (Nicholson
1924) notation (ζ, μ,ψ), ζ = cosh u, μ = cosϑ for the
spheroidal coordinate system instead of using the traditional
spheroidal coordinates (u, ϑ, ψ), 0 ≤ u < ∞, 0 ≤ ϑ ≤ π

and 0 ≤ ψ < 2π . Throughout this paper we will employ
dimensionless representations where lengths are normalized
with respect to the half distance between the foci (equivalent
to letting c = 1).

For time harmonic motions of the body the velocity poten-
tial is written as Φ = Re(φeiωt ), where ω is the circular fre-
quency of oscillations. In the realm of the linear theory, the
time-independent potential must satisfy the Laplace equation

∇2φ = 0 (4)

in the fluid domain. The common linearized free surface
boundary condition on z = 0 is given by

Kφ + ∂φ

∂z
= 0, (5)

where K = ω2/g (g is the gravitational acceleration) and
the boundary condition on the flat bottom at z = h is

∂φ

∂z
= 0, (6)

assuming that the bottom is horizontal. It is understood that
the velocity potential must also satisfy a proper radiation
condition for outgoing waves at infinity. In Eqs. (4)–(6) φ
denotes the total velocity potential which is given by

φ = φI + φD + iω
6∑

j=1

ξ jφ j (7)

where φI is the incident wave component, φD is the diffrac-
tion component whilst φ j denotes the six radiation (Kirch-
hoff) potentials for the six modes of motion, three transla-
tional for j = 1, 2, 3 (surge, sway, heave) and three rota-
tional for j = 4, 5, 6 (roll, pitch, yaw) with amplitudes ξ j .
The formulation of the hydrodynamic problem is completed
by introducing the appropriate impermeable body boundary
condition which must be satisfied separately for the diffrac-
tion and the radiation problems. These are

∂(φD + φI)

∂n
= 0, (8)

and

∂φ j

∂n
= n j , j = 1, 2, 3, 4, 5, 6, (9)

where n = (n1, n2, n3) is the outward normal (directed into
the fluid) on the body surface S0 and r is the radius vector of
a point on the surface such that (r × n) = (n4, n5, n5).

3 The Green’s function and its expansion
into spheroidal harmonics

According to the employed assumptions the Green’s func-
tion, expressed in Cartesian coordinates, that satisfies the
Laplace equation and the bottom boundary condition can be
written as Wehausen and Laitone (1960)

G(x, y, z) = 1

r
+ 1

r ′

+ 1

π
PV

∞∫

0

π∫

−π
Q∗(k, h) cosh k(h − z)

×eik(x cos a+y sin a)dadk

+ i

π∫

−π
Q∗

0(k0, h) cosh k0(h − z)

×eik0(x cos a+y sin a)da, (10)

where

r =
√

x2 + y2 + (z − f )2,

r ′ =
√

x2 + y2 + (z + f − 2h)2 (11)

and

Q∗(k, h) = 2e−kh(K + k) cosh k(h − f )

K cosh kh − k sinh kh
, (12)

Q∗
0(k0, h) = (K + k0)e−k0h cosh k0(h − f ) sinh k0h

K h + sinh2 k0h
.

(13)

In Eq. (13) k0 denotes the root of the well-known dispersion
relation

K = k0 tanh k0h, (14)

whilst PV in Eq. (10) denotes the Cauchy principal value
integral.

The original Green’s function is next elaborated using
Miloh (1974) integral expression for the spheroidal ultimate
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image singularity system. This is

Pm
n (μ)Q

m
n (ζ )e

imψ = 1

2

(
∂

∂z
+ i

∂

∂y

)m

×
1∫

−1

(1 − λ2)m/2 Pm
n (λ)√

(x − λ)2 + y2 + z2
dλ. (15)

where Pm
n and Qm

n denote the n-th degree and m-th order
associate Legendre functions of the first and the second kind
respectively. Also, we choose to reverse the orientations of
the vertical axes z and z∗ which will now be connected by
z = z∗ − f . By combining Eqs. (10) and (15), one gets
after tedious mathematical manipulations the auxiliary mul-
tipole expansions Gm

n of the Green’s function which satisfy
both the linearized free-surface and rigid bottom boundary
conditions given by Eqs. (5)–(6). For the details of the mathe-
matical analysis and the various transformations which were
required, we refer the reader to the recent studies of the same
authors (Chatjigeorgiou and Miloh 2014a, b). In particular
the auxiliary multipole expansions of the Green’s function
Gm

n will admit the following form;

Gm
n (x, y, z) = Pm

n (μ)Q
m
n (ζ )e

imψ

+
∞∑

s=0

s∑

t=0

(
Cmt

ns cos tψ + i C̃mt
ns sin tψ

)

× Pt
s (μ)P

t
s (ζ ). (16)

where the various coefficients are defined below as

Cmt
ns = Rmt

ns + Dmt
ns + iπEmt

ns ,

C̃mt
ns = R̃mt

ns + D̃mt
ns + iπ Ẽmt

ns (17)

Rmt
ns = εt

4
(−1)n+m+t i n+m+s+t (n + m)!

(n − m)!
(s − t)!
(s + t)!

×(2s + 1)

π/2∫

0

Nm(a)Nt (a)

cos a

×
∞∫

0

e−2k(h− f )

k
Jn+1/2(k cos a)

×Js+1/2(k cos a)dadk. (18)

Dmt
ns = εt

4
(−1)nin+m+s+t (n + m)!

(n − m)!
(s − t)!
(s + t)! (2s + 1)

×
π/2∫

0

Nm(a)Nt (a)

cos a

×PV

∞∫

0

Q∗(k, h)
ek(h− f ) + (−1)m+t e−k(h− f )

k

×Jn+1/2(k cos a)Js+1/2(k cos a)dadk, (19)

Emt
ns = εt

4
(−1)nin+m+s+t (n + m)!

(n − m)!
(s − t)!
(s + t)!

×(2s + 1)Q∗
0(k0, h)

ek0(h− f ) + (−1)m+t e−k0(h− f )

k0

×
π/2∫

0

Nm(a)Nt (a)

cos a
Jn+1/2

×(k cos a)Js+1/2(k cos a)da, (20)

Nt (a) = (1 + sin a)t + (1 − sin a)t

(cos a)t
,

Ñt (a) = (1 + sin a)t − (1 − sin a)t

(cos a)t
(21)

Note that J notes the Bessel function of the first-kind, ε0 =
1, εt = 2 for t = 1, 2, . . ., whilst R̃mt

ns , D̃mt
ns and Ẽmt

ns are
obtained respectively by Eqs. (18), (19) and (20) by simply
replacing Nm(a)Nt (a) by Ñm(a)Ñt (a). Also, all expansion
coefficients Rmt

ns , Dmt
ns , Emt

ns , R̃mt
ns , D̃mt

ns and Ẽmt
ns are nonzero

only if n + m + s + t is even and they vanish accordingly if
n + m + s + t is odd.

The most difficult part as regards the numerical implemen-
tation of the developed methodology is the accurate compu-
tation of the PV integral. To this end, one could proceed fur-
ther analytically, to reduce the numerical effort, by expanding
the Bessel functions into ascending series (Abramowitz and
Stegun 1970; Watson 1944). However, the employment of
the ascending series in the present problem has significant
limitations since for small water depths and small body sub-
mergence the results are not convergent. Hence, all integrals
have been computed here numerically. For the PV integrals
we relied on the efficiency of the Sinc quadrature algorithm
developed by Bialecki and Keast (1999), whereas for the def-
inite integrals we employed the Gauss–Legendre quadrature
formula (Press et al. 1986).

4 The radiation problem: radiation potentials and
hydrodynamic coefficients

The body boundary conditions [Eq. (9)], associated with the
radiation potentials for both the translational and the rota-
tional modes of motion, can be expresses as

∂φ1

∂u

∣
∣
∣
∣
u=u0

= bμ = bP0
1 (μ) (22)

∂φ2

∂u

∣
∣
∣
∣
u=u0

= a
√

1 − μ2 sinψ = −a P1
1 (μ) sinψ (23)

∂φ3

∂u

∣
∣
∣
∣
u=u0

= a
√

1 − μ2 cosψ = −a P1
1 (μ) cosψ (24)

∂φ4

∂u

∣
∣
∣
∣
u=u0

= 0 (25)
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∂φ5

∂u

∣
∣
∣
∣
u=u0

= (b2 − a2)
√

1 − μ2μ cosψ

= a2 − b2

3
P1

2 (μ) cosψ (26)

∂φ6

∂u

∣
∣
∣
∣
u=u0

= (a2 − b2)
√

1 − μ2μ sinψ

= −a2 − b2

3
P1

2 (μ) sinψ (27)

where u0 = tanh−1(b/a). Using the axillary multipole
expansions of the Green’s function [Eq. (16)], all six radi-
ation potentials can be written as

φ j =
∞∑

n=0

n∑

m=0

Fm
n

{

Pm
n (μ)Q

m
n (ζ )e

imψ

+
∞∑

s=0

s∑

t=0

(Cmt
ns cos tψ + i C̃mt

ns sin tψ)

× Pt
s (μ)P

t
s (ζ )

}

(28)

Introducing Eq. (28) into the body boundary conditions
given by Eqs. (22)–(24) and (26)–(27) (roll motion is ignored
due to axial symmetry) and making use of the orthogonality
relations of the trigonometric and the Associate Legendre
functions of the first kind (Abramowitz and Stegun 1970),
we obtain five systems of linear equations that provide the
unknown expansion coefficients for surge, sway, heave, pitch
and yaw, i.e.

Fr
l + αr

l

∞∑

n=0

n∑

m=0

Fm
n Cmr

nl = δ0rδ1l

Q̇r
l (ζ0)

, (29)

F̃r
l + αr

l

∞∑

n=0

n∑

m=0

F̃m
n C̃mr

nl = i
a

b

δ1rδ1l

Q̇r
l (ζ0)

, (30)

Fr
l + αr

l

∞∑

n=0

n∑

m=0

Fm
n Cmr

nl = −a

b

δ1rδ1l

Q̇r
l (ζ0)

, (31)

Fr
l + αr

l

∞∑

n=0

n∑

m=0

Fm
n Cmr

nl = a2 − b2

3b

δ1rδ2l

Q̇r
l (ζ0)

, (32)

F̃r
l + αr

l

∞∑

n=0

n∑

m=0

F̃m
n C̃mr

nl = i
a2 − b2

3b

δ1rδ2l

Q̇r
l (ζ0)

, (33)

where αr
l = Ṗr

l (ζ0)

Q̇r
l (ζ0)

and the upper dot represents differen-

tiation with respect to the argument. Equations (29)–(33)
assume by default that c = 1 and they are valid sequentially
for the surge, sway, heave, pitch and yaw modes of motion.

Having calculated all the radiation potentials, the corre-
sponding hydrodynamic masses and damping coefficients

can be next determined from the following surface integral

μi j − i

ω
λi j = −ρ

∫

S0

φi n j dS (34)

where μi j , λi j denote respectively the added masses and the
damping coefficients (ρ is the water density), whilst the inte-
gration is performed on the wetted surface of the spheroid
S0.

The outward normal for the translational and the rotational
modes are given by

(n1, n2, n3) =
[
(ζ 2

0 − 1)1/2μ

(ζ 2
0 − μ2)1/2

,
ζ0(1 − μ2)1/2 sinψ

(ζ 2
0 − μ2)1/2

,

ζ0(1 − μ2)1/2 cosψ

(ζ 2
0 − μ2)1/2

]

(35)

and for the rotational modes by

(n5, n6) = (b2 − a2)

×
[
μ(1 − μ2)1/2 cosψ

c(ζ 2
0 − μ2)1/2

,−μ(1 − μ2)1/2 sinψ

c(ζ 2
0 − μ2)1/2

]

(36)

The differential area dS is written in spheroidal coordinates
as

dS = c2(ζ 2
0 − 1)1/2(ζ 2

0 − μ2)1/2dμdψ. (37)

After introducing Eq. (28) and Eqs. (35)–(37) into Eq. (34)
and performing the integrations, we obtain for the diagonal
terms μ j j , λ j j the following relations

μ11 − i

ω
λ11 = −1

a

[
F0

1 Q0
1(ζ0)

+
∞∑

n=0

n∑

m=0

Fm
n Cm0

n1 P0
1 (ζ0)

]

(38)

μ22 − i

ω
λ22 = i

b

[

F1
1 Q1

1(ζ0)+
∞∑

n=0

n∑

m=0

Fm
n C̃m1

n1 P1
1 (ζ0)

]

(39)

μ33 − i

ω
λ33 = 1

b

[

F1
1 Q1

1(ζ0)+
∞∑

n=0

n∑

m=0

Fm
n Cm1

n1 P1
1 (ζ0)

]

(40)

μ55 − i

ω
λ55 = 3

b2 − a2

a3b

×
[

F1
2 Q1

2(ζ0)+
∞∑

n=0

n∑

m=0

Fm
n Cm1

n2 P1
2 (ζ0)

]

(41)
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μ66 − i

ω
λ66 = 3i

a2 − b2

a3b

×
[

F1
2 Q1

2(ζ0)+
∞∑

n=0

n∑

m=0

Fm
n C̃m1

n2 P1
2 (ζ0)

]

(42)

where μ44 = λ44 = 0 due to axial symmetry. The trans-
lational modes have been normalized by 4/3πρab2 and the
rotational modes by 4/15πρa3b2. Thus, the added mass coef-
ficients are non-dimensional whilst the damping coefficients
have dimension 1/s.

5 The diffraction problem and the exciting forces

The incident wave potential for a monochromatic wave train
of amplitude A and circular frequency ω propagating in a
fluid domain of finite depth h, at angle β with respect to the
horizontal x-axis that coincides with the spheroid’s semi-
major axis is written as

φI = ig A

ω

cosh k0(h + z)

cosh k0h
e−ik0(x cosβ+y sin β) (43)

where the origin is fixed on the free surface and the z axis is
pointing upwards. Equation (43) can be expanded to non-
axisymmetric prolate spheroidal coordinates according to
(see Wu and Eatock Taylor 1987; Chatjigeorgiou and Miloh
2014a)

φI = ig A

ω

∞∑

n=0

n∑

m=0

(Bm
n cos mψ + i B̃m

n sin mψ)

×Pm
n (μ)P

m
n (ζ ), (44)

where

Bm
n = ek0(h− f ) + (−1)me−k0(h− f )

2 cosh k0h
(−1)n+m εm

2

×in+m (n − m)!
(n + m)! (2n + 1)Nm(β)

×
(

π

2k0 cosβ

)1/2

Jn+1/2(k0 cosβ), (45)

B̃m
n = ek0(h− f ) − (−1)me−k0(h− f )

2 cosh k0h
(−1)n+m+1 εm

2

×in+m (n − m)!
(n + m)! (2n + 1)Ñm(β)

×
(

π

2k0 cosβ

)1/2

Jn+1/2(k0 cosβ). (46)

Using the auxiliary multipole expansions of the Green’s func-
tion Eq. (16), the diffraction potential is written as

φD = ig A

ω

∞∑

n=0

n∑

m=0

Fm
n

{

Pm
n (μ)Q

m
n (ζ )e

imψ

+
∞∑

s=0

s∑

t=0

(Cmt
ns cos tψ + i C̃mt

ns sin tψ) Pt
s (μ)P

t
s (ζ )

}

,

(47)

where Fm
n denote herein the unknown expansion coefficients

associated with the diffraction problem. These are obtained
by invoking the Neumann body boundary condition, which
in spheroidal coordinates reads

∂φD

∂ζ
= −∂φI

∂ζ
, ζ = ζ0 = cosh u0. (48)

Substituting Eqs. (44) and (47) into Eq. (48) and making
use of the orthogonality relations of both the trigonomet-
ric and the associated Legendre functions of the first kind
(Abramowitz and Stegun 1970), leads to the following com-
plex linear systems in terms of the unknown expansion coef-
ficients Fm

n :

Fr
l + αr

l

∞∑

n=0

n∑

m=0

Fm
n Cmr

nl = −Br
l α

r
l , (49)

F̂r
l + αr

l

∞∑

n=0

n∑

m=0

F̃m
n C̃mr

nl = −B̃r
l α

r
l . (50)

The above relations are associated respectively with the
cosine and the sine terms. The employment of the appropri-
ate coefficients depends on the particular loading component
that is considered, as demonstrated below.

It is evident that for the numerical computations the above
Eqs. (49) and (50) must be truncated to account for a specific
number of modes, whilst this number depends on the required
accuracy. For most of the cases considered in the present and
analyzed in the sequel, the employment of N = 8 modes
resulted in convergence up to the fourth significant digit for
the complete range of frequencies (up to Ka = 5). In fact, in
the low frequency range the convergence is nearly immediate.
It should be also mentioned that the water depth does not
actually affect the number of harmonics (truncation) which
are required for achieving convergence.

The exciting forces and moments are obtained by integrat-
ing the linear hydrodynamic pressure over the wetted surface
of the body. Thus,

F = −iωρ
∫

S0

(φI + φD)ndS, (51)

M = −iωρ
∫

S0

(φI + φD)(r × n)dS, (52)
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where the unit vector n is given by Eq. (35). The employ-
ment of Eqs. (51)–(52) result in closed form relations for all
hydrodynamic loading components. The final forms of the
surge, sway, heave, pitch and yaw loadings can be found in
reference (Chatjigeorgiou and Miloh 2014b).

6 Numerical results

6.1 Added mass and damping coefficients

Our method has been exhaustively validated against exit-
ing data in the open literature. For the diffraction and radia-
tion problems in finite (constant) water depths, the available
calculations found concerned only spheres. For spheroids,
no shallow water associated data were found. The existing
numerical predictions which could be used as a benchmark
to validate our method concerned therefore only the case of
deep water.

A spheroid can effectively simulate a sphere by assum-
ing b → a. This is the case examined in Figs. 1 and 2 that
concern a sphere immersed at f = 1.25a in water depth
h = 5a (a herein denotes the radius of the sphere). The test
case was taken from the work of Das and Mandal (2008) who
studied the radiation problem for a sphere immersed below
an ice cover. The case of a free upper surface was simulated
by letting the stiffness of the ice cover D equal to zero. Das
and Mandal (2008) reported calculations up to Ka = 2 and
we have extended the computations range up to Ka = 5. The
depicted data for the heave and sway hydrodynamic coeffi-
cients are normalized by the water displaced by the sphere
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Fig. 1 Added mass coefficients for sway and heave μ22 and μ33
(against Ka), for a sphere immersed at f = 1.25a below the free surface
and finite water depth h = 5a
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Fig. 2 Hydrodynamic damping coefficients for sway and heave λ22
and λ33 (against Ka) for a sphere immersed at f = 1.25a below the
free surface and finite water depth h = 5a

4/3πρa3. It is immediately evident that the comparisons with
Das and Mandal (2008) are very favorable which apparently
demonstrate the efficacy of our method and the accuracy of
our computations.

Comparative results for a spheroid assuming deep water
are simulated in our method by letting h = 200b. Tables 1 and
2 show respectively computations of the added mass and the
damping coefficients for the translational modes compared
against the results reported by Wu and Eatock Taylor (1989),
which were explicitly obtained for deep water. Similar results
(not shown here) were also obtained for the corresponding
rotational modes and show again favorable agreement with
those reported in Wu and Eatock Taylor (1989). For most
of the investigated components and for the majority of the
normalized frequencies Ka, a coincidence up to the 4th sig-
nificant digit is observed. The added masses are given nor-
malized by 4/3πρab2 and 4/15πρa3b2 for the translational
and rotational modes respectively. To achieve the favor-
able coincidence shown in Table 2 for the damping coeffi-
cients we had to normalize our results by 4/3πρab2√K bg/a
and 4/15πρa3b2√K bg/a and we believe that this was
also the normalization factor employed by Wu and Eatock
Taylor (1989), although not specifically mentioned in their
study.

The effect of variable water depth on the hydrodynamic
coefficients is further examined with the aid of Figs. 3, 4,
5, 6, 7, 8, 9, 10, 11 and 12 for spheroid slenderness of
a/b = 6 and submergence at f = 2b. Results are pro-
vided for all non-vanishing diagonal (five) terms of the
added masses and damping coefficients for four different
water depths, the first of which h = 200b literally rep-
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Table 1 Added mass
coefficients for surge, sway and
heave for a spheroid a/b = 6
immersed at f = 2b in deep
water h = 200b

Ka μ11 μ22 μ33

Present Wu and Eatock
Taylor (1989)

Present Wu and Eatock
Taylor (1989)

Present Wu and Eatock
Taylor (1989)

0.0 0.0532 0.0532 0.9861 0.9860 1.0155 1.0154

0.1 0.0544 0.0544 0.9928 0.9926 1.0266 1.0264

0.2 0.0558 0.0558 1.0001 1.0003 1.0396 1.0397

0.3 0.0575 0.0575 1.0090 1.0091 1.0550 1.0551

0.4 0.0593 0.0593 1.0189 1.0188 1.0722 1.0720

0.5 0.0611 0.0611 1.0291 1.0289 1.0899 1.0896

0.6 0.0628 0.0628 1.0393 1.0392 1.1072 1.1071

0.7 0.0644 0.0644 1.0491 1.0492 1.1234 1.1235

0.8 0.0657 0.0658 1.0584 1.0589 1.1378 1.1387

0.9 0.0666 0.0666 1.0668 1.0671 1.1493 1.1496

1.0 0.0671 0.0671 1.0740 1.0743 1.1573 1.1576

1.5 0.0618 0.0618 1.0840 1.0839 1.1302 1.1301

2.0 0.0457 0.0457 1.0465 1.0462 1.0124 1.0121

2.5 0.0283 0.0283 0.9793 0.9793 0.8821 0.8821

3.0 0.0185 0.0185 0.9075 0.9077 0.7905 0.7906

3.5 0.0170 0.0170 0.8467 0.8469 0.7411 0.7414

4.0 0.0198 0.0197 0.8015 0.8009 0.7175 0.7169

4.5 0.0231 0.0231 0.7712 0.7712 0.7050 0.7050

5.0 0.0254 0.0254 0.7522 0.7521 0.6964 0.6963

Table 2 Damping coefficients
for surge, sway and heave for a
spheroid a/b = 6 immersed at
f = 2b in deep water h = 200b

Ka λ11 λ22 λ33

Present Wu and Eatock
Taylor (1989)

Present Wu and Eatock
Taylor (1989)

Present Wu and Eatock
Taylor (1989)

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

0.2 0.0001 0.0001 0.0005 0.0005 0.0010 0.0010

0.3 0.0005 0.0005 0.0018 0.0018 0.0038 0.0038

0.4 0.0013 0.0013 0.0046 0.0047 0.0097 0.0098

0.5 0.0026 0.0026 0.0095 0.0096 0.0201 0.0202

0.6 0.0045 0.0045 0.0170 0.0171 0.0358 0.0360

0.7 0.0072 0.0072 0.0274 0.0275 0.0578 0.0582

0.8 0.0106 0.0106 0.0410 0.0412 0.0865 0.0871

0.9 0.0147 0.0148 0.0579 0.0583 0.1220 0.1228

1.0 0.0194 0.0196 0.0783 0.0789 0.1641 0.1652

1.5 0.0495 0.0498 0.2236 0.2251 0.4369 0.4397

2.0 0.0740 0.0745 0.3981 0.4006 0.6789 0.6831

2.5 0.0765 0.0770 0.5398 0.5432 0.7781 0.7830

3.0 0.0597 0.0600 0.6188 0.6229 0.7586 0.7636

3.5 0.0384 0.0387 0.6389 0.6433 0.6911 0.6958

4.0 0.0233 0.0234 0.6176 0.6212 0.6222 0.6257

4.5 0.0158 0.0159 0.5732 0.5773 0.5647 0.5687

5.0 0.0128 0.0128 0.5181 0.5217 0.5122 0.5158
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Fig. 3 Normalized surge added mass coefficients μ11 (against Ka), of
a prolate spheroid a/b = 6, immersed at f = 2b bellow the free surface
for various (constant) water depths
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Fig. 4 Normalized sway added mass coefficients μ22 (against Ka), of
a prolate spheroid a/b = 6, immersed at f = 2b bellow the free surface
for various (constant) water depths

resents the infinite water depth case. Finite and shallow
water depth cases are those corresponding to h = 10b,
6b, 4b and 3.01b, where the last case corresponds to a bot-
tom touching configuration. It is immediately evident that
decreasing water depths result in significant differentiations
of added masses at the low frequency regions. The differ-
ences tend to vanish at the high frequency regions with the
only exception that of the surge added mass μ11 (see Fig. 3).
Note also the negative values around Ka = 3 for the bot-
tom seated case which arise due to small clearance from
the sea floor. As regards the hydrodynamic damping coeffi-
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Fig. 5 Normalized heave added mass coefficients μ33 (against Ka),
of a prolate spheroid a/b = 6, immersed at f = 2b bellow the free
surface for various (constant) water depths
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Fig. 6 Normalized pitch added mass coefficientsμ55 (against Ka), of a
prolate spheroid a/b = 6, immersed at f = 2b bellow the free surface
for various (constant) water depths

cients, it is remarked that only the very shallow water depth
cases h = 4b and h = 3.01b are completely detached from
the usual trend, factually provided by the deep water case.
These cases however are the most interesting since they indi-
cate that shallow water significantly increases hydrodynamic
damping.

6.2 Exciting diffraction forces and moments

The hydrodynamic loadings due to oblique wave diffraction
exerted on the spheroid (a/b = 6, f = 2b) for variable water
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Fig. 7 Normalized yaw added mass coefficients μ66 (against Ka), of a
prolate spheroid a/b = 6, immersed at f = 2b bellow the free surface
for various (constant) water depths
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Fig. 8 Normalized surge hydrodynamic damping coefficients λ11
(against Ka), of a prolate spheroid a/b = 6, immersed at f = 2b
bellow the free surface for various (constant) water depths

depths, are examined with the aid of Figs. 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32. The
results have been normalized by 4/3πab2ρg AK exp(−K f )
for the forces and by 4/3πab3ρg AK exp(−K f ) for the
moments. Here, the real and the imaginary parts are pro-
vided separately. Three angles of heading were considered,
i.e. β = 0◦, (Figs. 13, 14, 15, 16, 17, 18), β = 45◦, (Figs. 19,
20, 21, 22, 23, 24, 25, 26, 27, 28) and β = 90◦, (Figs. 29, 30,
31, 32). The infinite water depth case was simulated assum-
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Fig. 9 Normalized sway hydrodynamic damping coefficients λ22
(against Ka), of a prolate spheroid a/b = 6, immersed at f = 2b
bellow the free surface for various (constant) water depths
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Fig. 10 Normalized heave hydrodynamic damping coefficients λ33
(against Ka), of a prolate spheroid a/b = 6, immersed at f = 2b
bellow the free surface for various (constant) water depths

ing, again h = 200b, whereas the results marked as h = infin-
ity coincide explicitly that of Wu and Eatock Taylor (1989).
Again our predictions show extremely favorable coincidence
with the existing data reported in Wu and Eatock Taylor
(1987) and Wu and Eatock Taylor (1989). The main conclu-
sions that could be drawn from inspecting the trends depicted
in Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31 and 32, are summarized succinctly in the
following: (i) Shallow water effects diminish for high wave
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Fig. 11 Normalized pitch hydrodynamic damping coefficients λ55
(against Ka), of a prolate spheroid a/b = 6, immersed at f = 2b
bellow the free surface for various (constant) water depths
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Fig. 12 Normalized yaw hydrodynamic damping coefficients λ66
(against Ka), of a prolate spheroid a/b = 6, immersed at f = 2b
bellow the free surface for various (constant) water depths

frequencies; (ii) the magnitudes of the heave forces decrease
for deceasing water depths; (iii) the opposite condition is
observed for the surge and sway forces (irrespectively of the
heading angle), which demonstrate large amplifications for
Ka → 0; (iv) the pitch moments exhibit a small increase for
small frequencies (compared to h → ∞) which is followed
by significant reductions for decreasing water depths; (v) the
magnitudes of the pitch moments tend to some non- vanish-
ing values as Ka → 0 in shallow water; (vi) yaw moments
(here examined only for β = 45◦) are also found to exhibit
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Fig. 13 Real part of the normalized surge exciting forces Re( fx )

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 0◦ with respect to the spheroid’s semi-major axis
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Fig. 14 Imaginary part of the normalized surge exciting forces Im( fx )

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 0◦ with respect to the spheroid’s semi-major axis

large amplifications for decreasing water depths in the small
wave frequency range, attaining again some finite values for
wave frequencies approaching zero.

7 Conclusions

The present concluding study follows a series of papers
(Chatjigeorgiou and Miloh 2013, 2014a, b) which analyt-
ically solve relevant hydrodynamic linearized free-surface
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Fig. 15 Real part of the normalized heave exciting forces Re( fz)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 0◦ with respect to the spheroid’s semi-major axis
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Fig. 16 Imaginary part of the normalized heave exciting forces Im( fz)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 0◦ with respect to the spheroid’s semi-major axis

problems of an elongated fully submerged axisymmetric
shape (simulated by a prolate spheroid) positioned in water of
arbitrary depth. The wave diffraction (scattering) problem of
a fixed spheroid in deep water in the presence of a monochro-
matic wave train of any angle of incidence was first discussed
in Chatjigeorgiou and Miloh (2013). The case of a forward-
speed combined with wave diffraction in deep water was then
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Fig. 17 Real part of the normalized pitch exciting moment Re(my)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 0◦ with respect to the spheroid’s semi-major axis
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Fig. 18 Imaginary part of the normalized pitch exciting moment
Im(my) (against Ka), acting on a prolate spheroid a/b = 6, immersed at
f = 2b, below the free surface for various (constant) water depths and
wave heading angle β = 0◦ with respect to the spheroid’s semi-major
axis

elaborated in Chatjigeorgiou and Miloh (2014a), where the
solution for the wave-resistance problem is given as a limiting
case. The effect of water of finite (shallow) depth on the wave
resistance and diffraction (zero wave heading), was finally
analyzed in Chatjigeorgiou and Miloh (2014b). In order to
expound the full (six degrees of freedom) motion problem of
a spheroid in confined water, we provide herein the solution
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Fig. 19 Real part of the normalized surge exciting forces Re( fx )

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 45◦ with respect to the spheroid’s semi-major axis

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2.5

−2

−1.5

−1

−0.5

0

h=200b
h=10b
h=6b
h=4b
h=Infinity

Fig. 20 Imaginary part of the normalized surge exciting forces Im( fx )

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 45◦ with respect to the spheroid’s semi-major axis

for the various added-mass and damping depth-dependent
coefficients as well as explicit expressions for the wave dif-
fraction (due to a monochromatic wave-train) exerted on the
submerged spheroid for various wave headings and water
depths. Extreme cases, such as small submergence under a
free-surface or small bottom clearance are also given, includ-
ing extensive numerical validations against known solutions
for spherical geometries.
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Fig. 21 Real part of the normalized sway exciting forces Re( fy)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 45◦ with respect to the spheroid’s semi-major axis
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Fig. 22 Imaginary part of the normalized sway exciting forces Im( fy)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 45◦ with respect to the spheroid’s semi-major axis

The general methodology employed, is based on using
Havelock’s spheroid theorem and on expanding the relevant
Green’s function in terms of external spheroidal harmon-
ics which can be expressed as multipole distributions on the
axis between the two foci. It has been also demonstrated
that the proposed formulation can be facilely numerically
implemented. Furthermore the present numerical scheme
(based on extending the analysis as far as possible) was
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Fig. 23 Real part of the normalized heave exciting forces Re( fz)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 45◦ with respect to the spheroid’s semi-major axis
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Fig. 24 Imaginary part of the normalized heave exciting forces Im( fz)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 45◦ with respect to the spheroid’s semi-major axis

found to be robust and efficient compared to full numerical
codes based on solving a Fredholm integral (of the second
kind) for the unknown source distribution over the spheroidal
body.

Finally, it is remarked that the current semi-analytic
approach and the vast number of numerical simulations
(graphically plotted) thus performed, can be applied for fac-
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Fig. 25 Real part of the normalized pitch exciting moment Re(my)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 45◦ with respect to the spheroid’s semi-major axis
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Fig. 26 Imaginary part of the normalized pitch exciting moment
Im(my) (against Ka), acting on a prolate spheroid a/b = 6, immersed at
f = 2b, below the free surface for various (constant) water depths and
wave heading angle β = 45◦ with respect to the spheroid’s semi-major
axis

tual hydrodynamic studies, such as wave-diffraction, radia-
tion, wave resistance, maneuvering and stability of practical
vessels which can be approximated by an “equivalent” pro-
late spheroid. By admitting this “equivalence” dogma, one
can replace any axisymmetric body by a “corresponding”
prolate spheroid having the same volume and slenderness-
ratio. By doing so, one can readily establish all the impor-
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Fig. 27 Real part of the normalized yaw exciting moment Re(mz)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 45◦ with respect to the spheroid’s semi-major axis
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Fig. 28 Imaginary part of the normalized yaw exciting moment
Im(mz) (against Ka), acting on a prolate spheroid a/b = 6, immersed at
f = 2b, below the free surface for various (constant) water depths and
wave heading angle β = 45◦ with respect to the spheroid’s semi-major
axis

tant hydrodynamical parameters for the practitioner, such as
wave-resistance, diffraction forces and moments for arbi-
trary wave heading, added-mass and damping coefficients,
etc. All relevant parameters are obtained for the case of a
spheroid whose major axis is parallel to the undisturbed
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Fig. 29 Real part of the normalized sway exciting forces Re( fy)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 90◦ with respect to the spheroid’s semi-major axis
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Fig. 30 Imaginary part of the normalized sway exciting forces Im( fy)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 90◦ with respect to the spheroid’s semi-major axis

free-surface (or to the even rigid bottom) but otherwise
are valid for arbitrary slenderness-ratios (including spheres)
depth of submergence, water depth and Froude number, wave
encounter frequency and angle of incidence of the ambient
wave-train.
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Fig. 31 Real part of the normalized heave exciting forces Re( fz)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 90◦ with respect to the spheroid’s semi-major axis
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Fig. 32 Imaginary part of the normalized heave exciting forces Im( fz)

(against Ka), acting on a prolate spheroid a/b = 6, immersed at f = 2b,
below the free surface for various (constant) water depths and wave
heading angle β = 90◦ with respect to the spheroid’s semi-major axis
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