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Abstract This paper examines monthly and annual data to analyse predictability in the Indian
monsoon rainfall. The periodic structure in the time series data is extracted using wavelets and
the residual random part is separately modeled using artificial neural networks (ANN).
Although wavelet and neural network based hybrid techniques have been widely applied in
the recent years, the present approach has not been investigated so far. Our results show that
the estimated periodic and random components comprise 30 and 15 %, respectively, variance
of the total rainfall in case of annual data, whereas the model explains 93 % of variance in case
of monthly data. It is shown that the prediction is more accurate when periodic and random
parts are treated separately.
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1 Introduction

The prediction of Indian monsoon has been a challenge for scientists around the globe. In this
undertaking, statistical and empirical models seek to establish significant relationships among
various climate parameters (Rajeevan et al. 2000, 2004, 2007; Narasimha and Bhattacharyya
2010). It is well known that the presence of periodic signals can make the dynamic system
predictable with empirical models (Shukla and Mooley 1987; Vautard et al. 1992). These
models make use of historical data to make predictions; however, they have been proved
generally unsuccessful for operational forecasts. There have been many attempts to find the
most appropriate method for rainfall prediction, and several new methods have been exten-
sively employed in the recent past, for example: wavelet transform (Sahay and Srivastava
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2014; Maheswaran and Khosa 2014; Sehgal et al. 2014); coupled wavelet-neural network
models (Ramana et al. 2013); genetic algorithms (Kishtawal et al. 2003); empirical mode
decomposition (Iyengar and Kanth 2004); and uncertainty analysis (Narsimlu et al. 2015),
among others. Although, in meteorology, data analytic studies of historical data sets have been
traditionally very useful, the most obvious reason for the failure of empirical prediction is the
stochastic nature of the rainfall data. Although the presence of quasi-periodicities indicate
certain potential predictability, it is difficult to distinguish a periodic signal from the fluctua-
tions that would be inherent in the relatively small sample size available (of order 102). To
detect periodicities in the data, various methods have been employed, and a wide variety of
periodicities have been extracted from the time series of rainfall data. However, lack of
statistically significant periodicities could be the cause of failure of empirical prediction
(Rangarajan 1994; Narasimha and Kailas 2001).

In this connection, the most popular background spectrum to distinguish noise from signal
was introduced in Gilman et al. (1963). In Azad and Narasimha (2008), this background
spectrum is used as a coloured spectrum and has revealed many more significant periodicities.
Based on the significant periodicities, Annamalai (1995) pointed that about 34 % of the rainfall
is deterministically predictable but the most dominant modes of All-India summer monsoon
rainfall (AISMR) and many of its predictors are associated with the stochastic components. For
long range forecasting, methods of fitting linear autoregressive models are suggested in Yao
(1983).

Rajkumar and Kumar (2004) developed the stochastic modeling of daily rainfall for
southwest monsoon season of Baptala, Andhra Pradesh (India) for the period 1988–2000.
The periodic component in the time series was determined by Fourier analysis, and the
stochastic component was handled using autoregressive model of order two. Bhakar et al.
(2006) carried out a study on stochastic modeling of wind speed at Udaipur (India) and its
periodic component is represented by second harmonic expression and the stochastic compo-
nent followed a second order Markov model. Most recently, stochastic modeling of rainfall in
humid region of Northeast India was performed in Dabral et al. (2008). Keppene and Ghil
(1992) have shown that an empirical prediction can be improved by separating the determin-
istic oscillations from noise in the original time series data.

Kishtawal et al. (2003) evoked the feasibility of a nonlinear technique based on genetic
algorithm (Artificial Intelligence) for the prediction of summer rainfall over India.
Guhathakurta (2006) introduced ANN to forecast the summer-monsoon rainfall over the
Kerala state in India. Various workers utilized ANN as a forecasting tool involving atmosphere
related phenomena. Michaelides et al. (2001) compared the performance of ANN with
multiple linear regressions in estimating missing rainfall data over Cyprus. By implementing
ANN, reconstruction of the rainfall time series over Cyprus has been carried out. Moreover,
the method is used in rainfall prediction by splitting available data into homogeneous
subpopulation.

2 Data and Method

Looking at the present scenario, we attempted a novel forecasting strategy which separately
handles periodic and stochastic component in the time series data. The Indian time series data
used in many of the prediction studies are defined over homogeneous regions (Parthasarathy
et al. 1995). However, Azad et al. (2010) argued that though used popularly, these regions are
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not the good choice. The data samples here are mixed up all over the heterogeneous zones.
Hence, authors suggested an alternative approach to determine homogeneous rainfall zones.
The most significant of such spectrally homogeneous regions (SHRs) is SHR7, a region
having characteristics of southwest monsoon. Even though magnitude of rainfall varies across
SHR7 between 600 and 3200 mm, this region is homogenous in terms of spectral similarity
not in terms of rainfall. The observed monthly and annual rainfall data have been taken from the
website of the Indian Institute of Tropical Meteorology (http://www.tropmet.res.in). We have
used sub-divisional data which is in mm units. The time series of SHR7 rainfall is obtained from
the area weighted average of seven sub-divisions namely: Coastal Karnataka; Konkan;Madhya
Maharashtra; North interior Karnataka; Marathwada; Telangana; and Vidarbha. The SHR7
region is shown in Fig. 1. The autocorrelation coefficient of SHR7 rainfall is 0.1 at lag 1,
whereas for Homogeneous Indian monsoon (HIM) rainfall (most commonly used homoge-
neous region) it is −0.007, which shows HIM data is random. The SHR7 data does not follow
Gaussian distribution unlike HIM. Therefore, we envisaged that there is more predictability in
SHR7 rainfall than HIM (which contains 14 meteorological sub-divisions) or any other rainfall
indices like AISMR (autocorrelation −0.001 at lag 1). Hence, we performed our analysis on this
zone over the time period 1871–2005. This work provides insight into long-range forecasting of
Indian monsoon as this new region has not been analyzed for prediction.

In the present study, the periodic part of the signal is extracted using wavelet based multi-
resolution analysis (MRA). The remaining stochastic part is modelled using artificial neural
networks as discussed below.

2.1 Wavelet Method to Separate the Periodic Part

We analyse the periodic structure in the data with wavelets which is based on MRA
decomposition of the signal into a range of frequency scales (Azad and Narasimha 2007,

Fig. 1 The shaded area shows the
seven sub-divisions constituting
SHR7 region
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2008). The prediction uses the reconstructed time series at each scale. A redundant transform
based on an N-length input series has an N-length resolution scale for each of the resolution
levels that we consider. The MRA method described is applied to the normalized time series of
SHR7 rainfall x(t), t =1871,..,2005. Using this technique the time series is decomposed at eight
levels using discrete Meyer wavelet. However, the first four details and the fourth approxima-
tion are sufficient for the present analysis, as the original time series can be reconstructed by
decomposition up to four levels with an error of only 10−6. The power spectral density (PSD)
of the partially reconstructed time series obtained from the MRA decomposition at four scales
are estimated using Welch technique (Stoica and Mosses 1997), as described in Azad and
Narasimha (2008).

Therefore, at each level of MRA decomposition, reconstructed time series is represented
with periodic component of cosine functions as

x̂ tð Þ ¼
X5

i¼1

aicos 2π f it þ φið Þ ð1Þ

where 1/fi are the periodicities obtained from PSD on MRA at each scale. The amplitudes, ai
and phases ϕi are then estimated using least square estimation at each scale.

Fig. 2 The estimated spectrum of SHR7 rainfall obtained from the Welch technique compared with the
background spectrum at 95 % confidence levels

Table 1 The significant periods at
different scales of MRA decompo-
sition of SHR7 rainfall for the peri-
od 1871–2005. The wavelet details
are represented by d1–d4, and a4 is
the fourth approximation

95 % significant periods (y)
Using MRA+PSD

95 % significant periods
(y) direct PSD

d1 2.6, 3.0 2.3, 22.7

d2 7.5, 6.7, 5.6

d3 13.5, 10.4

d4 23

a4 66.6, 33.3
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2.2 Artificial Neural Networks

Modeling the stochastic process requires a technique like ANN which is capable of modeling
highly non-linear relationships without any prior assumption and can be trained to generalize
accurately when presented with a new data set.

There are several neural network training algorithms. We employ the Back-Propagation
(BP) multilayer feedforward neural network algorithm in our study. BP has three major steps:
Feedforward of input patterns, backpropagation of calculated error and weights adjustment.
The model parameters are listed as follows: for annual data from 1871 to 2005, the training
phase is from 1871 to 1980 which mainly works on adjusting the weights of the neural
network, so that network error, as computed from the difference between network output and
the required output, is minimized. And the Back-propagation algorithm does it through
gradient descent minimization of square of network error. The testing phase is from 1981 to

Table 2 Performance of different
methods in SHR7 rainfall predic-
tion for the time period 1871–2005

Error in Prediction
Using MRA+PSD

Error in Prediction
Using direct PSD

EV 0.3 0.05

CC 0.52 0.11

RMSE 0.03 0.9

Fig. 3 MRA of SHR7 rainfall: a first reconstructed detail d1; b second reconstructed detail d2; c third
reconstructed detail d3; d fourth reconstructed detail d4; e fourth reconstructed approximation a4
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2005 which mainly validates the neural network model obtained from training phase on the
given SHR7 data. Finally, the Multi-Layer Perceptron used contained a single hidden layer
having 9 input neurons, 4 hidden neurons and 1 output neuron. Since it is a time-series data,
the nine input neurons contain the data for the past 9 years. The 1 output neuron represents the
yearly data for the tenth year. For example, if the input neurons use the yearly data for 9 years
from 1991 to 1999 for training of the model, then the output neuron return the data for the year
2000.

With the help of NNSYSID toolbox in Matlab, the neural network is implemented on the
monthly data from 1871 to 2011. The Neural Network AR model is identified using the
‘nnarx’ function in the toolbox to train the network from January 1871–December 1983. For
determining the non-linear AR model, the Levenberg-Marquardt method is used for imple-
mentation. The testing phase, which involved the built-in function ‘nnvalid’, validated the
identified Neural Network AR model on the dataset from January 1984–December 2011. The

Fig. 4 Significance test on MRA of SHR7 rainfall: a PSD on its 1st reconstructed detail d1; b PSD on its 2nd
reconstructed detail d2; c PSD on its 3rd reconstructed detail d3; d PSD on its 4th reconstructed detail d4; e PSD
on its fourth reconstructed approximation a4. Periods (y) are marked at each peak

Fig. 5 Observed and fitted
periodic component for the time
period 1871–2005 and predicted
for the time period 2006–2011
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Neural Network AR model had 9 hyperbolic tangent units in the hidden layer with a lag value
of 5 and 1 output neuron.

2.3 Evaluation Criteria

To determine model fitness, we use three criteria: Root Mean Squared Error (RMSE),
Correlation Coefficient (CC), and Explained Variance (EV). These are commonly used
statistics to evaluate the performance of models. RMSE is defined as the square root of the
mean squared difference between actual and predicted values. RMSE is often used in
conjunction with Standard Deviation. RMSE value less than Standard Deviation shows good
model fitness. CC is a measure of closeness between two variables. CC values which are closer
to +1 and −1 show strong positive and negative correlation, respectively, while values closer to
0 show weak or no correlation. EV is defined as the ratio of variances of forecast and observed
rainfall. There is considerable variability in the Indian monsoons and EV quantifies the
percentage of variability explained by the model. All the statistics are standardized to measure
the percentage departures.

3 Results and Discussion

In the present work we perform the periodicities search in SHR7 rainfall data. We estimate the
PSD function of SHR7 annual rainfall data for the time period 1871–2005 using Welch
technique. The significance testing of periodicities is performed against white noise spectrum,
as explained in Gilman et al. (1963). It is found that there are only two significant periods of 2.3 y

Fig. 6 Probability plot of the stochastic component

Table 3 Performance of two
methods in the training phase Method RMSE CC EV

ANN on SHR7 data 0.31 0.35 0.3875

Periodic (wavelet)+ANN on random part 0.11 0.56 0.5749
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and 22.7 y above 95% confidence level, as shown in Fig. 2. These two periods (listed in Table 1)
are fitted in the sum of cosine series (Eq. 1). The results on evaluating parameters are listed in
Table 2. The EV between SHR7 rainfall and the fitted periodic component is very low as 0.05,
while CC is 0.11. The RMSE is also high as 0.9. Therefore, we observe that performing
prediction on the direct rainfall data is an inadequate choice.

We then perform the periodic modeling at each scale of MRA decomposition. First, the
rainfall time series during 1871–2005 (N=135) is decomposed at dyadic scales (2j, j=1,2,..,J=
log2N), using discrete wavelet transforms (Fig. 3). By its mathematical definition, the MRA
constructs a hierarchy of approximations to a time series x(t), t=0,…N-1, in various subspaces
of a linear vector space, such that d1, for example, is the amount of Bdetail^ lost in going to the
first approximation xN-1. The process is repeated until all the details are extracted which
represent the high frequency components in the signal. Since this decomposition is done at the
dyadic scale, and the length of our data is 135, we consider the first four details (represented as
d1, d2, d3, d4) and fourth approximation (a4) which fully reconstructs our rainfall series. Once
the MRA decomposition is achieved, we have an idea of frequencies (or periods) occurring in
a particular range of scales. For example, at first scale, d1 will have periodicities in the 2–
4 years scale, d2 in the 4–8 years and so on. These periodicities can be then extracted using
spectral analysis Welch technique. The significance levels of periodicities obtained from the
PSD are tested against the appropriate colored reference spectra in each scale band as
described in Azad and Narasimha (2008). The procedure automatically takes account of the
general nature of the rainfall spectrum, including in particular the dip at around 0.25y−1. The
significant periodicities above 95 % confidence levels are shown in Fig. 4 and also listed in
Table 1.

It is worth noting that the classical significance test (against white noise) on the PSD of
SHR7 rainfall time series (without MRA decomposition) showed only two periodicities of 2.3
y and 22.7 y above 95 % confidence level. However, we found there are ten periodicities
significant above 95 % confidence level using the method of PSD on the reconstructed time
series from MRA. This is the strength of our proposed technique. It takes into account the
different noise present in the signal because the data is cut down at various scales and at each
scale a different background spectrum is considered. For example, in Fig. 4a, at first level of
MRA decomposition (i.e., d1) periodicities are tested against blue background spectrum,
whereas at second level of MRA decomposition (i.e., d2), in Fig. 4b, periodicities are tested
against red background spectrum.

The significant periods at each scale are fitted in a sum of cosine series (Eq. 1). The
parameters are estimated using least square and a periodic component is obtained which

Table 4 Performance of two
methods in the training phase Method RMSE CC EV

ANN on SHR7 data 0.09 0.91 0.89

ANN on wavelet MRA 0.02 0.93 0.95

Table 5 Performance of the two
methods in testing phase
(1981–2005)

Method RMSE CC EV

ANN on SHR7 data 0.43 0.16 0.1937

Periodic (wavelet)+ANN on random part 0.18 0.38 0.4524
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accounts for 30 % of the variance of the total rainfall (Table 2). The calculated RMSE
(standardised) value between observed and fitted periodic part is 0.03 and CC is 0.52, which
demonstrate the efficacy of the wavelet decomposition approach. The fitted periodic part is
plotted in Fig. 5 along with the observed data of SHR7 rainfall. In Fig. 5, we also show the
predicted time series. It is to be noted that we have fitted our function for the time period 1871–
2005 and it is found that the MRA technique is able to capture the two important drought years
at 2002 and 2004. We have validated our prediction on the time period 2006–2011 and found
that it is able to capture the trend in the rainfall.

The stochastic or random part is then obtained by removing the periodic component from
the given data. A Q-Q plot for the stochastic data is shown in Fig. 6. The plot reveals that the
distribution does not deviate greatly from normality. It is to be noted that we are not modelling
the probability distribution of the random part but the stochastic part is modelled using ANN.
The details of the method are given in Section 2.2. The results from periodic and random part
are combined and listed in Tables 3, 4, 5 and 6. Table 3 contains the results obtained in training
phase of ANN for both methods, when ANN is applied on MRA and when it is applied
directly on the annual data.

For a 25-year period from 1981 to 2005 the overall performance of the testing phase is
listed in Table 5. Results show that when ANN is applied directly to the SHR7 annual data, it
explains 19 % of the total variance of data. While if the data is treated separately as periodic
(using wavelets) and random part (using ANN), our model explains 45 % of the variance. It is
to be noted that we have used the same input parameters for ANN as described in Section 2.2.
The CC between observed data and fitted is calculated as 0.16 in case of direct method,
whereas 0.38 in case of treated separately. The root mean square is also calculated and listed in
tables.

We apply the same procedure on monthly data for the time period 1871–2011. It is difficult
to find periodicities in monthly data using the same procedure. Hence, we have decomposed
the data into different scales using the above technique of MRA and applied ANN on each
scale time series. The results obtained are shown in Tables 4 and 6. For the time period 1984 to
2011, the overall performance of the testing phase is listed in Table 6. It shows that the ANN
on wavelet decomposition at each scale delivers good results. The root mean square error in
case of ANN on MRA is 0.04, whereas in case of ANN on direct monthly data it is 0.12. Also,
the explained variance in case of ANN on MRA is 93 % and the correlation coefficient
between the regressed and observed series reached 0.90. Therefore, such methodology can be
useful to predict time series up to large extent.

4 Conclusions

An empirical technique has been developed using wavelet-neural network model that allows
the prediction of Indian monsoon rainfall time series. We have analysed the monthly and
annual rainfall data over a spectrally homogenous zone defined as SHR7 constituting the seven

Table 6 Performance of different
methods in the testing phase
(1984–2011)

Method RMSE CC EV

ANN on SHR7 data 0.12 0.85 0.83

ANN on wavelet MRA 0.04 0.90 0.93
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monsoon sub-divisions of Indian subcontinent. The skill of the prediction of annual rainfall in
terms of earlier results is improved because we have investigated the periodic component in
the data using wavelet decomposition against appropriate background spectrum. Also, it is
shown that the ANN, when applied directly on the SHR7 annual data, explains 19 % of the
total variance of data. While if the data is treated separately as periodic (using wavelets) and
random part (using ANN), our model explains 45 % of the variance. Also, the proposed
method is able to extract a larger number of periodic components compared to a simple power-
spectrum analysis. In fact it has been reported in the literature that only 34 % of the Indian
rainfall is predictable (Annamalai 1995) using data analysis techniques. This is because Indian
monsoon rainfall data is highly random, and none of the empirical prediction models have
proved to be successful in predicting the rainfall. However, we have shown that using MRA+
ANN hybrid technique, 45 % of the rainfall is captured, hence the present approach can be
useful in this direction. Therefore, we conclude that our results are more accurate when the
data is treated separately in the proposed framework. Also, spectrally homogenous region for
prediction is a useful choice.
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