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Abstract Drought events can cause severe damages to agriculture and in particular
to rainfed agriculture. The problems can be more evident in semi-arid regions of the
Mediterranean. It is of great importance to assess the impacts of drought on the
yield at an early stage, in order to be able to take measures on time for mitigating
the anticipated losses, supporting the farmers, and enhancing food security. The aim
of the paper is to formulate a simple methodology for estimating the impacts of
drought on rainfed agriculture, and especially on wheat yield, prior to the harvest.
The Reconnaissance Drought Index (RDI) is used as the main independent variable
in linear regression models for the assessment of drought effects on wheat yield. To
test the proposed methodology, data from two rural areas of Greece are used and the
wheat yield is simulated using the AquaCrop model. Multiple regression models
with variables that include RDI and the minimum temperature for winter months are
tested and evaluated through a cross-validation process. The performance of the
models is assessed by various criteria. Indicatively, the correlation coefficients at
each study area reach 0.87 and 0.91 for predictions 1 month before harvest, 0.84
and 0.82 for 2 months and 0.67 and 0.77 for 3 months before harvest. The results
show that the RDI, for reference periods that represent the critical development
stages of the crop, is highly correlated with the wheat yield. A satisfactory predic-
tion of the drought impacts on wheat yield 2 to 3 months before the harvest can be
achieved. The proposed methodology can be useful to the authorities, stakeholders
and insurance services for facing drought events and mitigating losses in rainfed
agriculture.
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1 Introduction

Drought is a regional recurrent phenomenon, characterised by a temporary severe decrease of
water availability, with significant societal, economic and environmental impacts (Tsakiris
et al. 2013). The degree of a region’s vulnerability depends on many environmental and social
factors (Bordi and Sutera 2008). Agriculture is one of the most vulnerable sectors to drought,
especially in arid and semi-arid regions, such as the Mediterranean (Kumar 1998; Tsakiris and
Tigkas 2007). The impacts of drought on agriculture in a region cannot be easily measured,
because there is not a unique way to establish a relationship between a key factor that
determines drought and crop yield. The selection of a single crop on which emphasis may
be given, may simplify the analysis of agricultural drought for a region (Kumar and Panu
1997).

Wheat is a widely cultivated crop with a major role in world’s economy. Winter wheat is a
typical rainfed crop in the Mediterranean climate, which is used in this study as the most
representative crop for the assessment of drought impacts on crop yield. The early estimation
of drought impacts is important to both farmers and responsible organisations in order to take
the necessary proactive and supportive measures for mitigating the anticipated consequences.

Many researchers have worked on the field of early prediction of wheat yield, using
methods that include meteorological parameters or indices (agrometeorological indices,
drought indices, etc.). For example, Salman and Al-Karablieh (2001), and Lee et al. (2013)
used empirical models that included precipitation and temperature data, and Kazmi and Razul
(2012) used precipitation, temperature and sunshine duration data. Also, Mavromatis (2007)
investigated the use of the Standardized Precipitation Index (SPI) and the Palmer Drought
Severity Index (PDSI), while Sadat Noori et al. (2012) used SPI along with evapotranspiration
and temperature data. Kogan et al. (2013) used an NDVI-based approach to predict winter
wheat yield with regression models.

Dalezios et al. (2002) investigated the role of agrometeorological and agrohydrological
indices on temporal development of phenological stages of wheat, and found that temperature
and precipitation were important parameters. Kristensen et al. (2011) used agroclimatic indices
for investigating winter wheat response and indicated the importance of temperature on the
yield. Liakatas (1997) underlined the significance of weather parameters (precipitation, tem-
perature and potential evapotranspiration) in various phenological stages of rainfed wheat,
especially in arid environments. Porter and Gawith (1999) outlined the effects of climatic
variability and temperature extremes on wheat yields.

From the above, it can be clearly concluded that the key determinant for wheat yield
assessment is precipitation. However, other climatic variables seem to play a rather important
role, as well, in the development stages of the crop. Among them, temperature seems to be the
most important, either as a regulator of the crop water needs through the evapotranspiration
process, or as a limiting factor that may cause major problems to the plants (e.g., low winter
temperatures) (Proutsos et al. 2010).

Therefore, the use of an index that incorporates both precipitation and potential evapo-
transpiration (PET) should be appropriate for the assessment of drought impacts on crop yield.
In this paper, an approach is proposed that uses the Reconnaissance Drought Index (RDI) as
the main variable for the early assessment of the impacts on the wheat yield. The predictability
efficiency is tested for various time frames (1 to 3 months before harvesting). Critical
phenological stages of the crop are considered for using the appropriate reference periods of
the RDI in linear regression models. This approach can be suitable for operational purposes, as
it requires easily obtainable data (precipitation and temperature) and does not involve complex
procedures.
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For the case study used in this paper for illustrating the proposed method, precipitation and
temperature data from two major agricultural areas of Greece are used. The evaluation of the
drought effects is achieved by using the AquaCrop water productivity simulation model for the
simulation of wheat yield in these areas.

2 Materials and Methods

2.1 The Reconnaissance Drought Index

The Reconnaissance Drought Index (RDI) is a simple, yet practical index for studies of
drought impacts on agriculture, since it takes into account both precipitation and PET, which
are key factors for the development stages of the plant (Tsakiris et al. 2010). Also, it can be
used as a composite climatic index for identifying climatic variations (Tigkas et al. 2013a). The
RDI is the ratio of the cumulative precipitation to the cumulative PET for a specific time period
(Tsakiris and Vangelis 2005; Tsakiris et al. 2007). It is expressed either by its initial value (αk)
or by its standardised form (RDIst). The initial value (αk) of RDI is calculated for the i-th year
in a reference period of k (months) as follows:

α ið Þ
k ¼

X
j¼1

k

Pi j

X
j¼1

k

PETi j

; i ¼ 1 1ð ÞN and j ¼ 1 1ð Þk ð1Þ

in which Pij and PETij are the precipitation and PET of the j-th month of the i-th year and N is
the total number of years of the available data. The average of the annual values of α (α12 ) is
equal to the aridity index of the area (UNEP 1992).

The standardised form of RDI (RDIst) is calculated through a standardisation
process, assuming that αk values fit the lognormal or the gamma distribution
(Tsakiris et al. 2007, 2008; Tigkas 2008). The RDIst provides values categorised in
predefined drought classes, so it can be used as a global index. Drought severity
categorisation includes mild, moderate, severe and extreme drought classes, with
corresponding boundary values of RDIst (−0.5 to −1.0), (−1.0 to −1.5), (−1.5 to
−2.0) and (<−2.0), respectively (Tigkas et al. 2012).

It should be noted, that the method of calculation of PET does not have any significant
effect on RDIst, meaning that temperature based methods, such as Hargreaves (Hargreaves and
Samani 1982), can be sufficient for producing reliable RDI results (Vangelis et al. 2013).

2.2 Wheat Crop Characteristics and Development Stages

Wheat is one of the most produced crops worldwide, affecting significantly the
economy in local and regional levels. Winter wheat is a typical rainfed crop for the
Mediterranean region. Winter wheat planting takes place usually in November and the
growing period lasts for about 8 months (Allen et al. 1998). The major physical
constraints to wheat production in the Mediterranean are the terminal drought and
terminal heat stress as well as year to year weather variability. Drought is probably
the major cause of yield loss in these environments. For this reason, the wheat grain
yield follows the year to year variability of rain (Acevedo et al. 1999).
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Total cumulative evapotranspiration (ET) of wheat crop typically ranges from 200 to
500 mm, being around 400 mm for rainfed wheat in Mediterranean conditions (Shimshi
1973; Steduto et al. 2012).

Early in the growing season under Mediterranean conditions, the daily water consumption
can be less than 2 mm/day due to relatively low temperatures and high humidity. As the canopy
enlarges during tillering and stem elongation, the rate of water consumption increases and
typically reaches a peak around anthesis, at rates between 5 and 8 mm/day (Steduto et al. 2012).

There are three periods in which wheat yield is considered to be most responsive to
moisture stress: first, the period when tillers are developing and their abortion rates are highest;
second, when florets are being formed and grains are set; and third, from early to mid-grain
filling when young developing grains can be aborted due to a lack of assimilate (Fischer 1973;
Turner 1997). Water deficit during tillering can reduce the number of tillers, affecting the final
yield (Shimshi 1973). Important yield variables under drought conditions can be considered
the number of spikes/m2, the weight of grains/spike, the harvest index and the biological yield
(Leilah and Al-Khateeb 2005).

Low winter temperatures (mainly in January and February under Mediterranean conditions)
play a significant role in the growth of wheat, affecting the tillering process. In addition,
dormancy period may be developed if very low temperatures sustain for many days, while
frost may cause leave death (Kazmi and Razul 2012).

2.3 Yield Simulation with AquaCrop Model

Long-term data availability of wheat yield are usually either limited or of unverified
reliability. Further, the actual yield depends on various factors, such as soil charac-
teristics, cultivation techniques, plant diseases etc. Since the purpose of this study is
to assess the effects of drought on yield, which is determined by the climatic
conditions, the AquaCrop model was employed for the simulation of the crop yield.
This way, other influencing factors can be set to have a neutral role in crop growth,
without affecting the interpretation of the results.

AquaCrop is a water-driven simulation model that was developed by FAO. The model uses
the water production function approach (Doorenbos and Kassam 1979) as a starting point, and
evolves from it by calculating the crop biomass based on the amount of water transpired, and
the crop yield as the proportion of biomass that goes into the harvestable parts. One of the main
characteristics of AquaCrop is the separation of the final yield (Y) into biomass (B) and harvest
index (HI), which allows the partitioning of the corresponding functional relations as response
to environmental conditions (Steduto et al. 2012):

Y ¼ HI � B ð2Þ

The model requires a relatively small number of parameters and input data to simulate the yield
response towater formost of themajor field and vegetable crops.However, it produces a significant
number of output data, including the simulation of canopy cover, biomass and soil water compo-
nents over the entire growing cycle, and the final harvestable yield (Steduto et al. 2009; Raes et al.
2009). AquaCrop has been used in several applications around the globe (e.g., Andarzian et al.
2011; Abedinpour et al. 2012; Mkhabela and Bullock 2012; Kumar et al. 2014), and its simulation
results appear to be satisfactory, despite the simplifications introduced in the model.

In this study, version 4.0 of the model is used. In regard to the recommended values
provided for the crop parameters, they are estimated by a calibration – validation process of
AquaCrop using experimental data (Raes et al. 2012).
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2.4 Basic Notions on the Selection of Linear Models

The assessment-prediction of wheat yield in this study is achieved through linear regression
modelling. A multiple linear regression model is described by the following equation, which
can be applied to predict a dependent variable y, using a set of independent variables xj:

y ¼ b0 þ
X
j¼1

k

b jx j þ ε j ¼ 1 1ð Þk ð3Þ

where b0 is the intercept, k is the number of independent variables, bj is the corresponding
regression coefficients and ε is the residual error.

It is evident that modelling of a physical process cannot be based solely on statistical
criteria, since this would be vulnerable to over-fitting issues, deteriorating the ability to
generalise the model. It is important to keep a more inspective approach, taking also into
account the physical processes and their underlying interactions. This approach may lead to a
more meaningful type of model, rather than a black-box approach.

Stepwise regression can be used to find the most parsimonious sets of predictors that are
most effective in predicting the dependent variable (Hocking 1976). A semi-automatic proce-
dure is performed for the selection of independent variables to maximize the model’s predic-
tion efficiency. This procedure may assist in understanding the statistical behaviour of the
variables and in identifying possible problems (e.g., collinearity issues). However, the pro-
duced results can be biased, as the same data sets are used both to formulate the model and
evaluate its goodness of fit (Chatfield 1995).

In order to validate the goodness of fit of themodel with an unbiased estimate of its performance
and to avoid possible over-fitting effects, cross-validation techniques can be used (Picard and Cook
1984). Themain concept of cross-validation is based on the partitioning of the available dataset into
subsets, using one subset for calibrating the model, while the other is used for validation.

There are several types of cross-validation, for instance the split-sample, the random sub-
sampling, the K-fold and the Leave-One-Out (Arlot and Celisse 2010). In this paper, the K-
fold cross-validation is used, in which the dataset is partitioned into K parts. The K-1 parts are
used for calibration, while the remaining one part is used for validation purposes. This process
is repeated K times. The cross-validation criterion is the average, over each repetition, of the
estimates of discrepancy between the dataset and the fitted model (Browne 2000; Zucchini
2000). The main advantage of this approach is that all the data are utilised for both calibration
and validation phases of the model.

The criteria that are used for the evaluation of the performance of the models are (Allen
1974; Hocking 1976; Willmott et al. 2012):

& The Mean Absolute Error (MAE)

MAE ¼ 1

n

X
i¼1

n

yi −byi��� ��� ð4Þ

& The Route Mean Square Error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

n

yi −byi� �2
n

vuuut
ð5Þ
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& The Coefficient of Determination (R2)

R2 ¼

X
i¼1

n

yi − yi
� � byi −byi� � !2

X
i¼1

n

yi − yi
� �2 byi −byi� �2 ð6Þ

& The Index of Agreement (d)

d ¼ 1−

X
i¼1

n

yi−byi� �2
X
i¼1

n byi−y��� ���þ yi− y
��� ���� �2 ð7Þ

& The Predicted Residual Sum of Squares (PRESS)

PRESS ¼
X
i¼1

n

yi−byi� �2
ð8Þ

where y is the observed value, ŷ is the predicted value, y and by are the mean of the observed
and the predicted values, respectively, and n is the number of observations.

From the above criteria, MAE and RMSE are error measures used to represent the average
differences between model predicted and observed values. The coefficient of determination
(R2) describes the proportion of the total variance in the observed data that can be explained by
the model. The index of agreement (d) is the ratio between the mean square error and the
potential error, and measures the degree to which the observed data are approached by the
predicted data (Quiring and Papakyriakou 2003). PRESS is the sum of squares of differences
between the observed and predicted values.

3 Results and Discussion

3.1 Drought Characteristics and Wheat Yield

Meteorological data of monthly precipitation and average monthly mean, maximum
and minimum temperature were provided by the Hellenic Meteorological Service, for
two agricultural areas of central and northern Greece (Fig. 1): Larissa (47 years) and
Alexandroupolis (50 years).

The PET was estimated using the Hargreaves method (Hargreaves and Samani 1982) and
the RDI values were calculated using DrinC software (Tigkas et al. 2013b, 2014). The main
climatic characteristics of each area are presented in Table 1. As known, the aridity index (α12 )
is calculated using Eq. (1).

The annual drought conditions for the two areas, based on RDIst classification, can be
briefly characterised as follows:

– In Larissa, 15 drought years (31.9 %) were observed, from which 2 are
characterised as severe and 1 as extreme drought. Regarding the drought
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persistence, there were 5 cases with 2 consecutive years of drought and 1 case
with 3 consecutive years of drought.

– In Alexandroupolis, there were 15 drought years (30 %), from which 1 is characterised as
severe and 3 as extreme droughts. There were 5 cases with 2 consecutive years of drought
and 2 cases with 3 consecutive years of drought.

The annual drought characterisation can provide a general image of the conditions of the
area. However, the seasonal variations of drought may play a much more important role in the
study of agricultural production. In Fig. 2, for instance, it can be seen that for the area of
Larissa, in some years the drought conditions are noticeably different if the reference applies to
the entire year or the 6-month winter/spring period (in which the main development of wheat
takes place).

The data of each area were imported to the AquaCrop model for the simulation of wheat
yield. The main outputs of the model appear in Table 2. It should be noted that since RDI takes

Larissa

Alexandroupolis

N

0      50 100 km

Fig. 1 The location of the study areas (Larissa and Alexandroupolis)

Table 1 Main climatic characteristics of the study areas (annual values)

Precipitation (mm) PET (mm) Tmean (°C)
α12

(aridity
index)

aver. max. min. st.dev. aver. max. min. st.dev. aver. max. min. st.dev.

Larissa 418 764 216 110 1263 1350 1190 40 15.8 17.3 14.8 0.6 0.33

Alexandroupolis 547 923 277 140 1081 1142 1022 28 15.0 17.1 13.6 0.7 0.51
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into account only meteorological parameters, other parameters of the model, such as soil
characteristics, field management, etc., were set so that they have a neutral effect (not limiting
factors) to the crop production:

– no adjustment of biomass was considered in regard to soil fertility stress,
– no surface mulches were considered (0 % cover),
– for the field surface, runoff occurrence was considered and no soil bunds were applied,
– the soil type was considered as sandy clay,
– no shallow groundwater table was considered.

The calculated values of the RDIst-6 (Dec–May) and the simulated wheat yield for the 2
study areas are presented in Fig. 3.

3.2 Model Formulation

From the aforementioned characteristics of wheat, we can identify the most important periods
regarding the crop water requirements for the Mediterranean conditions. These are from
January to March, with gradually increasing water demand, April with a peak on water
demand and May with gradually decreased requirements.

Larissa
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Fig. 2 The seasonal RDIst-6 (Dec–May) and the annual RDIst for the area of Larissa

Table 2 Simulated wheat yield and biomass with AquaCrop model for each study area

Average annual biomass
(ton/ha)

Average annual yield
(ton/ha)

Average value of Harvest
Index (%)

Larissa 9.675 2.808 26.2

Alexandroupolis 10.853 3.829 33.0
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The first step for model formulation is to identify the correlation of yield with each one of
the independent variables (RDIst for various reference periods) through simple linear regres-
sion. In addition to the RDI, the effect of the average monthly minimum temperatures of the
winter months is also tested.

In Table 3, the coefficients of determination between wheat yield and various periods of
RDIst and monthly average Tmin are presented. The annual RDIst (RDIst-12) and the 9-months
RDIst (RDIst-9, October to June) seem to have a satisfactory correlation with the yield.
However, the RDIst-6 for the period December to May, covering the most critical
period of crop development, has a significantly better correlation. The RDIst-3 for the
periods December to February and March to May, have also a good correlation for
both areas of study. Regarding the monthly RDIst (RDIst-1), March and April have
good correlation for both areas, while February exhibits also high correlation for
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Fig. 3 The RDIst-6 (Dec–May) and the simulated wheat yield for: a Larissa; and b Alexandroupolis
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Larissa. It should also be noted that Tmin for January and February have also good
correlation, especially in the case of Alexandroupolis.

The second step is to use the stepwise technique to identify the best fitted set of
parameters for a multiple linear regression model. Several model structures are tested,
based on different variables sets for several prediction times, from 1 to 3 months
before harvest (Table 4). For each model, a version including only RDI variables
(model version a) and a version including also Tmin variables (model version b) were
tested. The selected model structures for each candidate set of variables resulted using
as criterion the probability (significance) of the F statistic: the variable is incorporated
into the model if the probability of F is less than or equal to 0.05, and it is removed
from the model if the probability of F is greater than 0.10. The correlation and
standard error of estimate for each model appear in Table 5.

For the third step, the evaluation of each model, a 10-fold cross-validation ap-
proach was applied for all tested models. In Table 6, the results of the evaluation

Table 3 Coefficients of determination (R2) between yield and various RDIst and monthly average Tmin

R2

Larissa Alexandroupolis

RDIst-12 Oct–Sep 0.375 0.376

RDIst-9 Oct–Jun 0.342 0.370

RDIst-6 Oct–Mar 0.190 0.026

Nov–Apr 0.443 0.322

Dec–May 0.640 0.509

Jan–Jun 0.504 0.437

RDIst-3 Oct–Dec 0.005 0.038

Nov–Jan 0.024 0.094

Dec–Feb 0.385 0.345

Jan–Mar 0.431 0.255

Feb–Apr 0.653 0.294

Mar–May 0.524 0.414

Apr–Jun 0.128 0.180

RDIst-1 Oct 0.000 0.000

Nov 0.004 0.004

Dec 0.012 0.135

Jan 0.113 0.150

Feb 0.341 0.073

Mar 0.277 0.205

Apr 0.283 0.191

May 0.085 0.081

Jun 0.036 0.002

Tmin Dec 0.088 0.130

Jan 0.138 0.312

Feb 0.102 0.327

Mar 0.018 0.143
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criteria for the cross-validation are presented, which are based only on the subset of
data that were not utilised in the formulation process of the model for each iteration.
This allows an unbiased interpretation of the predictive potential of each selected set
of variables.

From the results, it can be seen that there is a very satisfactory prediction of the yield
1 month before harvest (end of May) with almost all model structures, for both study areas.
The estimation remains satisfactory even for 2 months before harvest (end of April). For the
time frame of 3 months before harvest (end of March) the predictive capacity of the models is
decreased considerably, but it is still within acceptable limits. Also, in most of the cases, there
is a positive effect on the accuracy of the models when the Tmin of January and February is
added in the candidate sets of variables.

The models #1a and #1b exhibit a very good performance, though, it should be
noted that the selected RDI variables sets include overlapping time periods, e.g.,
RDIst-6 (Dec–May) and RDIst-3 (Feb–Apr), so they are sharing a substantial amount
of information. Therefore, despite the fact that these variables are linearly independent

Table 5 Correlation coefficients (R), adjusted coefficients of determination (R2) and standard error of the
estimate for the tested model structures based on the stepwise regression analysis

Model R Adjusted R2 Standard error

Larissa Alexan. Larissa Alexan. Larissa Alexan.

1a 0.841 0.766 0.694 0.570 0.998 1.257

1b 0.863 0.909 0.727 0.806 0.942 0.843

2a 0.808 0.697 0.646 0.463 1.075 1.404

2b 0.836 0.818 0.686 0.639 1.012 1.151

3a 0.670 0.587 0.437 0.331 1.354 1.568

3b 0.670 0.777 0.437 0.577 1.354 1.246

4a 0.771 0.772 0.565 0.551 1.190 1.285

4b 0.863 0.913 0.706 0.815 0.979 0.823

5a 0.771 0.701 0.565 0.447 1.190 1.426

5b 0.806 0.822 0.617 0.639 1.118 1.152

6a 0.668 0.624 0.420 0.350 1.374 1.546

6b 0.668 0.777 0.420 0.577 1.374 1.246

7a 0.807 0.715 0.627 0.479 1.102 1.383

7b 0.861 0.887 0.711 0.762 0.971 0.934

8a 0.772 0.626 0.577 0.367 1.174 1.525

8b 0.801 0.772 0.617 0.559 1.118 1.272

9a 0.657 0.505 0.419 0.240 1.376 1.671

9b 0.657 0.729 0.419 0.501 1.376 1.354

10a 0.798 0.763 0.602 0.546 1.139 1.292

10b 0.867 0.913 0.714 0.815 0.966 0.823

11a 0.759 0.700 0.546 0.457 1.216 1.413

11b 0.788 0.802 0.585 0.611 1.163 1.195

12a 0.622 0.603 0.359 0.336 1.446 1.562

12b 0.622 0.777 0.359 0.577 1.446 1.246
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in the specific cases (p<0.05), these sets may not secure the generalisation of the
corresponding model structures.

The rest of the models provide similar results, for the same time frame of
prediction (March, April or May). The most important month for RDI, based on the
significance of the variables in the models, is April, followed by March, May,
January, February and December.

The use of RDI-1 for all months gives good results for both study areas. However, the use
of RDI-3 for important periods of crop development (e.g., Feb–Mar) seems to be also efficient.

For illustration purposes, the observed and predicted wheat yields and the corre-
sponding diagrams of the coefficients of determination are presented in Figs. 4 and 5,
respectively, based on model #4b for the two study areas. The #4b model structure
has the following mathematical expression for the two study areas, respectively:

Larissa : by ¼ 2:361þ 0:544x1 þ 0:664x2 þ 0:636x3 þ 0:343x4 þ 0:253x5 þ 0:212x6 ð11Þ

Alexandroupolis : by ¼ 2:745þ 0:856x1 þ 0:499x2 þ 0:616x3 þ 0:308x5 þ 0:426x6 ð12Þ

Table 6 The performance criteria based on the cross-validation process

Model MAE RMSE d R2 PRESS

Larissa Alexan. Larissa Alexan. Larissa Alexan. Larissa Alexan. Larissa Alexan.

1a 0.828 1.070 0.966 1.273 0.866 0.769 0.729 0.562 49.115 85.270

1b 0.756 0.814 0.936 1.003 0.884 0.880 0.773 0.782 45.474 53.080

2a 0.853 1.108 1.023 1.365 0.837 0.724 0.667 0.496 55.441 104.684

2b 0.772 1.268 0.982 1.498 0.860 0.690 0.735 0.493 50.640 118.645

3a 1.112 1.254 1.308 1.526 0.745 0.599 0.549 0.467 88.445 128.413

3b 1.112 1.045 1.308 1.209 0.745 0.818 0.549 0.647 88.445 82.665

4a 0.990 1.129 1.190 1.333 0.751 0.744 0.566 0.546 72.145 95.086

4b 0.884 0.738 1.069 0.844 0.802 0.935 0.627 0.854 58.823 38.683

5a 0.990 1.191 1.190 1.427 0.751 0.718 0.566 0.474 72.145 110.159

5b 0.911 1.006 1.122 1.189 0.787 0.831 0.656 0.695 64.937 77.035

6a 1.147 1.292 1.328 1.536 0.731 0.625 0.513 0.518 90.960 129.693

6b 1.147 1.045 1.328 1.209 0.731 0.818 0.513 0.647 90.960 82.665

7a 0.964 1.192 1.112 1.381 0.782 0.673 0.652 0.524 68.439 104.670

7b 0.864 0.836 1.026 0.970 0.802 0.904 0.620 0.780 54.582 49.134

8a 0.949 1.205 1.119 1.476 0.791 0.664 0.601 0.429 67.961 119.195

8b 0.859 1.085 1.070 1.264 0.813 0.807 0.639 0.588 61.065 88.370

9a 1.114 1.387 1.305 1.651 0.747 0.486 0.552 0.354 90.219 144.004

9b 1.114 1.175 1.305 1.312 0.747 0.751 0.552 0.531 90.219 98.056

10a 1.031 1.145 1.198 1.315 0.759 0.729 0.596 0.518 73.652 93.116

10b 0.910 0.754 1.063 0.860 0.804 0.932 0.614 0.851 56.618 39.859

11a 1.006 1.129 1.210 1.382 0.767 0.722 0.560 0.489 73.481 106.576

11b 0.936 0.993 1.120 1.191 0.786 0.849 0.598 0.679 67.311 78.119

12a 1.187 1.282 1.439 1.555 0.697 0.583 0.513 0.421 101.499 131.882

12b 1.187 1.045 1.439 1.209 0.697 0.818 0.513 0.647 101.499 82.665
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where, ŷ is the predicted yield, x1 is RDIst-1 (May), x2 is RDIst-1 (Apr), x3 is RDIst-1 (Mar), x4
is RDIst-1 (Feb), x5 is Tmin (Feb) and x6 is Tmin (Jan).

4 Concluding Remarks

A methodology for the early estimation (prediction) of drought impacts on the
expected winter wheat yield is presented. The methodology is tested in two areas
with Mediterranean climate. The proposed approach can be useful for operational use,
even for areas with limited data availability. The required data are only the monthly
precipitation and temperature.
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Fig. 4 Observed and predicted (based on model 4b) wheat yield for: a Larissa; and b Alexandroupolis
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The methodology is based on the formulation of linear regression models for the
prediction of wheat yield using RDI (of various reference periods) as the key
independent variable. The performance of the models was evaluated with a cross-
validation process.

From the single linear regression results, it can be concluded that wheat yield has
high correlation with RDIst-6 (Dec–May), which corresponds to the main development
phase of the crop. Further, various multiple regression model structures were tested,
for different candidate sets of variables and prediction time frames from 1 to 3 months
before harvest. The prediction was very successful for 1 and 2 months before harvest.
However, the models could still give reasonable estimates of the final yield for
predictions 3 months before harvest. The correlation coefficients in both study areas
between the observed and predicted values reached 0.87 and 0.91 for predictions
1 month before harvest, 0.84 and 0.82 for 2 months and 0.67 and 0.77 for 3 months
before harvest. Additionally, these results are supported by the fact that the evaluation
through the cross-validation process confirmed the stability of the tested models.

Model structures with monthly RDI values (RDIst-1), mainly from January to May,
performed very successfully for both areas studied, though the use of longer reference periods
for RDIst (e.g., RDIst-3), including important months in crop development, may improve the
performance of the model in most cases. Further, the incorporation of the average monthly
minimum temperature of January and February seemed to enhance the predictive ability of the
models.

All the above lead to the conclusion that RDI can be successfully used in the early
estimation of drought impacts on the yield of the winter wheat in Mediterranean
climate, which is very important for an early reconnaissance estimation of yield losses
due to drought, by organisations and stakeholders. Such information is also very
useful in the planning against drought in the agricultural sector and in taking
supporting measures (e.g., timely arrangement of imports) ensuring food security.
Finally, it is useful for the activities of insurance companies and related organisations
for covering the production losses of the affected farmers. Further research on the
subject may be useful for extending these outcomes to other climatic zones or
different rainfed crops.
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