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Abstract This study aims at developing generalized quadratic synaptic neural (GQSN) based
reference evapotranspiration (ETo) models corresponding to the Hargreaves (HG) method. The
GQSN models were developed using pooled climate data from different locations under four
agro-ecological regions (semi-arid, arid, sub-humid, and humid) in India. The inputs for the
development of GQSN models include daily climate data of minimum and maximum air
temperatures (Tmin and Tmax), extra terrestrial radiation (Ra) and altitude (alt) with different
combinations, and the target consists of the FAO-56 Penman Monteith (FAO-56 PM) ETo.
Comparisons of developed GQSN models with the generalized linear synaptic neural (GLSN)
models were also made. Based on the comparisons, it is concluded that the GQSN and GLSN
models performed better than the HG and calibrated HG (HG-C) methods. Comparison of
GQSN and GLSN models, reveal that the GQSN models performed better than the GLSN
models for all regions. Both GLSN and GQSN models with the inputs of Tmin, Tmax and Ra

performed better compared to other combinations. Further, GLSN and GQSN models were
applied to locations of model development and model testing to test the generalizing capability.
The testing results suggest that the GQSN and GLSN models with the inputs of Tmin, Tmax and
Ra have a good generalizing capability for all regions.

Keywords Neural networks . Synaptic operation . ANN generalization . Evapotranspiration

1 Introduction

Evapotranspiration (ET) is a key component of the global hydrological cycle and one of the
hardest variables to measure among other hydrologic variables (Fisher et al. 2009); it
is, therefore of interest to agriculturalists, agronomists, climate modelers, ecologists,
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environmentalists, farmers, financiers, hydrologists, and water resources planners/managers.
ET is simply the combining process of evaporation and transpiration where water is transferred
to the atmosphere in a soil-plant system. Though the evaporation and transpiration are separate
processes, they occur simultaneously and difficult to distinguish one from the other (Trajkovic
et al. 2003). A common procedure for estimating ET is to first estimate the gross reference
evapotranspiration (ETo) and to then apply an appropriate crop coefficient (kc).

There exist direct measurement and indirect estimation methods of ETo. However,
direct measurement using lysimeters is cumbersome, time consuming and error-prone.
The indirect methods spanning from physically based complex Penman and FAO-56
Penman-Monteith (FAO-56 PM) to radiation or temperature based equations have
several limitations. The FAO-56 PM equation, yields the most accurate estimate of
ETo across all climatic conditions when required climate data are available. Although
there are several indirect methods, some of them require extended subsets of climatic
data and in some of them the complex relationships in between inputs and outputs is
difficult to be described analytically. Further, the indirect methods simulate real
processes and they must be calibrated with observed climate data. In many cases,
the errors in observed climate data are directly transferred to erroneous ETo estima-
tion. Therefore, the reliability of observed climatic data is essential for better under-
standing the ETo process.

To avoid the limitations of existing ETomodels, the artificial neural networks (ANNs) are
used in ETo modeling. Depending upon the order of synaptic operation in a hidden neuron,
the ANNs are classified as either first order or higher order (such as second or third or Nth)
(Gupta et al. 2003). The Bfirst-order neural networks^ or Blinear synaptic neural (LSN)^
models are synonymous to multilayer feed-forward (MLFF) neural networks. Kumar et al.
(2011) reviewed thoroughly several ETo modeling studies using different MLFF and LSN
models. Only a few important studies which were not reported there are discussed briefly
herein.

Landeras et al. (2008) evaluated seven ANNs to estimate ETo with different input
combinations and compared them with ten locally calibrated empirical and semi-
empirical equations. Kim and Kim (2008) proposed a model which combines both
the generalized regression neural network (GRNN) and genetic algorithm (GA) to form
GRNN-GA model to calculate the pan evaporation (Ep) and the alfalfa reference
evapotranspiration (ETr) with an uncertainty analysis to eliminate the least significant
climatic variables. Marti and Gasque (2010) developed temperature-based ANN models
through the consideration of exogenous ETo records as ancillary inputs in different
geographical contexts of the Valencia region, and compared them with the existing
empirical methods. Marti et al. (2010) described the application of ANNs in estimating
ETo as a function of maximum temperature (Tmax), minimum temperature (Tmin), extra
terrestrial radiation (Ra), daylight hours, exogenous relative humidity, and ETo at
inland, intermediate, and coastal continental contexts in Spain. The performance of
the ANN model was compared with the temperature-based empirical model.
Rahimikhoob (2010) examined the potential use of ANNs based on Tmax, Tmin and
Ra to estimate the ETo, and compared the ANN estimates with the Hargreaves (HG)
and the FAO-56 PM reference model. The HG and calibrated HG (HG-C) significantly
under or overestimated and over or underestimated the mean monthly FAO-56 PM ETo,
respectively. Based on these results, local calibration for each site gave acceptable
results and this method cannot be recommended for utilization in a regional study.
Traore et al. (2010) assessed the performance of MLFF ANN in ETo modeling based on
temperature data, and the ANN models were compared with the HG and FAO-56 PM
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methods. Jahanbani and El-Shafie (2011) employed MLFF type ANNs using Tmax,Tmin

and solar radiation (Sra) as input in predicting daily ETo over a two-month time period.
The results showed that the ANN model outperformed the HG method and HG
significantly underestimated or overestimated ETo of FAO-56 PM method.

Kisi (2011) studied the ability of evolutionary neural networks (ENN) to model ETo using
daily climatic data as inputs. A comparison was made between the estimates provided by the
ENN and those of the following empirical models: California Irrigation Management
Information System (CIMIS), Penman, HG, modified HG, and Ritchie methods and the
conventional ANN. Huo et al. (2012) modeled and compared ANNs with the multi-linear
regression (MLR) models, Penman, and with two empirical models for estimating ETo as a
function of 50-year climatic data. Laaboudi et al. (2012) examined the effectiveness of the
ANNs in the evaluation of daily ETo using incomplete meteorological parameters (air tem-
perature, relative humidity (RH), wind speed (Ws), and the insolation duration) as inputs. El-
Shafie et al. (2013) developed both the ANN and auto-regression moving average (ARMA)
based monthly ETo models, and compared them with the HG method. Shiri et al. (2013)
evaluated the capabilities of generalized neuro-fuzzy (GNF) models in estimating ETo using
two separate sets of weather data from humid and non-humid regions of Spain and Iran. The
GNF models were trained using data from Spanish humid and non-humid regions and tested in
Iranian humid and non-humid stations, respectively. Further, a global GNF model was trained
by considering pooled data of all Spanish stations and tested in Iran. Adamala et al. (2014a)
developed second order neural network based ETo models corresponding to FAO-56 PM
method for different climatic locations in India. The authors compared the performance of the
developed models with the MLFF models. Adamala et al. (2014b) tested the generalizing
capability of higher-order neural networks corresponding to four conventional ETo estimation
methods. Falamarzi et al. (2014) utilized the ANN and wavelet neural network (WNN) models
to forecast daily ETo from Tmax, Tmin and Ws data as inputs, and FAO-56 PM ETo as output.
Shiri et al. (2014) evaluated the generalizability of gene expression programming (GEP) based
ETo models through spatial and temporal k-fold testing in a coastal environment in Iran. Chen
et al. (2015) investigated the transferability of support vector machines (SVM) in the estima-
tion of solar radiation in subtropical zone in China.

All the above cited studies used the MLFF or LSN neural networks to model ETo. These
neural networks are able to extract the first-order or linear correlations that exist between input
and the synaptic weight vectors. However, the climatic variables associated with ETo exhibit
high non-linearity during modeling and these LSN models fail to extract the complete non-
linearity that is present in the data because of linear synaptic operation. To overcome the above
limitation that is associated with the LSN models, many researchers have focused on using
quadratic synaptic neural (QSN) models which employ a second order synaptic operation
between inputs and synaptic weights to extract non-linear correlations (Chakra et al. 2013).
The QSN models are capable of capturing not only the first order correlations but also the
second-order correlations that exist between the components of the input patterns. This
property makes QSN models superior as compared to the LSN models.

One limitation associated with the LSN andQSNmodels is their lack of generalizing capability
because they are applicable to data from the locations which are used in training or model
development (these locations are indicated as ‘model development locations’).When new location
data, i.e., data from locations that were not used during the model development (these locations are
represented as ‘model test locations’) are introduced to the developed network, the network fails to
provide good performance, indicating poor generalizing capacity. This limitation can be overcome
by developing generalized LSN (GLSN) and generalized (GQSN)models which not only perform
well for model development locations but also for model test locations. This can be achieved by
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considering pooled climatic data of various locations which have properties of both spatial and
altitudinal variations during model development.

In a developing country like India, with significant spatial variation in climate, the required
climatic data for ETo estimation may be difficult to be obtained at every location. The most readily
available data for India may be the Tmax and Tmin. This shows the need of developing GQSN
models with minimum available climatic input data for ETo estimation. Further, the development
of GQSN models involves the pooling of climatic data from different locations. Therefore,
consideration of only Tmax and Tmin input data for a number of pooled locations may not improve
the generalizing capability as the latitude (lat) and altitude (alt) from one location to another
location vary significantly. Instead of directly using ‘lat’ as input variable, the latitude is compen-
sated by the Ra in HG equation. Therefore, the objectives of this study are formulated as:

1. To develop GQSN models for the estimation of ETo for different agro-ecological regions
(AERs) of India.

2. To compare the developed GQSN models with the GLSN models.
3. To test the generalizing capability of GQSN and GLSN models to model development and

model testing locations.

2 Materials and Methods

2.1 Study Area and Climate Data

The climatic data that was used in to this study were collected from All India Coordinated
Research Project on Agro-meteorology (AICRPAM), Central Research Institute for Dryland
Agriculture (CRIDA), Hyderabad, Andhra Pradesh, India. The data included all the parameters
that are required for the calculation of ETo by the FAO-56 PMmethod, but only a subsample of the
data that included daily Tmin and Tmax values was used for the development and testing of the
ANNs. This practice simulated conditions of limited input data for the ANNs. The Ra was
calculated from Hargreaves and Samani (1985) equation. Because of the unavailability of
measured lysimeter ETo data for the selected study locations, ETo was estimated by the FAO-56
PM method which is considered as the method for the computation of ETo in the absence of
lysimeter data (Allen et al. 1998). The data that was used in this work was collected by 25 climatic
stations that were distributed over four AERs: semi-arid, arid, sub-humid, and humid. Figure 1
shows the geographical locations of the selected stations and their related AERs. Table 1 presents
information related to altitude, observation periods, and statistical summary of the FAO-56 PM
ETo for the chosen locations. The altitude of selected locations varied from 10 m at Mohanpur to
1600 m at Ranichauri above mean sea level. The parameters ETomean

and σETo denote mean and
standard deviation of ETo, respectively. The mean (time-averaged) value of ETo varied between a
minimum of 2.87 mm day−1 at the sub-humid region of RN and a maximum of 6.13 mm day−1 at
the arid region of AT. The minimum and maximum standard deviations of ETo were observed in
the humid region of DP (1.0 mm day−1) and the semi-arid region of AK (2.56 mm day−1),
respectively. Figure 2 shows the variation ofmean daily FAO-56 PMETo and climatic data of Tmax
and Tmin for 25 locations. The highest and lowest mean (time-averaged) values of Tmax were
observed at a semi-arid region of KV and sub-humid region of RN locations, respectively.
Similarly, the maximum and minimum mean (time-averaged) values of Tmin occurred at a humid
region of TH and sub-humid region of RN locations, respectively.
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2.2 Generalized Artificial Neural Network (GANN) Models

The GANNs consist of the conventional neural units (NU) which provide the neural output as a
nonlinear function of the linear combination of the weighted neural inputs. Generally, GANNs are
represented as parallel distributed units with a crucial ability of learning and adaptation. The
architecture of the GANN models is accomplished by capturing the higher-order association as
well as the linear association between the elements of the input patterns. The higher-order weighted
combination of the inputs will yield higher neural performance as they require fewer training
passes and a smaller training set to achieve the generalization over the input domain. But for
complex hydrologic variables, there may exist some of the nonlinear correlations also. GANNs
have good computational, storage, and learning properties due to their ability to exploit the cross-
and self-correlations between the inputs (Taylor and Commbes 1993). Therefore, to extract higher
order correlations with a good learning capability, these GANNs can be used as an efficient tool.

Generally, GANNs are categorized as GLSN and GQSN models based on the type
of synaptic operation. The processing of information in any biological or artificial

Fig. 1 Geographical locations of study sites in India
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neural models involves two distinct operations: (a) synaptic operation; and (b) somatic
operation. In synaptic operation, different weights are assigned to each input matrix
based on past experience or knowledge with an addition of bias or threshold (Fig. 3).
In somatic operation, the synaptic output is applied to a nonlinear activation function
(ϕ) (Tiwari et al. 2012). Mathematical representation of synaptic and somatic opera-
tions in a neural network is shown in Eqs. (1) and (2), respectively.

y ¼
Xn
i¼0

wixi ¼ w0x0 þ w1x1 þ…þ wnxn ð1Þ

z ¼ ϕ y½ � ð2Þ
where

Table 1 Characteristics and summary statistics of daily FAO-56 PM ETo for the study locations

Location Index Alt. (m) Role Period ETomean
(mm day−1) σETo (mm day−1)

Semi-arid

Parbhani PR 423 Tr, V, Ts 2001–2005 4.84 1.68

Solapur SL 25 Tr, V, Ts 2001–2005 4.83 1.51

Bangalore BN 930 Tr, V, Ts 2001–2005 4.47 1.10

Kovilpatti KV 90 Tr, V, Ts 2001–2005 5.32 1.66

Udaipur UD 433 Tr, V, Ts 2001–2005 4.20 1.83

Kanpur KN 126 Ts 2004–2005 4.06 1.93

Anand AN 45 Ts 2002–2005 4.20 1.45

Akola AK 482 Ts 2001–2003 5.25 2.56

Arid

Anantapur AT 350 Tr, V, Ts 2001–2005 6.13 1.82

Hissar HS 215 Tr, V, Ts 2001–2005 4.21 2.12

Bijapur BJ 594 Ts 2001–2004 4.42 1.26

Sub-humid

Raipur RP 298 Tr, V, Ts 2001–2005 4.31 1.87

Faizabad FZ 133 Tr, V, Ts 2001–2005 3.77 1.65

Ludhiana LD 247 Tr, V, Ts 2001–2005 3.91 1.98

Ranichauri RN 1600 Tr, V, Ts 2001–2005 2.87 1.25

Jabalpur JB 393 Ts 2002–2005 3.92 1.69

Samastipur SM 52 Ts 2004–2005 3.85 1.58

Bhubaneshwar BB 25 Ts 2002–2005 4.37 1.57

Ranchi RC 625 Ts 2005 3.46 1.29

Rakh Dhiansar RD 332 Ts 2005 3.07 1.61

Humid

Palampur PL 1291 Tr, V, Ts 2001–2005 3.43 1.48

Jorhat JR 86 Tr, V, Ts 2001–2005 2.90 1.01

Mohanpur MH 10 Tr, V, Ts 2001–2005 3.60 1.24

Dapoli DP 250 Tr, V, Ts 2001–2005 3.65 1.00

Thrissur TR 26 Ts 2001–2004 4.27 1.27

Tr train, V validation, Ts test
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y neural synaptic output
z neural somatic output
w0 threshold weight
x0 constant bias (=1)
xi neural inputs at the ith step
wi synaptic weights at the ith step
ϕ activation function (sigmoidal)
n number of elements in the input vector.

2.2.1 Generalized Linear Synaptic Neural (GLSN) Model

The GLSN model provides the neural output as a nonlinear function of the weighted linear
combination of the neural inputs. In GLSNmodel, the synaptic operation is of the first order which
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FAO-56 PM ETo (mm/day) Tmax (degree centigrade) Tmin (degree centigrade)

Fig. 2 Station wise variation of mean daily FAO-56 PM ETo, Tmax and Tmin

Fig. 3 Architecture of generalized synaptic neural network models
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means that only first order correlations exist between the inputs and the synaptic weights of the
model. LetN and n be the order and the number of inputs to the neuron, respectively. ForN=1, the
mathematical expression of GLSN model is given as (Redlapalli 2004):

zð ÞN¼1 ¼ ϕ
Xn
i1¼0

wi1xi1

 !
ð3Þ

where

xi1 neural inputs at the i1
th step

wi1 synaptic weights at the i1
th step.

2.2.2 Generalized Quadratic Synaptic Neural (GQSN) Model

The synaptic operation of the GQSN embraces both the first and second-order neural input
combinations with the synaptic weights. In GQSN model, the synaptic operation in a neural
unit or a node is of the second order which means that there exist not only first order but also
second order correlations with second order terms between inputs and synaptic weights. For
N=2, the mathematical model of GQSN is represented as (Redlapalli 2004):

zð ÞN¼2 ¼ ϕ
Xn
i1¼0

Xn
i2¼i1

wi1i2xi1xi2

 !
ð4Þ

where

xi2 neural inputs at the i2
th step

wi1 i2 synaptic weights at the i1i2
th
step.

2.3 Conventional Evapotranspiration Computation Methods

The HG method uses only temperature and latitude data for estimating ETo. The Hargreaves
equation is one of the simplest equations used to estimate ETo. It is expressed as (Hargreaves
and Samani 1985):

ETo ¼ 0:0023Ra

ffiffiffiffiffiffiffi
TD

p
Tavg þ 17:8
� � ð5Þ

where

ETo reference evapotranspiration (mm day−1)
Tmax maximum daily air temperature at 2 m height (°C)
Tmin minimum daily air temperature at 2 m height (°C)
TD difference between Tmax and Tmin (°C) at 2 m height
Ra extraterrestrial solar radiation (function of latitude and day of the year) (MJ m−2 day−1)
Tavg average daily air temperature at 2 m height (°C).

The calibrated HG (HG-C) equation is developed by calibrating the HG equation
with reference to standard FAO-56 PM equation for a particular location. FAO of the
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United Nations accepted the FAO-56 PM method as a standard equation for the
estimation of ETo and the evaluation of other methods (Allen et al. 1998):

ETo ¼
0:408Δ Rn � Gð Þ þ γ

900

Tavg þ 273
Ws es � eað Þ

Δþ γ 1þ 0:34Wsð Þ ð6Þ

where

Rn daily net solar radiation (MJ m−2 day−1)
G soil heat flux (MJ m−2 day−1)
es saturation vapor pressure (kPa)
ea actual vapor pressure (kPa)
Δ slope of saturation vapor pressure versus air temperature curve (kPa °C−1)
Ws wind speed at 2 m height (m s−1)
γ psychrometric constant (kPa °C−1).

2.4 Data Preparation

For the development of GLSN and GQSN models for different AERs, locations having
daily data for the period 2001–2005 were chosen. The data were divided into training
sets (denoted as Tr and used to adjust the weights and biases during learning), validation
sets (denoted as V and used to avoid overfitting), and testing sets (denoted as Ts and used
to predict with new data). The locations with ‘Tr, V, Ts’ role (Table 1) were used to
develop GLSN and GQSN models (model development locations). These locations for
model development were selected because of the availability of a larger set of data
during the study period as compared to other locations. In this study, the habitual practice
of using a standard holdout strategy for dividing the data was followed as it is a very
common practice in hydrological modeling. For these locations, 70 and 30 % of data for
the period 2001–2004 were used for training and validation, respectively. It would be
more complicated to use different year of dataset for different locations. Therefore, the
same 2005 year data was used for testing the performance of developed models.
However, the data for the same testing (2005) year have different complexity considering
the different agro-climatic zones.

The data were pooled from (PR, SL, BN, KV, and UD), (AT and HS), (RP, FZ, LD,
and RN), and (PL, JR, MH, and DP) locations (Table 1) to develop GLSN and GQSN
models for semi-arid, arid, sub-humid, and humid regions, respectively. To test the
generalizing capability of the developed models (either for practical application or just
for testing purposes), these models were applied to data from the locations that were not
used during model development. The locations with only ‘Ts’ role (Table 1) were used to
test the generalizing capability of the developed models (model testing locations). As an
example, for the locations that lie in semi-arid regions (PR, SL, BN, KV, and UD) the
pooled data of 2001–2004 were used to train (including validation) the GLSN and GQSN
models, while the data of 2005 were used to test these models. The generalizing
capability of GLSN and GQSN models was tested using data from locations (KN, AN,
and AK) that were not included during development in semi-arid region. In a similar
way, different GLSN and GQSN models were developed and tested for their generaliza-
tion capabilities in arid, sub-humid, and humid regions. The outlined methodology for
developing both the GLSN and GQSN models is shown in Fig. 4.
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2.5 Criteria for Preprocessing and Estimation of Parameters

As a first step in developing GLSN and GQSN models, normalization before present-
ing data as input to network and denormalization after developing optimum network
were performed using a Matlab built-in function called ‘mapstd’ which rescales data
so that their mean and standard deviation become equal to 0 and 1, respectively. The
inputs for developing GLSN and GQSN models include Tmax, Tmin, Ra and alt. This
study examined four combinations of these inputs to both models. Thus, the sensitiv-
ity of ETo on each of these variables was evaluated. Accordingly, the input combi-
nations evaluated in the present study are: (i) Tmax, Tmin, Ra and alt; (ii) Tmax, Tmin

Daily climate data (2001-05) of 25 stations, India 

Data pre-processing and Normalization 

Data division 

Training (70% of 2001-04) Validation (30% of 2001-04) Testing (2005) 

Development of GLSN and GQSN models 

Consider pooled data for four AERs

Consider different input combinations 

4 inputs: Tmax, Tmin, Ra, and alt 

3 inputs: Tmax, Tmin, and Ra

2 inputs: Tmax and Tmin

3 inputs: Tmax, Tmin, and alt 

Development GLSN and GQSN models 

Simulated ETo developed ANN models 

Denormalization 

Evaluation of ANN models with performance indices RMSE, R2, and RE

Select an optimum ANN model with minimum error criteria 

No. of Hidden layers = 1 

No. of Hidden nodes: 1-15 

Activation function: Sigmoid  

Fig. 4 Methodology for developing both the GLSN and GQSN models
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and Ra; (iii) Tmax, Tmin and alt; and (iv) Tmax and Tmin. The target consists of the
daily value of ETo obtained by the FAO-56 PM equation. Only one hidden layer was
used in both the GLSN and GQSN models, as it is enough for the representation of
the non-linear relationship between climate variables and ETo (Kumar et al. 2002).

The important parameters for network training are the learning rate, which tends
towards a fast, steepest-descent convergence, and the momentum, a long-range func-
tion preventing the solution from being trapped into local minima. The other param-
eters are activation function, error function, learning rule, and initial weight distribu-
tion (i.e., initialization of weights). Table 2 shows the calibrated parameters of
developed models. Sigmoidal activation function was employed in the output layer
neurons. Figure 5 illustrates a plot for finding the optimum number of hidden nodes
for both GLSN and GQSN models. The optimum number of hidden nodes was found
to be i+1 (where i = number of nodes in the input layer) and 2 for GLSN and GQSN
models, respectively, after several trial and error experiments with 1 to 15 hidden
nodes based on minimum RMSE and maximum R2 criteria (Adamala et al. 2014a).
The threshold RMSE error was set at 0.0001. A learning rate and momentum rate of
0.65 and 0.5, respectively, were fixed for the selected network after several trials. The
network training was continued until the threshold RMSE error was reached and was
found to stop after approximately 500 epochs with the range of possible numbers of
epochs extending from 100 to 1000. For developing GQSN based daily ETo models,
the code was written using Matlab 7.0 programming language.

2.6 Performance Evaluation

The performance evaluation of all the developed models is carried out for both the
training, validation and testing periods in order to examine their effectiveness in
simulating ETo. The performance indices used in evaluating the models are the: root
mean squared error (RMSE, mm day−1), relative error (RE), and coefficient of
determination (R2, dimensionless). A description of the aforementioned indices is
provided below.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Ti−Oið Þ
2

vuut ð7Þ

Table 2 Calibration parameters of developed models

Calibrated parameters Trial range Optimum values

Learning rate 0.1 to 0.9 with a step of 0.05 0.65

Momentum 0.1 to 0.9 with a step of 0.1 0.5

Hidden node numbers 1 to 15 i+1 for GLSN and 2 for GQSN models

No. of epochs 100 to 1000 at a step of 100 500

Threshold RMSE error Set at 0.0001 0.0001

Activation function Sigmoidal Sigmoidal

i = number of nodes in the input layer
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R2 ¼

Xn
i¼1

Oi−O
� �

Ti−T
� �" #2

Xn
i¼1

Oi−O
� �2Xn

i¼1

Ti−T
� �2 ð8Þ

RE ¼
X n

i¼1

Ti � Oij j
Ti

ð9Þ

where

Ti and Oi target (FAO-56 PM ETo) and output (ETo predictions of the
GLSN and GQSN models) values at the ith step, respectively

n number of data points
T and Ō average of target and output values, respectively.

3 Results and Discussion

As per the above mentioned criteria in Section 2.5, the GLSN and GQSN models were trained
and the optimum parameters were found after a number of trials. This section presents the best
results of GLSN and GQSN models corresponding to HG conventional ETo method in four
AERs.

3.1 Simulation Results of Developed Models

Table 3 shows the performance of GLSN and GQSN models (with four input combinations) in
terms of RMSE, R2, and RE in different AERs. The GQSN models were compared with the
GLSN models to test the relative performance of quadratic (second order) over linear (first
order) neural models. Table 3 indicates that the GQSN model whose inputs are Tmax, Tmin, Ra

and alt (input combination (i)) performed better with the smallest RMSE (mm day−1) values of
0.635, 0.775, 0.647 and 0.618, and the highest R2 values of 0.847, 0.870, 0.878 and 0.773 for
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Fig. 5 Trend of RMSE and R2 with the number of hidden nodes for GLSN and GQSN models
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semi-arid, arid, sub-humid and humid regions, respectively. The RE values of GQSN models
were 0.109, 0.115, 0.112 and 0.149 for semi-arid, arid, sub-humid and humid regions,
respectively. The GLSN model with input combination (i) is the second better model with
the RMSE (mm day−1) values of 0.653, 0.838, 0.658 and 0.629 for semi-arid, arid, sub-humid
and humid regions, respectively (Table 3). The GQSN model with input combination (iv),
which has only Tmax and Tmin as input, had the worst performance with RMSE (mm day−1)
values 0.817, 1.055, 0.735 and 0.842 for semi-arid, arid, sub-humid and humid regions,
respectively. The performance of GLSN model with input combination (iv) showed RMSE
(mm day−1) values of 0.836, 1.093, 0.749 and 0.852 for semi-arid, arid, sub-humid and humid
regions, respectively. Similarly, the RMSE values of GLSN were slightly higher compared to
GQSN model RMSE values for the input combinations (ii) and (iii) in four AERs.

This confirms the better performance of GQSN models over GLSN models. The reason for
this superior performance of the GQSN models over the GLSN models is probably their
capability to capture non-linearity, as the GQSN models use non-linear approximation func-
tions with second order polynomials (Eq. 4). Further, the models with the input combination (i)
performed better compared to models of other combinations. The GLSN and GQSN models
with the input combination (i) performed approximately 5, 10, and 20 % superior compared to
the input combinations (ii), (iii) and (iv), respectively, for all AERs. The reason for this
superior performance might be due to the inclusion of alt and Ra data as inputs which may
have great influence on generalized models as these were developed using data from different
locations. The performance of the GLSN and GQSN models was decreased by 5 and 10 %, for
models developed without considering alt and Ra. This shows the importance of altitude in
modeling generalized models as it varies from one location to other location very much
(Table 1). The Ra is a function of latitude, which is also a very important parameter that
should be considered as GLSN and GQSN models were developed with the pooled data of
many locations in different AERs during the development of generalized models.

The GQSN and GLSN models were further compared with the HG and HG-C method, to
check the superiority of ANN (GLSN and GQSN) models over conventional methods
(Table 3). The RMSE (mm day−1) values of the HG method were 0.962, 1.247, 1.058 and
0.959 for semi-arid, arid, sub-humid and humid regions, respectively. The HG-C model
yielded RMSE (mm day−1) values of 0.767, 1.452, 1.510 and 1.379 for semi-arid, arid, sub-
humid and humid regions, respectively. This statistic confirms the greater RMSE values of HG
and HG-C methods compared to the GLSN and GQSN models. Therefore, it is feasible to use
ANNs in modeling ETo.

Figure 6 shows the scatter plots of the predictions of developed GLSN, GQSN models and
HG and HG-C estimated ETo with respect to the FAO-56 PM in four AERs. Due to the
superior performance of GQSN and GLSN models with input combination (i) over the other
combinations, the scatter plots were drawn only for these models corresponding to four AERs
and are shown in Fig. 6 which confirms the statistics given in Table 3. Figure 6 results illustrate
that the agreement between the ETo predictions of the GQSN models and the FAO-56 PM ETo
predictions was better for all regions. The GQSN models, result in R2 values>0.847 in all
regions except for the humid region (R2=0.773). The reason for this worse performance of the
GQSN models in humid regions might be the absence of relative humidity as an input during
model development, because humidity is an important variable in humid regions. The simple
linear regression equations (y = a0x + a1) are also presented in the figure. The fit line equations
in Fig. 6 gave the values of a0 and a1 coefficients close to one and zero, respectively.
Comparison of GLSN and GQSN plots with the HG and HG-C models reveals that the spread
of HG and HG-C estimated ETo around the 1:1 line is less than that of the GLSN and GQSN
estimated ETo. The GLSN and GQSN models linearly fit on 1:1 line more perfectly than
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the HG and HG-C models. It can be clearly seen that the values of GLSN and GQSN models
are denser in the neighborhood of the linear 1:1 line.

Figure 7 shows the scatter plots of developed GLSN and GQSN models with respect to the
FAO-56 PM in four AERs with an input combination of Tmax, Tmin and Ra. Similarly to Fig. 6,
the distributions of the ETo predictions of the GQSN models were slightly better than the
distributions of the ETo predictions of the GLSN models in Fig. 7. These scatter plots confirm
the statistics given in Table 3 for four AERs. Regression analysis was performed between the
FAO-56 PM ETo and ETo estimated with the GLSN and GQSN models and the best-fit lines
are shown in Fig. 7. The values of R2 for GLSN and GQSN models were found to be >0.739
and >0.754, respectively. The fit line equations (y = a0x + a1) in Fig. 7 gave the values of a0
and a1 coefficients close to one and zero, respectively.

3.2 Generalization of GLSN and GQSN Models

In order to study the generalizing capability of the developed GLSN and GQSN models
for different regions, these models were tested under two different scenarios: (a) with
data of year 2005 from locations that were used during model development (model
development locations); and (b) with new data from locations that were not used during
model development (model testing locations). Tables 4, 5 and 6 show the performance
statistics in terms of RMSE, R2 and RE, respectively, of GLSN and GQSN models with
individual location data under scenario (a) for different AERs. For example, in the semi-
arid region, the GLSN and GQSN models were tested in five locations, namely PR, SL,
BN, KV, and UD (2005 year data for each individual location). Similarly, GQSN models

Fig. 6 Scatter plots of GLSN, GQSN, HG, and HG-C methods with respect to the FAO-56 PM for different
AERs with an input combination of Tmax, Tmin Ra, and alt
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were tested with AT and HS (arid), RP, FZ, LD, and RN (sub-humid), and PL, JR,
MH, and DP (humid) location data. For all the above cases, the performance of
GQSN models with input combination (ii) was superior compared to other combina-
tions. Further, the GQSN models showed slightly better generalization compared to
GLSN models. The GLSN and GQSN models with input combinations (i) and (iii)
failed to show generalizing capability, as these models showed higher RMSE and very
low R2 values compared to other combinations (ii) and (iv). Both models with these

Table 4 Performance statistics in terms of RMSE of generalized models with model development locations

AER Location RMSE (mm day−1)

(i) (ii) (iii) (iv) HG HG-C

GLSN GQSN GLSN GQSN GLSN GQSN GLSN GQSN

Semi-arid PR 1.817 1.776 0.649 0.619 2.769 2.312 0.726 0.706 1.059 1.705

SL 1.607 1.610 0.708 0.696 2.639 2.376 0.750 0.744 1.001 1.465

BN 2.990 2.646 0.664 0.646 2.181 1.941 0.804 0.706 0.964 0.653

KV 3.396 3.631 1.006 0.976 2.663 2.293 1.081 1.026 1.128 1.431

UD 2.122 1.910 0.785 0.745 2.634 2.135 0.896 0.864 1.078 1.448

Arid AT 2.173 1.530 1.014 0.973 2.724 2.236 1.164 1.046 1.350 1.704

HS 2.368 1.756 0.839 0.753 2.967 2.436 0.957 0.928 1.134 1.723

Sub-humid RP 2.220 2.085 0.693 0.649 2.025 1.753 0.797 0.711 0.998 1.505

FZ 1.973 1.341 0.623 0.615 1.921 1.787 0.684 0.673 1.259 2.016

LD 2.324 1.757 0.659 0.653 2.327 2.041 0.799 0.791 0.881 1.161

RN 2.585 2.172 0.602 0.585 2.627 2.315 0.746 0.725 0.880 0.832

Humid PL 2.936 2.114 0.652 0.647 2.971 2.605 0.791 0.759 0.861 0.787

JR 2.605 1.522 0.706 0.686 2.760 2.092 0.734 0.712 1.015 1.331

MH 2.713 1.938 0.647 0.590 2.497 2.265 0.707 0.687 1.137 1.857

DP 2.868 2.537 0.621 0.592 2.092 1.861 0.749 0.742 1.129 1.813

Input combinations—(i) Tmax, Tmin, Ra, and alt; (ii) Tmax, Tmin, and Ra; (iii) Tmax, Tmin, and alt; (iv) Tmax and Tmin

Fig. 7 Scatter plots of GLSN and GQSN models with respect to the FAO-56 PM for different AERs with an
input combination of Tmax, Tmin and Ra
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Table 5 Performance statistics in terms of R2 of generalized models with model development locations

AER Location R2

(i) (ii) (iii) (iv) HG HG-C

GLSN GQSN GLSN GQSN GLSN GQSN GLSN GQSN

Semi-arid PR 0.128 0.146 0.866 0.868 0.108 0.115 0.810 0.823 0.738 0.838

SL 0.260 0.277 0.820 0.830 0.157 0.186 0.776 0.787 0.683 0.783

BN 0.365 0.386 0.702 0.719 0.169 0.196 0.597 0.626 0.569 0.769

KV 0.277 0.281 0.624 0.637 0.132 0.146 0.539 0.574 0.517 0.587

UD 0.243 0.279 0.831 0.856 0.146 0.170 0.772 0.793 0.676 0.776

Arid AT 0.489 0.511 0.680 0.721 0.133 0.152 0.640 0.678 0.575 0.575

HS 0.386 0.496 0.822 0.860 0.113 0.133 0.774 0.790 0.645 0.845

Sub-humid RP 0.162 0.186 0.875 0.897 0.179 0.205 0.840 0.867 0.830 0.829

FZ 0.302 0.396 0.870 0.874 0.245 0.265 0.843 0.847 0.792 0.792

LD 0.269 0.302 0.897 0.897 0.146 0.154 0.846 0.849 0.757 0.857

RN 0.196 0.219 0.877 0.884 0.124 0.148 0.712 0.732 0.691 0.891

Humid PL 0.211 0.245 0.742 0.797 0.193 0.206 0.692 0.725 0.632 0.832

JR 0.267 0.325 0.547 0.558 0.232 0.257 0.511 0.516 0.494 0.511

MH 0.146 0.255 0.765 0.796 0.130 0.145 0.721 0.748 0.502 0.802

DP 0.154 0.185 0.743 0.764 0.125 0.155 0.580 0.602 0.483 0.683

Input combinations—(i) Tmax, Tmin, Ra, and alt; (ii) Tmax, Tmin, and Ra; (iii) Tmax, Tmin, and alt; (iv) Tmax and Tmin

Table 6 Performance statistics in terms of RE of generalized models with model development locations

AER Location RE

(i) (ii) (iii) (iv) HG HG-C

GLSN GQSN GLSN GQSN GLSN GQSN GLSN GQSN

Semi-arid PR 0.283 0.227 0.102 0.098 0.353 0.321 1.203 0.119 0.168 0.255

SL 0.259 0.217 0.114 0.112 0.346 0.291 1.293 0.122 0.159 0.226

BN 0.387 0.354 0.128 0.112 0.302 0.275 0.144 0.132 0.098 0.114

KV 0.401 0.398 0.173 0.150 0.321 0.312 0.172 0.161 0.174 0.211

UD 0.353 0.287 0.178 0.132 0.546 0.421 0.171 0.163 0.192 0.249

Arid AT 0.245 0.167 0.198 0.131 0.281 0.249 0.160 0.141 0.191 0.267

HS 0.365 0.289 0.153 0.134 0.401 0.378 0.186 0.179 0.195 0.283

Sub-humid RP 0.761 0.678 0.129 0.112 0.456 0.344 0.631 0.609 0.177 0.251

FZ 0.891 0.795 0.120 0.101 0.406 0.373 0.142 0.123 0.225 0.325

LD 1.134 1.038 0.114 0.113 0.678 0.449 0.155 0.145 0.169 0.216

RN 0.608 0.509 0.153 0.137 0.463 0.439 0.205 0.197 0.133 0.201

Humid PL 0.457 0.394 0.198 0.162 0.446 0.435 0.560 0.548 0.141 0.165

JR 0.389 0.324 0.204 0.182 0.469 0.391 0.201 0.184 0.231 0.291

MH 0.621 0.547 0.145 0.128 0.379 0.359 0.163 0.154 0.220 0.328

DP 0.426 0.391 0.151 0.142 0.338 0.314 0.179 0.177 0.220 0.322

Input combinations—(i) Tmax, Tmin, Ra, and alt; (ii) Tmax, Tmin, and Ra; (iii) Tmax, Tmin, and alt; (iv) Tmax and Tmin
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combinations (i) and (iii) showed worse performance even when compared to the
model. For example, in the semi-arid region, the GLSN and GQSN models when
compared to the model with the combination (iv) which has inputs of Tmax and Tmin

and the conventional HG method. In both combinations (i) and (iii), the altitude of
different locations was included as an input variable. Therefore, these results show
that the consideration of altitude is not necessary while testing generalizing capability
of ANN models, as the altitude forces the models to show worst performance.
Because of this, the generalizing capability was lost during testing. These results imply
that in scenario (a) the performance of both the GQSN andGLSNmodels with (ii) and (iv) input
combinations showed good generalization for all locations under four AERs.

Table 7 illustrates the performance statistics of GLSN and GQSNmodels with model testing
locations in different regions (scenario (b)). In the semi-arid region, these models were tested in
three new locations, namely KN, AN, and AK. Similarly, GLSN andGQSNmodels were tested
with new data from different locations in the other regions, namely BJ (arid), JB, SM, BB, RC
and RD (sub-humid), TR (humid). In this scenario (b), a behavior of the developed models
similar to the one noticed under scenario (a) was observed, i.e., GLSN and GQSN with input
combinations (ii) and (iv) performed better than the other combinations (i) and (iii). Therefore,
the results pertaining to GLSN and GQSN models with input combinations (i) and (iii) are not
shown in Table 7. The comparison of the results of GLSN and GQSN models showed that the
performance of both models was comparable with slightly better performance of the GQSN
models in all locations in every AER. Compared to GQSN models with the input combination
(iv), the models which have Tmax, Tmin, and Ra as inputs showed superior performance.
Therefore, under scenario (b), the superior performance of GQSN models with Tmax, Tmin,
and Ra as inputs was observed in almost every location in all regions. This confirms the
importance of Ra component as input during the development of HG based generalized models.
Further, in Table 7, the performance of the HG method with respect to the FAO-56 PM
prediction of ETo is also displayed. The GLSN and GQSN models performed better than their
conventional counterpart (HG) in all locations in every AER. These results suggest that both the
GLSN and GQSN models are more accurate than the conventional method during the gener-
alization testing as well.

4 Conclusions

The ability of GQSN models corresponding to HG method to estimate ETo using pooled daily
climate data from different locations in four AERs in India was studied in this paper. For the
development of GQSN models, different input combinations were considered to assess the
effect of each variable on the ANN estimated ETo. The GQSN models were compared with the
GLSN models. To test the accuracy of GQSN and GLSN models, their performance was also
compared with the performance of the conventional HG and HG-C method against the FAO-
56 PM method. The generalizing capability of the developed GQSN models was tested under
two scenarios: (a) model development locations; and (b) model testing locations. The GLSN
and GQSN models with the input combination (i) performed approximately 5, 10, and 20 %
better compared to other combinations (ii, iii, and iv, respectively) for all AERs. Further, the
GQSN models showed better performance when compared to GLSN models in all regions
during model development. The developed GQSN and GLSN models performed much better
than the corresponding conventional HG method. During testing of the generalizing capability
of GQSN models for the above two scenarios, the GQSN models performed better than the
GLSN models in all cases. Further, the GQSN and GLSN models with the input combinations
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(ii) and (iv) showed superior performance as compared to other combinations. The models
with the input combination (i) and (iii) failed to show generalizing capability during both
scenarios (a) and (b). Therefore, inclusion of altitude as an input may decrease the performance
of generalized models during testing. The performance of generalized models was increased
with the inclusion of latitude or Ra as an input during temperature-based ETo modeling in

Table 7 Performance statistics of GLSN and GQSN models with model testing locations

Location Performance Models with the input combination HG

Tmax, Tmin, and Ra Tmax and Tmin

GLSN GQSN GLSN GQSN

Semi-arid

KN RMSE 0.855 0.843 0.992 0.990 1.058

R2 0.815 0.826 0.742 0.752 0.729

RE 0.152 0.143 0.190 0.184 0.156

AN RMSE 0.641 0.619 0.773 0.748 1.146

R2 0.817 0.831 0.730 0.746 0.702

RE 0.116 0.109 0.150 0.142 0.191

AK RMSE 1.097 0.838 1.160 1.159 1.519

R2 0.783 0.819 0.791 0.801 0.693

RE 0.168 0.102 0.171 0.170 0.208

Arid

BJ RMSE 0.718 0.715 0.753 0.746 1.023

R2 0.702 0.713 0.668 0. 687 0.602

RE 0.129 0.119 0.138 0.121 0.168

Sub-humid

JB RMSE 0.682 0.681 0.712 0.711 1.208

R2 0.856 0.862 0.838 0.838 0.745

RE 0.128 0.116 0.135 0.135 0.217

SM RMSE 0.702 0.692 0.809 0.808 0.942

R2 0.804 0.809 0.739 0.739 0.695

RE 0.131 0.127 0.162 0.161 0.186

BB RMSE 0.862 0.854 0.882 0.871 1.007

R2 0.737 0.740 0.639 0.686 0.612

RE 0.159 0.154 0.156 0.143 0.175

RC RMSE 0.574 0.571 0.617 0.603 1.277

R2 0.815 0.819 0.779 0.791 0.600

RE 0.125 0.121 0.142 0.136 0.243

RD RMSE 0.662 0.653 0.725 0.722 1.550

R2 0.833 0.837 0.799 0.800 0.786

RE 0.151 0.144 0.181 0.182 0.305

Humid

TR RMSE 0.914 0.912 1.193 1.056 1.456

R2 0.489 0.512 0.481 0.485 0.406

RE 0.165 0.164 0.176 0.158 0.170
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India. Overall, better performance of GLSN and GQSN models in comparison to HG and HG-
C method in different AERs in India showed that these models not only have better potential
but also have good generalizing capability. It may be noted that the main focus of this study
was to evaluate the generalizing capability of quadratic neural networks in ETo modeling. This
study does not intend to replace the well established standard FAO-56 PM method. Further,
more studies are required to test the generalizing capability of GQSN models with limited
climate data for different climatic regions of other countries.
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