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Abstract An artificial neural network (ANN) is presented for computing a parameter of
dynamic two-phase flow in porous media with water as wetting phase, namely, dynamic
coefficient (), by considering micro-heterogeneity in porous media as a key parameter.
T quantifies the dependence of time derivative of water saturation on the capillary
pressures and indicates the rates at which a two-phase flow system may reach flow
equilibrium. Therefore, T is of importance in the study of dynamic two-phase flow in
porous media. An attempt has been made in this work to reduce computational and
experimental effort by developing and applying an ANN which can predict the dynamic
coefficient through the “learning” from available data. The data employed for testing
and training the ANN have been obtained from computational flow physics-based
studies. Six input parameters have been used for the training, performance testing
and validation of the ANN which include water saturation, intensity of heterogeneity,
average permeability depending on this intensity, fluid density ratio, fluid viscosity
ratio and temperature. It is found that a 15 neuron, single hidden layer ANN can
characterize the relationship between media heterogeneity and dynamic coefficient and
it ensures a reliable prediction of the dynamic coefficient as a function of water
saturation.
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2 D. B. Das et al.

1 Introduction

Mathematical models of two-phase (e.g., oil-water) flow in porous medium require equations
for conservation of fluids’ mass and momentum in conjunction with appropriate constitutive
equations for capillary pressure (P°)-saturation (S,)-relative permeability (K,) relationships
(Ataie-Ashtiani et al. 2003; Das and Mirzaei 2013). In these models, the capillary pressure is
commonly described by formulation such as the Brooks-Corey (Brooks and Corey 1964) or
van Genuchten (van Genuchten 1980) relationship where the capillary pressure is defined as
an empirical function of water saturation as shown in Eq. (1):

in_PW =P° (SW) (] )

Here, P, Py, P°(S,,) are the average non-wetting fluid (e.g., oil) pressure, wetting
fluid (e.g., water) pressure, and capillary pressure at equilibrium condition, i.e., when the
rate of change of saturation in the domain is zero (dS,/dt = 0), respectively. As discussed
extensively in the literature, the properties of the two-phase system (e.g., interfacial
tension, capillary pressure, density and viscosity of each fluid phase) and porous medium
(e.g., porosity, permeability, pore size distribution, heterogeneity) are important in
determining the flow behavior and, hence, the P°-S,, relationships (Bear 1972; Corey
1994; Das et al. 2004; Das et al. 2007; Das and Mirzaei 2012, 2013; Abidoye and Das
2014). In most cases, empirical data for the P°-S,, relationships are obtained by means of
laboratory experiments carried out on porous samples that are up to 10—-12 cm long, and
it is often assumed that the porous sample is homogeneous at that scale. However, it is
known that even at the sub-sample scale some heterogeneities (e.g., micro-scale hetero-
geneity) may exist. These heterogeneities have specific two-phase flow properties and
affect the P°-S,, relationships (Das et al. 2004; Das and Mirzaei 2013). To quantify how
the heterogeneities affect the P°-S,, relationships, a number of studies have been
conducted (Ataie-Ashtiani et al. 2002; Das et al. 2004, 2006; Manthey et al. 2005;
Mirzaei and Das 2007; Das and Mirzaei 2013). For example, Ataie-Ashtiani et al. (2002)
have shown that, because of the presence of micro-heterogeneities, P°-S,, relationships
measured in laboratory-scale domain may be sensitive to the imposed boundary condi-
tions. The micro-heterogeneity effects on the P°-S,, relationship have been analysed in a
number of other contexts too, e.g., effects of uniformly and randomly distributed
heterogeneities, hydraulic parameters (e.g., entry pressure, intrinsic permeability), het-
erogeneity in particle size and intensity of the heterogeneities (e.g., Das et al. 2004,
2006; Ataie-Ashtiani et al. 2003). It is clear that the heterogeneity effects on the two-
phase flow properties are significant and they must be accounted for in the P°-S,,
relationships.

Another important aspect of two-phase flow in porous media, which is directly linked to
this study, is that the two-phase flow may not necessarily be at equilibrium (dS,,/dt = 0),
particularly at short periods after the start of the flow. Accordingly, the capillary pressure data
obtained in an experiment may not be correct unless the P°-S,, relationships account for their
dependence on the rate of change of fluid saturation (dS,,/dt). A number of experiments have
shown that the P°-S,, curves at equilibrium and dynamic conditions are different (Topp et al.
1967; Smiles et al. 1971; Vachaud et al. 1972; Das and Mirzaei 2012, 2013; Mirzaei and Das
2013). The dependence of the capillary pressure curves on dS,/dt is known as the dynamic
effect in capillary pressure relationship (Hassanizadeh et al. 2002; Mirzaei and Das 2007; Das
et al. 2007). Quantitatively, it is indicated by a coefficient called the dynamic coefficient (7)
which is calculated using Eq. (2):
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Here, P, is the dynamic capillary pressure defined as Pg,,,=Pgy,,— Py, and P, is the
capillary pressure at equilibrium conditions (dS,,/dt = 0) defined as Pg;,,= Py~ Py In the last
decade, a number of studies have determined the significance of 7 in different circumstances
(Hassanizadeh et al. 2002; Dahle et al. 2005; Manthey et al. 2005; Das et al. 2007, 2014;
Mirzaei and Das 2007, 2013; Peszynska and Yi 2008; Juanes 2009; Sakaki et al. 2010; Bottero
et al. 2011; Mumford and O’Carroll 2011; Hanspal and Das 2012; Das and Mirzaei 2012,
2013; Hanspal et al. 2013; Hou et al. 2014; Zhang et al. 2014). In particular, it has been shown
that the heterogeneity in porous media affects the dynamic coefficient significantly by altering
the rate to flow equilibrium (Manthey et al. 2005; Mirzaei and Das 2007; Sakaki et al. 2010;
Das and Mirzaei 2013). Das et al. (2007) and Das and Mirzaei (2013) show that the dynamic
coefficient in heterogencous domain is higher than in homogeneous domain implying that the
two-phase flow system reaches equilibrium earlier in the homogeneous domain at a given
water saturation.

The value of the dynamic coefficient is needed for not only understanding the dynamics of
a two-phase flow in porous domain but also for correct application of the capillary pressure
relationships. As such, the coefficient has been determined in the literature using both
laboratory experimental work and computer simulations (at both pore and continuum scales).
Recent studies have established that while the experiments for measuring the dynamic
coefficient is a time consuming process lasting from many days to weeks (Das and Mirzaei
2013; Mirzaei and Das 2013), the mathematical and computer simulation tools based on flow
physics are complex or computationally resource/time intensive (Manthey et al. 2005; Mirzaei
and Das 2007; Hanspal and Das 2012). This issue becomes particularly important in the case
of experiments involving heterogeneous domain where controlling the distribution and inten-
sity of heterogeneity (defined as the ratio of the volume of heterogeneity to the total sample
volume). Relating these parameters to the dynamic coefficient is not straightforward and,
therefore, simple heterogeneity patterns (e.g., layers) are often created for this purpose (Sakaki
et al. 2010; Das and Mirzaei 2013; Mirzaei and Das 2013). On the other hand, the mathemat-
ical tools for calculating the dynamic coefficient for heterogeneous domain rely on incorpo-
rating spatial distributions of the heterogeneity patterns (Manthey et al. 2005; Mirzaei and Das
2007; Sakaki et al. 2010). Statistical tools, such as the Markov chain method, may be applied
to create ‘artificial’ heterogeneity within porous media and carry out simulations for these
media to determine the dependence of the dynamic coefficient on the domain heterogeneity.
The “artificial’ heterogeneous domain in this case does not necessarily need to represent a real
domain, but it provides a good way to relate the dynamic coefficient to realistic heterogene-
ities. To the authors knowledge, such an approach has not been used for calculating the
dynamic coefficient.

Irrespective of how the heterogeneity patterns in porous media are accounted for in the
calculation of the dynamic coefficient, it is safe to assume that the exact distribution and
intensity of the heterogeneity in the domain are not always the most critical parameters. These
parameters are often unknown or cannot be directly determined. It is the effective/average two-
phase flow behavior (e.g., P°-S,, curves) that is of the most interest in general. This raises an
important question, namely, is it always necessary to run lengthy, complicated and costly
laboratory experiments to determine the dynamic coefficient in heterogeneous domain given
that we are mostly interested in average two-phase behavior? An alternate approach for the
determination of the dynamic coefficient, which would be easier in comparison to the costly
numerical simulation tools, without relying on expert knowledge of the two-phase porous
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media flow theory and complex procedures for averaging flow behaviour in porous domains,
would be very useful. This alternate approach should be computationally less demanding,
alleviating any detailed sub-sample scale level domain information requirements. In this
regard, a generic model, such as the one presented in this paper, which is focused on doing
a specific task while addressing these issues, is of great need.

In order to address the above mentioned issues, this paper presents a novel artificial neural
network (ANN) architecture that has been developed to predict dynamic coefficients in
heterogeneous porous domains.

An ANN consists of a group of interconnected processors known as neurons (Deka and
Quddus 2014; Demuth et al. 2008; Graupe 2007) which mimic aspects of a human brain by
learning, recognizing problem patterns and data identification/classification, and exploring
complex non-linear mathematical relationships between the input and output responses of a
system. Incorporation of multiple neurons or processors in different layers (input, output and
hidden) of the ANN architecture (feed-forward or feed-backward) can determine the perfor-
mance of the ANN in terms of efficiency and computational run-times (Hanspal et al. 2013;
Ren 2009; Kurtulus and Razack 2006). In the literature, many such examples of ANN based
tools in the context of flow and transport in porous media can be referred, e.g., determination
of dynamic effect in homogeneous porous media (Hanspal et al. 2013), oil well logging and
testing (Baldwin 1991; Kumoluyi and Daltaban 1994; Elkamel et al. 1996), prediction of
petrophysical properties (Karimpouli et al. 2010; Omole et al. 2009; Boadu 2001), simulation
of groundwater contamination, pollutant infiltration and surface run-off (Akratos et al. 2008;
Tabach et al. 2007; Parida et al. 2006), and immiscible flooding simulations (Elkamel et al.
1996; Gharbi et al. 1995; Li and Lake 1995; Shook et al. 1992). However, an ANN-based tool
that can specifically characterize the dynamic coefficient in heterogeneous porous domains,
addressing the points discussed above, is still missing. Therefore, in this work, we present an
ANN approach which incorporates the intensity of heterogeneity and average porous media
permeability as input parameters, in addition to other important parameters of the two-phase
flow system to quantify the dynamic coefficient. As there is a reasonably good understanding
on how the dynamic coefficient depends on the porous domain heterogeneity (e.g., Manthey
et al. 2005; Mirzaei and Das 2007; Das and Mirzaei 2013), we believe that such an approach is
possible. However, it must be recognized that the amount of quantitative data are still limited.
As discussed earlier, ANN is a very good modelling option in the context of this work as it can
be used to determine the dynamic coefficient in heterogeneous domains much beyond the span
of typical laboratory scale experiments and numerical modelling schemes which are often very
tedious. Importantly, ANN enables a continuous learning process in which the input variables
can be continuously updated creating a larger database for better training and validation of the
ANN:Ss, hence, enabling better predictions in the future. Therefore, as more data become
available in the future relating the dynamic coefficient to the heterogeneity, the ANN can be
improved further. In this paper, six key parameters namely, water saturation, intensity of
heterogeneity, average permeability, fluid density ratio, fluid viscosity ratio and temperature
are used to train and develop the neural network in order to determine the best performing
model through variation of neuron numbers. The temperature and the fluid properties are kept
constant, so as to determine the significance of micro-heterogeneities on the dynamic coeffi-
cient more accurately.

Conceptually, the presented approach is somewhat motivated by an ANN structure previ-
ously reported to compute dynamic coefficient in homogeneous domain (Hanspal et al. 2013).
However, the work in this paper does not have any other link to the previous work as the
objective in this paper is completely different and we use different ANN structure and
reference data sets. In the present work, we include an additional independent variable, i.e.,
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intensity of heterogeneity (Das et al. 2004; Mirzaei and Das 2007) to account for the amount of
heterogeneity in the computational domain. Furthermore, an average permeability of the
heterogeneous domain is used instead of the homogeneous domain permeability as previously
used by Hanspal et al. (2013). Similar to Hanspal et al. (2013), we argue that the effects of any
other system parameters (e.g., interfacial tension, entry pressure of porous domain) that are not
explicitly accounted for in the ANN structure are lumped in the values of the saturation (input)
and dynamic coefficient (output). Of course, an ANN such as the present one may include as
many parameters as one would like as input and output variables. However, the results in this
paper seem to suggest that an ANN structure with 6 input and 1 output variables can
incorporate the salient features of the dependence of dynamic coefficient on the intensity of
micro-heterogeneity in porous media.

2 Modelling Approach

The ANN based tool for calculating the dynamic coefficient is implemented using the ANN
toolbox in MATLAB. The developed ANN model uses different input/output relationships
from those previously used by Hanspal et al. (2013). The ANN modeling approach involves the
implementation, testing and validation of the ANN structure coupled with the use of an average
permeability calculation for heterogeneous domains. Hanspal et al. (2013) showed that it is
possible to obtain reasonable estimates of the values of dynamic coefficient (output variable)
with 5 input parameters for homogeneous porous domain. In the present context, intensity of
heterogeneity is used as an additional input parameter to define the ratio of the volume of
heterogeneity to total volume of the sample (Das et al. 2004; Mirzaei and Das 2007).

Due to insufficient availability of the dynamic coefficient data for ANN training and
validation a function ‘cftool’ in MATLAB (MATLAB 8, the MathWorks Inc., Cambridge,
UK, 2012) is utilized to generate additional data on the dynamic coefficient as a function of
different intensities of heterogeneity, by fitting curves against the simulation data listed by
Mirzaei and Das (2007). The cftool function allows one to fit the data with no pre-assumption
on the form of the fitting parameters and provide a code that can generate additional data.
Using this approach, we have generated additional artificial data which have been used as the
reference data for developing the ANNs. The values of intensity of heterogeneity used in this
paper are the same as previously used by Mirzaei and Das (2007). The extrapolated data sets
consisted of 110 data points, which were utilized for ANN development, testing and valida-
tion. We realize that this may be viewed as a limited dataset for developing ANN. However, as
more experimental and modelling data on the relationship between the dynamic coefficient and
intensity of heterogeneity become available in the future, they can be incorporated in the
developed ANN.

The important statistics of the data used in this work are provided in Table 1. The fluid
property ratios listed in Table 1 can be temperature-dependent. The temperature dependency of
these variables can be determined using correlations reported by Hanspal and Das (2012) and
implemented in the ANN structure. However, for the purpose of this paper, the temperature
and the fluid properties are kept constant so as to determine the significance of micro-
heterogeneities on the dynamic coefficient.

In this work, a back propagation algorithm in feed-forward neural networks has been used
which is viewed as a very powerful ANN learning algorithm (Orchard and Phillips 1991). It
has been previously shown that a feed-forward ANN architecture (Rumelhart et al. 1986) with
back propagation (Werbos 1995) offers a robust solution for complex non-linear problems
provided that there are sufficient neurons in the hidden layer(s) (van der Heyden 1996) and the
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ANN to determine dynamic capillary pressure effect 7

training data set is large enough for the learning process to avoid convergence at a local
minimum (Haykin 1999). Henceforth, in the present work we use MATLAB’s ANN toolbox
to implement a multilayer feed-forward network based on a back-propagation training algo-
rithm to describe the non-linear relationships between the dynamic coefficient and physical
properties characterizing the heterogeneity in multiphase porous transport. Levenberg-
Marquardt algorithm (Levenberg 1944) is generally used to determine the robustness and
time-efficiency of a feed-forward neural network which was implemented in this work too. In
conjunction with the standard pre-and post-processing procedures, the back-propagation
algorithm was implemented in four sequential steps, namely: (a) data assimilation; (b) network
object creation; (c) network training; and (d) network response simulation. Particular transfer
function, namely, ‘log-sig’, ‘tan-sig’ and ‘purelin’ were utilized to yield positive and physically
meaningful dynamic coefficients at all water saturation inputs during the network training
process. The reference data (RD) were split by three data-sets: 1) training set: 60 % of RD; 2)
validation set: 20 % of RD; and 3) testing set: 20 % of RD. The training data set was scaled up
to normalize its mean and standard deviation to values of zero and unity, respectively, as done
previously by Hanspal et al. (2013). No other scaling functions for the inputs and outputs were
used. The segregated data-sets were then utilized for: (a) training (i.e., to evaluate and
recognize behavioural patterns in data); (b) validation (i.e., to assess network generalization
characteristics); and (c) testing (i.e., to provide an independent evaluation of network gener-
alization for new data that the network did not experience before).

Network training was carried out until there was a continuous decrease of the network’s
errors on the validation vectors. Training was conducted multiple times using five-fold cross-
validation to ensure that each of the 110 data points was a part of the training-set. To prevent
data over-fit by the ANN, a relatively large data-set was used in comparison to the number of
data points required for plotting the T-S, curve. Stratified sampling was applied to ensure that
the statistics of the testing and training data matched closely. In addition, different performance
indicators, namely the mean square error (MSE), sum squared error (SSE), average absolute
relative error (AARE), Nash-Sutcliffe efficiency coefficient (E), and Pearson product moment
coefficient of correlation (R) (Hanspal et al. 2013; Jain et al. 2001) were utilized to assess the
robustness and accuracy of the ANN models with different neuron numbers. Performance
parameters were computed for the entire dataset (i.e. both input and output data).

A calculation technique outlined by Stam and Ziji (1992) was utilized to compute the
average permeability of heterogeneous domain. This value was then used as an input param-
eter in the ANN. Heterogeneous domains consisting of coarse and fine sands, as used by
Mirzaei and Das (2007), were chosen for providing the reference data for the dependence of
the dynamic coefficient on the intensity of heterogeneity. This is to ensure that the data for the
dynamic coefficient and the heterogeneous pattern correspond to each other. Furthermore, the
permeability of individual heterogeneous pattern in a domain, as well as the exact distribution
of the pattern, are provided by Mirzaei and Das (2007), which can be used to compute average
permeability using the method suggested by Stam and Ziji (1992).

In heterogeneous porous media, the average permeability can be computed by utilizing
permeability at several points within the computational domain. The average permeability
based on small scale units was calculated by Stam and Ziji (1992) as in Eq. (3)

+a -1

(k) =24 / k()] dx (3)

—a

Here, ((k)) is the average permeability [m?], 2a is the horizontal dimension of grid-block-
scale [m], and k(x) is the permeability of a smaller block scale grid within heterogeneous
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8 D. B. Das et al.

porous domain. Warren and Price (1961) and Jensen (1991) suggested that the average
permeability should be calculated at sub-block grid scale for uncorrelated permeability
distribution. Motivated by these, the average permeability is computed using Eq. (4) under
the assumption of uncorrelated permeability distribution

> (2aln(k;))
Kavg = €xp =1 (4)

=
Z 2a
i=1

Here, K,y is the average permeability [m?], 2a is the horizontal dimension of the sample
[m], and N is the total number of samples [dimensionless]. In this case, a heterogeneous porous
media, consisting of various coarse and fine sand grid-block units are used as illustrated in
Fig. 1 and Table 2.

The permeability of heterogeneous porous sample lies between the permeability of pure
coarse and fine sand samples, which are 5x10™° and 5% 10> m? respectively (Mirzaei and
Das 2007). The permeability values used in this work, corresponding to different intensity
values (Mirzaei and Das 2007), are illustrated in Table 2.

As mentioned earlier, the function cftool in MATLAB was employed to estimate the best
curve-fits (see Fig. 2) describing the average permeability as a function of intensity of
heterogeneity. Similarly, curve-fits were determined to describe the dynamic coefficient as a
function of water saturation at different heterogeneity intensity values of 0, 0.207, 0.331, 0.372
and 1, respectively, as shown in Fig. 3.

3 Results and Discussion

Results obtained from the developed ANN model during various stages of network training,
performance testing and validation were used to assess the predicting capabilities and evaluate
most significant variables affecting the output. These results are discussed in the following
sections.

3.1 ANN Training and Performance

The post regression plots presented in Fig. 4 compare the training and the predicted data. In
principle, the best linear fit is described by a slope (M) = 1, y-intercept (B) = 0 and a mean
square error (MSE) = 1. The M, B and MSE values obtained for different ANN models with
varying neuron numbers are listed in Table 3.

It was found that the best performance in terms of slope is the network with 3 neurons,
whilst in terms of y-intercept it is the network with 12 neurons. Post regression analysis plots
for various neuron numbers in different single hidden layer are shown in Fig. 4. By comparing
the mean square error (MSE) for different neuron numbers, as illustrated in Fig. 4 and Table 3,
it is inferred that 15 neurons in a single hidden layer provide the best performance in terms of
MSE closest to unity. It is believed that the network predicting the highest MSE has the best
performance. In addition to MSE, other performance indicators, such as the sum square error
(SSE), the average absolute relative error (AARE), the Nash-Sutcliffe efficiency coefficient (E)
and the Pearson product moment coefficient of correlation (R), were determined to assess the
model performances. Computed values for these performance indicators are listed in Table 4. It
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Fig. 1 Intensity (w) and distributions of micro-heterogeneities (w=0.207) in the form of small fine sand blocks
(dark grey blocks) embedded in coarse sand background (41, 42) a R-© view of heterogeneity distribution b 3D
heterogeneous cylindrical domains ¢ 2D rectangular (R-Z) section of heterogeneity distribution in cylindrical
domains (Mirzaei and Das 2007) d sub-grid block units of computational domain used for estimating average
permeability (please see Table 2)
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10 D. B. Das et al.

Table 2 Computed average permeability at different values of intensity of heterogeneity

Intensity of heterogeneity as used by Homogeneous fine sand Homogeneous coarse sand ~ Average
Mirzaei and Das (2007) No of blocks for Number of blocks for permeability

permeability calculation permeability calculation (m?)
0 0 192 5%107°
0.371 72 120 3.749x1071°
0.331 64 128 5x1071°
0.207 40 152 1.186x107°
1 192 0 5%10712

is found that for all performance indicators, the models with 12 and 15 neurons display the best
results, while those with 3 neurons perform the worst.

3.2 Validation of ANN

As illustrated in the previous section, ANN models with 12 and 15 neurons perform the best.
Henceforth, the reference data for validation have been compared against the 12 and 15 neuron
ANN models. Fig. 5 shows that the 15 neurons model compares better to the reference data
than the 12 neurons model. It is, then, concluded that the 15 neurons ANN model (Fig. 5) is the
most appropriate for quantifying the dynamic coefficients associated with flows in heteroge-
neous porous media.

3.3 Prediction of Dynamic Coefficient Using ANN

After the ANN model training and performance assessments were completed, the 15
neurons structure was utilized to determine the dynamic coefficient values for new
input data-sets corresponding to intensity values ranging between 0.4 and 0.9. Fig. 6
illustrates that the dynamic coefficients decrease with an increase in water saturation.
Furthermore, with an increase in the intensity of heterogeneity levels at any given water
saturation, the dynamic coefficient increases. This finding is in agreement with the
results presented by Manthey et al. (2005), Mirzaei and Das (2007) and Das and
Mirzaei (2013).

x 10
T T T T T
+ Calculated average
4t permeability H
2
o= 3t 4
BRC
g2E
zET 7 1
Q.
1 i
0 | | | | | I I
0 01 02 03 04 05 06 07 08 09 1

Intensity (-)

Fig. 2 Non-linear fit for average permeability as a function of intensity of heterogeneity
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5
3

o] |

%.1 ‘ 0‘.2 ‘ 8.1 02 : 03 04
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Fig. 3 Non-linear fits for dynamic coefficient (T) as a function of water saturation for different intensity of
heterogeneity. In this paper, the heterogeneous domain contains fine sand embedded in coarse sand and the
intensity of heterogeneity is defined as the ratio of the volume of fine sand to the total volume of the sample. The
reference data used in this paper were taken from Mirzaei and Das (2007)

3.4 Determination of the Most Significant Variable Affecting the Dynamic Coefficient

As shown in a number of publications including this paper, the dynamic coefficient is affected
by a number of variables. This, however, raises the question, e.g., which of these variables are
the most significant in determining the value of the coefficient. This issue can be addressed in
the context of implementing an ANN using MATLAB. It is assumed that under the effects of
high weight attribution, the output (i.e., the dynamic coefficient) from the MATLAB will be
highly affected. Hence, for the best performing ANN model with 15 neurons, the effects of
weight attribution were incorporated. The neural network structure in this paper consists of a
single layer which requires two weight coefficients and two bias values consisting of input and
hidden layers in the form of input weight, layer weight, bias 1 and bias 2. Three parameters,
namely density ratio, viscosity ratio and temperature, have been fixed for the six parameters
considered in the ANN model. Weight coefficients are, therefore, only associated with varying
other parameters which are water saturation, intensity of heterogeneity and average perme-
ability. Due to the existence of 15 neurons in the network, there are 15 sets of weight
coefficients associated with each of these parameters. Table 5 shows the weight coefficients
in the ANN model. It is possible that higher absolute average weight coefficients might affect
the solution strongly. It was, however, decided to use the absolute average instead of the
normal average. Negative weight coefficients indicate how strong the impact will be on an
inverse relationship. Moreover, layer weight, bias 1 and bias 2 can be ignored since the

@ Springer



D. B. Das et al.

12
3 Neurons 5 Neurons
©  DataPoints
= Best Linear Fit
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° 4
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©  Data Points ©  DataPaits
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©  Data Points
— Best Linear Fit

18 neurons

Fig. 4 Post regression analysis in different single hidden layer for different neuron numbers
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Table 3 Comparison of y-intercept (B), slope (M) and mean square error (MSE) for regression analysis

Neurons 3 5 8 10 12 15 18
M 1.0253 0.796 0.8552 0.7024 1.0379 0.8277 0.6018
B 2.10E+09 | 5.88E+08 | 4.63E+08 | 4.80E+08 | 2.04E+08 | 2.56E+08 | 6.46E+08

Mean Square Error (MSE)

_1lywn N — ali))?
MSE =3 Zi=a () —a(D)* | 5o4s | 00868 | 09879 | 09898 | 0.9909 | 09979 | o0.976
Please note that the color-filled cells correspond to the best values of M, B and MSE on the bases that the best
values should be the closest to M=1, B=0 and MSE=1

N total number of data points predicted

t target value of dynamic coefficient (7)

a network output of dynamic coefficient (7)

addition or multiplication to the neuron will affect all the concerned parameters by the same
amount.

In Table 5, it is observed that the percentage of absolute average is the largest for the
intensity of heterogeneity at 38.76 %. Next, it corresponds to water saturation at 37.6 % and
permeability at 23.64 %. This suggests that there is not a significant difference between the
water saturation and heterogeneity effects on the dynamic capillary pressure effects. It also
implies that the influence of both parameters on the dynamic coefficient is similar and it is
much greater in comparison to the effects of average permeability. Therefore, it is concluded
that variations of water saturation and intensity of heterogeneity are more important than the
average permeability effect concerning the values of dynamic coefficient.

3.5 Computational Run-Times
The maximum run-time required for the ANN model training and validation based on the
existing data set was less than 2 h. Furthermore, once the model was completely trained, the

computational run-time associated with new predictions of dynamic coefficient values was in
the order of minutes. This represents almost a 100—125 fold decrease in comparison to the

Table 4 Overall error performance comparison using different performance indicators

Error performance indicators and the Number of Neurons
equations to calculate them 3 5 8 10 12 15 18
Sum squared error (SSE)
& 5.13E+22 7.69E+21 5.10E+21 1.30E+22 2.81E+21 4.30E+21 2.33E+22
SSE = Z(ths =Se )Z
=]
Average absolute relative error
1S . -8 1.22E+03 1.47E+02 9.59E+01 6.80E+01 7.86E+01 5.02E+01 5.64E+01
AAREzfz el Zobs 5100
N i=1 Sob;
Nash-Sutcliffe efficiency coefficient (E)
E :17M 6.07E-01 9.41E-01 9.61E-01 9.00E-01 9.79E-01 9.67E-01 8.22E-01
— \2
Z(Suhs ’Suh\)
Pearson product moment coefficient of
correlation (R)
Z(Sobs =S ) x (Su\ =S )
R= 8.55E-01 9.87E-01 9.88E-01 9.90E-01 9.91E-01 9.98E-01 9.76E-01
B — \2
\lz(Sobs 7Sub:) Z(Sml - Scal)

Please note that the color-filled cells correspond to the best values of SSE, AARE, E and R
N = total number of data points predicted
S,5s = observed value of dynamic coefficient (7); S,5s = average observed dynamic coefficient (7)

S, = calculated value of dynamic coefficient (7); S.s = average calculated dynamic coefficient (7)
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Fig. 5 Comparison of reference dynamic coefficient values (shown by star symbols) from Mirzaei and Das
(2007) and two best performing ANN models, i.e., 12 neurons (green lines) and 15 neuron (red lines) for
different intensities of heterogeneity

computational time previously required for flow physics-based simulations such as the
STOMP simulator (Hanspal et al. 2013). Numerical simulations are both resource and time
intensive, with run times for the determination of the dynamic coefficient ranging from several

10
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Fig. 6 Prediction of dynamic coefficient as a function of water saturation for various hypothetical intensities of
heterogenity
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Table 5 Weight coefficients in the network with 15 neurons

Number of Weight {1,1} Bias 1 Weight Bias 2
neurons {2,1}

Water Intensity of Average

saturation heterogeneity permeability
1 2.9526 5.4308 0.9037 —7.6671 —0.6219 1.6401
2 —0.1118 —6.6249 1.5266 —6.1456 —0.1676
3 —5.1815 5.2409 43293 4.0475 —0.886
4 1.688 —4.5288 —4.5282 —4.4163 —0.6926
5 —6.8397 1.8915 2.0673 3.9705 —0.4091
6 2.6225 —6.0828 —0.8715 —2.4346 0.5524
7 3.3359 2.0432 —5.8187 —1.8891 -1.3572
8 —3.7859 —5.3024 4.6061 —0.8674 —0.3847
9 —5.8836 4.0875 1.9875 —-3.0566 —2.1748
10 —6.8626 3.9373 1.5429 —4.8906 2.1642
11 —8.4861 5.7804 1.5657 2.0452 0.5502
12 —8.2795 4.802 3.8707 —9.7142 7.8014
13 4.0244 3.008 —1.3649 7.1783 —0.9606
14 3.4999 —2.9192 6.2869 4.7972 —2.0012
15 2.9939 —6.9094 0.5734 6.8966 —2.1583
Average 4.436527 4.572607 2.78956
Percentage 37.60185 38.7552 23.64296

IW {1,1} is input weight matrix, LW {2,1} is layer weight matrix, bl is biasl, b2 is bias2

days to weeks. Furthermore, there are additional time periods required for the post-processing
of the simulated data. The developed ANN, therefore, represents a cost effective and robust
approach to simulate new dynamic coefficient values in unknown regimes of heterogeneity, as
illustrated in this study, provided that there exists a minimal amount of information in the form
of reliable data sets either extracted from experiments or from computational flow physics
simulations.

4 Conclusions

In this work, the application of artificial neural network (ANN) technique is illustrated to
successfully compute a parameter of dynamic two-phase flow in porous media, namely, the
dynamic capillary pressure coefficient, by considering micro-heterogeneity in porous media as
a key parameter. In general, ANNs are capable of producing reliable results when the
knowledge base is large and they cover all possible combinations in the range of values of
input-output parameters. In this study, as discussed, the database was small. However, it was
shown that the developed ANNs were capable of providing physically realistic values of the
dynamic capillary pressure coefficient. This provides the confidence that the developed ANN
can perform accurately. Block-grid computations were conducted through inclusion of non-
uniform permeability effects within the computational domain. Curve-fitting techniques were
utilized to provide enough data through computation of dynamic coefficient values at several
intensity values. Post-regression analysis revealed that an ANN model consisting of a single
layer with 3 neurons was the worst performer, yielding a mean square error equal to 0.85481.
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On the other hand, a 15-neurons model was the best performer. It provided excellent
statistics for mean square error (MSE), sum square error (SSE), average absolute
relative error (AARE), Nash-Sutcliffe efficiency coefficient (E), and Pearson product
moment coefficient (R) equal to 0.9979, 4.30% 10%!, 50.2, 0.967 and 0.998, respective-
ly. Although the 12-neurons ANN showed the best performance in terms of SSE and E,
which were 2.81x10%" and 0.979, respectively, the 15-neurons ANN provided dynamic
coefficient predictions much closer to the data of Mirzaei and Das (2007). In terms of
the overall predictions, an ANN architecture with 15 neurons yielded practical results in
the range of water saturation between 0.1 and 0.45. Furthermore, all the ANN simu-
lations predicted that the dynamic coefficient increases with an increase in intensity of
heterogeneity and a decrease in water saturation, findings consistent with other studies.
It is shown that the developed ANN model was able to predict dynamic coefficients
under unknown conditions in relatively small run-times, signifying a speed-up by a
factor of 125 in comparison to real experimental studies or full-scale computational
flow physics- based simulations.
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