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Abstract This paper presents a new accelerated fMRI

reconstruction method, namely, OptShrink LR ? S method

that reconstructs undersampled fMRI data using a linear

combination of low-rank and sparse components. The low-

rank component has been estimated using non-convex

optimal singular value shrinkage algorithm, while the

sparse component has been estimated using convex l1

minimization. The performance of the proposed method is

compared with the existing state-of-the-art algorithms on

real fMRI dataset. The proposed OptShrink LR ? S

method yields good qualitative and quantitative results.

Keywords Accelerated functional MRI � Low-rank
recovery � Sparse recovery � Compressed sensing �
k–t acceleration � Undersampling

1 Introduction

Functional magnetic resonance imaging (fMRI) is one of

the most significant noninvasive and non-ionizing diag-

nostic imaging modality [1, 2]. It measures blood oxy-

genated level dependent (BOLD) signal for localizing brain

activity [3]. However, despite the advancements in fMRI

scanners, one of the biggest limitations of fMRI modality is

slow imaging compared to the other medical imaging

modalities [4].

Conventionally, parallel imaging techniques such as

Sensitivity Encoding (SENSE) [5, 6], Generalized Auto-

calibrating Partially Parallel Acquisitions (GRAPPA)

[7, 8], and Simultaneous Acquisition of Spatial Harmonics

(SMASH) [9] are used to accelerate magnetic resonance

imaging (MRI). Here, the basic principle involves use of

multiple receiver coils with complementary sensitivity

information. SENSE, GRAPPA, or SMASH reconstruct

MRI images from multiple k-space undersampled images

acquired on different coils. For the case of fMRI, only k–

t GRAPPA is able to accurately reconstruct fMRI images

[10]. However, this method introduces strong temporal

autocorrelation in the data that limits the extent of under-

sampling of fMRI data [10].

Apart from parallel imaging, compressed sensing (CS)-

based fMRI reconstruction is another attractive method of

fMRI acceleration [11–17]. Similar to parallel imaging, less

data are acquired in the k-space (spatial frequency domain)

in CS resulting in accelerated fMRI data acquisition. How-

ever, unlike GRAPPA and SENSE that does not exploit

information contained across time frames, CS exploits

information across time frames leading to sparse represen-

tation and hence provides good reconstruction quality.

Reconstruction of full fMRI data from this less or under-

sampled data requires efficient reconstruction algorithm.

Researchers have proposed various methods for efficient

reconstruction from undersampled k-space measurements

[11–17]. These methods largely rely on compressive sensing

and reconstruct data using an optimization framework under

certain constraints. Often, fMRI data are assumed to be

sparse in some transform domain. Theoretical studies have

shown that it is possible to recover sparse signals by l1 norm
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minimization [18]. For example, in [13], undersampled

fMRI data are reconstructed using CS with sparsity of fMRI

data in the wavelet domain, wherein orthogonal Daubechies

wavelet is used as the sparsifying basis. This is to note that

CS-based sparse recovery methods are being used exten-

sively inmany applications including other medical imaging

modalities [19, 20] and in videos [21, 22].

In general, fMRI data matrix X, i.e., one fMRI slice data

stacked over time, is observed to be low rank. Hence, low-

rank constraint can be imposed in the CS-based optimiza-

tion framework to recover fMRI data slice by slice.

Recently, k–t FASTER method has been proposed on

similar lines that recovers fMRI signal via hard thresh-

olding of singular values of low-rank data matrix X in the

CS framework [11].

In [15], a new LR ? S method had been proposed to

reconstruct fMRI data that uses a linear combination of

low-rank and sparse components, i.e.,

X ¼ Lðlow rankÞ þ SðsparseÞ: ð1Þ

This decomposition of data into low-rank and sparse

component is popularly known as robust principal com-

ponent analysis (RPCA) in the literature [23, 24]. In RPCA,

convex optimization-based approaches are used to recover

low-rank and sparse components from matrix X. In [15],

fMRI reconstruction is solved via iterative estimation of L

and S components using convex optimization-based

approaches. In noise-free scenarios, convex approaches

may still provide reasonable solution for non-convex

problems [25]. However, in noisy settings, such as in fMRI

with low signal-to-noise ratio (SNR), convex optimization-

based methods may not provide optimum or close to

optimum solution.

For quality accelerated fMRI reconstruction in noisy

settings, improved low-rank matrix and sparse matrix

estimation are necessary. There has been a great interest to

recover low-rank matrix from noisy measurements in var-

ious fields such as statistical signal processing [26–28],

machine learning [29], and estimation and classification

problems [30]. This motivates us to explore an improved

method of accelerated fMRI reconstruction that can

recover denoised low-rank matrix and sparse component

from the undersampled k-space data.

We use optimal singular value shrinkage denoising

algorithm (OptShrink), a data-driven method, recently used

for denoising of low-rank matrix [31]. We call the pro-

posed method as Optshrink LR ? S method. In [31],

OptShrink has been shown to have improved performance

over singular value thresholding (SVT) in the recovery of

data with missing entries. The OptShrink method requires

noisy low-rank matrix and its rank estimate as input and

provides denoised low-rank matrix estimate.

The proposed Optshrink LR ? S fMRI reconstruction

method is compared with other offline fMRI reconstruction

methods such as direct inverse Fourier transform (IFT),

LR ? S [15], and CS with wavelet sparsity [13] methods.

We compare reconstruction results using different methods

at both the subject- and group level at different acceleration

factors. Our proposed OptShrink LR ? S method recon-

structs fMRI data with greater accuracy compared to other

methods even at lower sampling ratios.

The rest of this paper is organized as follows. Section 2

discusses fMRI reconstruction problem and presents the

proposed Optshrink LR ? S reconstruction method. In

Sect. 3, simulation results using Optshrink LR ? S and

some of the existing methods are presented on real fMRI

data. Conclusions are presented in the last section.

2 Materials and methods

In this section, we present the mathematical formulation of

fMRI reconstruction problem followed by details of the

proposed Optshrink LR ? S fMRI reconstruction method

and description of the fMRI dataset used in simulations.

2.1 Problem formulation

The functional MRI imaging involves acquisition of con-

tiguous brain slices over a number of time points. For each

individual brain slice, Casorati matrix X 2 Rn�T is formed

by stacking one brain slice over all time points [32], i.e.,

X ¼ xi; i ¼ 1; . . .; Tf g, where T is the number of time

points and n is the number of voxels in one brain slice.

Hence, each column xi of X corresponds to data of a par-

ticular brain slice captured at one time point. Let us denote

the undersampled k-space fMRI data of one brain slice

captured over time by the matrix Y.

The relationship between undersampled k-space data Y

and X is as follows:

Y ¼ UFXþ n; ð2Þ

where F denotes the two-dimensional (2-D) Fourier trans-

form operator, U is the measurement matrix that detects or

captures fewer k-space measurements, and n 2 Rn�T

denotes the measurement noise. In fMRI reconstruction

problem, matrix X is required to be recovered from the

undersampled k-space fMRI data measurements inmatrixY.

2.2 Reconstruction using low-rank plus sparse

decomposition

In this paper, we are interested in accelerated fMRI data

reconstruction using low-rank plus sparse decomposition.
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Hence, in this subsection we first elucidate low-rank plus

sparse reconstruction problem.

Consider matrix X as the superposition of low-rank

matrix L with rank m and sparse matrix S with sparsity s.

Hence, matrix X can be denoted as X :¼ Lþ S 2 Rn�T ,

where matrices L and S are required to be recovered, given

a set of undersampled measurements Y and the corre-

sponding measurement matrix U. The optimization prob-

lem for identifying matrix L̂ 2 Rn�T and matrix Ŝ 2 Rn�T

from Y and U can be written as:

L̂; Ŝ ¼ arg min
L;S:rankðLÞ�m;kSk0 � s

k Y� UFðLþ SÞ kF ; ð3Þ

where the Frobenius norm k Y� UFðLþ SÞ kF is defined

as k Y� UFðLþ SÞ kF¼ Tr½ðY� UFðLþ SÞÞTðY� U

FðLþ SÞÞ�, Trð�Þ denotes trace of matrix, and ð�ÞT denotes

transpose. Problem in (3) can be solved iteratively when

there is incoherence between low-rank matrix L and sparse

matrix S matrices [15, 23, 24]. It is observed that inco-

herence is guaranteed when low-rank matrix is not sparse

and sparse matrix is not low rank [15, 24].

2.3 Proposed Optshrink LR ? S method

In this subsection, we explain the proposed Optshrink

LR ? S reconstruction method wherein the problem in (3)

is solved by breaking it into two subproblems of estimating

L and S as described below.

2.3.1 S subproblem

In (3), k S k0 denotes l0 norm that is equal to the number of

nonzero values (= s) in matrix S. l0 norm is a non-deter-

ministic polynomial (NP) hard problem [33]. Thus, l1 norm

is generally used as the closest convex surrogate of l0 norm

[18, 34]. l1 norm is defined as absolute sum of values in

matrix S and is used to obtain sparse solution [18, 34].

Generally, soft thresholding (ST) is used to solve l1 norm

penalty on S defined as:

Ŝ ¼ SoftðS; k1Þ :¼ sgnðSÞ �max 0; Sj j � k1f g; ð4Þ

where � denotes component-wise product and k1 is the soft
thresholding regularization parameter on S. Recently in [15],

sparse matrix is recovered using ST on S. We use similar

approach of ST in this work to solve for sparsity on S.

2.3.2 L subproblem

Low-rank matrix recovery is ill-posed and NP hard [35].

One of the methods to solve this problem is via convex

optimization using nuclear norm minimization [35].

Nuclear norm minimization implies l1 penalty on singular

values of matrix L that supports matrix L to be low rank.

Global minimum of convex nuclear norm minimization is

obtained by soft thresholding on singular values, known as

singular value thresholding (SVT) [36].

To understand this, consider n� T noisy low-rank

matrix:

~L ¼ Lþ d; ð5Þ

where L is the noise-free low-rank matrix and d is a ran-

dom noise matrix. Here, the goal is to estimate non-noisy

low-rank matrix L from noisy matrix ~L.

Let singular value decomposition (SVD) of matrix ~L is
Pq

i¼1 riuiv
H
i , where ri; ui and vi are the singular values,

left singular vectors, and right singular vectors, respec-

tively; q ¼ minðn; TÞ denotes the rank of ~L and ð�ÞH
denotes the conjugate transpose. Convex nuclear norm

solution of (5) can recover non-noisy low-rank matrix via

SVT [36] as:

L̂ ¼ SVTð ~L; k2Þ ¼
Xq

i¼1

Softðri; k2ÞuivHi ; ð6Þ

where definition of ‘Soft’ is same as defined in (4) and k2 in
(6) is the regularization parameter.

Recently, in [15], low-rank matrix is recovered using

SVT, where noisy input low-rank matrix is initialized from

the previous iteration. The key idea behind SVT is to

shrink nonsignificant singular values toward zero while

keeping the singular vectors unchanged. However, nuclear

norm minimization is an over-relaxing recovery solution of

low-rank matrix [37].

In this paper, we propose to estimate non-noisy low-rank

matrix or denoised approximation for the low-rank matrix

in (5) that will provide an overall improved performance of

fMRI signal reconstruction using low-rank plus sparse

decomposition. In [31], best approximate noise-free low-

rank matrix is obtained by optimal weighted combination

of left and right singular vectors of input noisy matrix ~L in

(5). Let us assume that low-rank matrix L has rank m [refer

to (5)] and is given as

L ¼
Xm

i¼1

wiuiv
H
i ; ð7Þ

where ui and vi are the left and right singular vectors of

noisy matrix ~L and wi are unknown singular values. In

order to recover L from the noisy matrix ~L in (5), the

problem is formulated as:

L̂ ¼ arg min
L

~L� L
�
�

�
�
F

with rankðLÞ ¼ m: ð8Þ

Using (7), we can rewrite (8) as:
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wopt ¼ arg min
wk kl0¼m

~L�
Xm

i¼1

wiuiv
H
i

�
�
�
�
�

�
�
�
�
�
F

: ð9Þ

where, l0 norm on w in (9) signifies number of nonzero

singular values equal to the rank m. In the above equation,

singular vectors ui and vi are known and estimated using

SVD of input matrix ~L. The closed form solution of sin-

gular values in (9) for every 1� i�m is expressed as [31]:

w
opt
i ¼ �2

Dðri;RÞ
D

0 ðri;RÞ
; ð10Þ

where R 2 Rn�T and is equal to diagðrmþ1; . . .rqÞ,
q ¼ minðn; TÞ, ri denotes the ith singular value of ~L, Trð�Þ
is equal to the trace of a matrix, and I is the identity matrix.

Dð�Þ is the D-transform which is defined as

Dðri;RÞ :¼
1

n
Tr ri r

2
i I� RRH

� ��1
� �

� 1

T
Tr ri r

2
i I� RHR

� ��1
� �

;

ð11Þ

and D
0 ð�Þ is defined as

D
0
ri;Rð Þ :¼ 1

n
Tr ri r

2
i I� RRH

� ��1
� �

� 1

T
Tr �2r2i r2i I

��

�RHR
��2þ r2i I� RHR

� ��1
�
þ 1

T
Tr ri r

2
i I� RHR

� ��1
�

� 1

n
Tr �2r2i r2i I� RRH

� ��2þ r2i I� RRH
� ��1

� ��

;

ð12Þ

This algorithm is named as Optshrink [31]. OptShrink is

a data-driven method, recently used for denoising of low-

rank matrix in an application of signal recovery in missing

data. It considers noisy low-rank matrix and its rank esti-

mate [= m in (7)] as input, and provides denoised estimate

of the low-rank matrix as the output. It is a non-convex

solution that does weighing of singular vectors. It shrinks

the corresponding singular values using truncated singular

value decomposition (TSVD) and hence is called non-

convex optimal SVT. This algorithm works better than

SVT [31].

Also, in [31], it has been shown that the solution of

Optshrink is quite robust to input rank specification, and

hence a rough estimate of rank [= m in (7)] at the input is

sufficient. Another advantage of Optshrink is that there is

no need to specify shrinkage parameter as is required in

SVT [refer to k2 in (6)]. In SVT, we need to tune k2 for

every dataset. It has been observed that Optshrink always

outperforms SVT in the estimation of low-rank matrix.

In this paper, we propose to apply OptShrink for low-

rank matrix estimation in fMRI reconstruction using low-

rank plus sparse decomposition. fMRI data inherently have

low signal-to-noise ratio (SNR). Hence, fMRI reconstruc-

tion with OptShrink for denoised low-rank matrix estima-

tion should outperform existing low-rank plus sparse fMRI

reconstruction method [15].

2.3.3 Overall solution of (3) using Optshrink LR ? S

Finally, Eq. (3) is solved iteratively using the proposed

Optshrink LR ? S method as below:

Ŝ j ¼ Softk1WðX̂j�1 � L̂j�1Þ
L̂ j ¼ Optshrinkk2ðX̂

j�1 � Ŝj�1Þ
X̂ j ¼ L̂ j þ Ŝ j � ATðAðL̂ j þ Ŝ jÞ � YÞ;

ð13Þ

where A ¼ UF in (13) and j denotes an iteration number.

Here, ST is used to recover sparse matrix S as explained in

Sect. 2.3.1 and Optshrink algorithm is used to solve for

low-rank matrix L as explained in Sect. 2.3.2. Voxel time

series are observed to be sparse in the Fourier domain.

Hence, variation along rows of matrix X is assumed to be

sparse in the Fourier domain. W in Algorithm 1 is the

sparsifying matrix for the Fourier domain where Fourier

transform is to be taken along the rows. Solution is updated

at each iteration j. Algorithm 1 presents the pseudo-code of

Optshrink LR ? S method.

Please note that low-rank component represents the

background information that is highly correlated across

data captured at different time points and sparse component

represents the dynamic and uncorrelated counterpart.

Algorithm 1 Pseudo code of Optshrink LR+S method
1: Intialize λ1, λ2, X0, tolerance=10−5, Ψ, j=0, L0 =

X0,S0 = 0
2: Inputs Y, Φ
3: Outputs L̂, Ŝ, X̂
4: while (obj(j )-obj(j -1)<tolerance) & (j>2) do
5: S-subproblem

Ŝj = arg min
S

∥
∥
∥Y − ΦFX̂j−1

∥
∥
∥

2

F
+ λ1 ‖ΨS‖1 .

6: L-subproblem

L̂j = arg min
L

∥
∥
∥Y − ΦFX̂j−1

∥
∥
∥

2

F
+ λ2 ‖L‖Optshrink .

7: X-update

X̂j = L̂j + Ŝj − AT (A(L̂j + Ŝj) − Y).

8: j=j+1

where, obj = [obj,
∥
∥
∥Y − ΦFX̂j

∥
∥
∥

2

F
+ λ1

∥
∥
∥ΨŜj

∥
∥
∥
1
+

λ2

∥
∥
∥L̂j

∥
∥
∥
Optshrink

].

9: end while
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2.4 Dataset description

To assess the performance of reconstruction methods, we

have used two fMRI datasets in this paper: (1) Task-based

fMRI dataset with false belief task (OpenfMRI publicly

available dataset)1 and (2) Resting-state Baltimore fMRI

dataset (1000 functional Connectomes Project Data).2

2.4.1 Task-based dataset

This dataset consists of acquisition of 36 axial interleaved

brain slices with dimensions 72x72 at each time point with

echo time (TE) equal to 35 ms and repetition time (TR)

equal to 2 s [38]. These data are collected over 179 time

points, resulting in the matrix X of size 5184� 179 for one

brain slice. During the false belief experiment, the subject

had to answer questions about stories that referred either to

a person’s false belief (mental trials) or to outdated phys-

ical representations such as an old photograph. For more

details on this dataset, please refer to [38].

2.4.2 Resting-state dataset

These data are publicly available as part of the 1000

Functional Connectomes Project. This is a collection of

resting-state fMRI dataset from a number of laboratories

around the world. We use Baltimore resting fMRI data.

This dataset consists of 23 subjects resting-state fMRI data,

aged between 20 and 40 years of age, acquired while

subjects’ eyes were open and fixated on a screen. The

repetition time (TR) is 2.5 s, size of a brain volume at one

time point is 96� 96� 47, and the total no. of time points

over which data are captured is 123.

3 Simulation results

Since both resting-state fMRI dataset (Baltimore dataset)

and task-based fMRI dataset (false belief fMRI dataset) are

fully sampled, we simulated undersampled k-space dataY in

(2) by computing the Fourier transform of Casorati matrixX

and then, retrospectively undersampling in the k-space using

measurement matrix U. This measurement matrix is gener-

ated using radial sampling patterns. We used three radial

sampling patterns with different acceleration factors for

testing reconstruction performance: 6 radial lines, 12 radial

lines, and 24 radial lines as described in [39]. Radial sam-

pling pattern is chosen because this is one of the fastest k-

space sampling methods in real-time application [39]. Fig-

ure 1 shows these radial sampling measurement patterns.

These radial sampling patterns sample more data in the low-

frequency region compared to the high-frequency region.

This is to note that we have illustrated undersampling of

fMRI data by retrospective sampling on the Cartesian grid

because it allows sampling patterns to maintain incoherency

among the columns of matrix X [39–41]. However, radial-

Cartesian sampling grid is more realistic from the point of

view of actual data acquisition [10, 42]. Similarly in [12],

variable density spiral sampling pattern has been used inMRI

scanner and is shown to be robust against motion, off reso-

nance, and gradients artifacts in compressed sensing fMRI

application. However, our work is focused on development of

robust reconstruction algorithm. This is to note that the pro-

posed Optshrink LR ? Smethod reconstructs fMRI data as a

superposition of low-rank and sparse matrix, where the low-

rank component represents background information that is

highly correlated across data captured at different time points

and sparse component represents the dynamic and uncorre-

lated part. Since these assumptions are characteristic of fMRI

data, they will remain valid irrespective of the sampling

strategy used. Hence, although the proposed work is general

and can be used with any sampling pattern provided sampling

incoherence is maintained, we project the use of realistic

sampling patterns as the future work.

Data obtained from the database are called as original

data in the manuscript. k-space data are acquired by con-

sidering 2-D Fourier transform of this original data. Since

the original data are real and are provided without any

phase information, we only considered the magnitude part

of the reconstructed data. Thus, no assumption is made

about the phase part of the data. This is to clarify that this is

a standard method of testing newer MRI/fMRI recon-

struction algorithms via simulation results.

3.1 Comparison with different methods

In this section, we provide results on fMRI reconstruction

from undersampled k-space fMRI data using the proposed

Optshrink LR ? S method, existing LR ? S method [15],

direct inverse Fourier transform-based reconstruction, and

reconstruction using CS with wavelet sparsity [13]. Below,

1 https://openfmri.org/dataset/.
2 http://www.nitrc.org/frs/?group_id=296

Fig. 1 Radial sampling pattern on one slice: a 6 radial lines (12.856

acceleration factor); b 12 radial lines (6.065 acceleration factor); c 24
radial lines (3.495 acceleration factor)
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we present a brief overview of each of these existing

reconstruction methods used.

3.1.1 Low-rank plus sparse (LR ? S) method [15]

This method reconstructs fMRI data using superposition of

low-rank and sparse matrix components [15], and hence,

the optimization problem is:

L̂; Ŝ ¼ arg min
L;S

Y� UFðLþ SÞk k2Fþk1 WSk k1þk2 Lk k�:

ð14Þ

We empirically selected k1 ¼ 2 and k2 ¼ 200 in the above

Eq. (14) using the L-curvemethod [43].Minimumnormalized

mean square error (NMSE) is obtained in the L-curve at the

above chosen ks for the existing LR ? S method. This is to

note that we used same values of ks in the proposed Optshrink
LR ? S method. Thus, the values of ks are optimally selected

for the existing LR ? S method and not for the proposed

Optshrink method for presenting the comparative results.

3.1.2 Direct IFT

This method computes 2-D inverse Fourier transform (IFT)

of given k-space fMRI data Y and reconstructs X as shown

below:

X̂ ¼ IFTðYÞ: ð15Þ

3.1.3 CS with wavelet sparsity (CSWD) [13]

Wavelet sparsity assumes signal to be sparse in the wavelet

domain [13], and hence, the optimization problem is:
Fig. 2 Objective function value versus number of iterations

Fig. 3 Task-based fMRI data–original and reconstructed slice no. 18

[left to right Original; LR ? S; Optshrink LR ? S (rank = 1);

Optshrink LR ? S (rank = 2); Optshrink LR ? S (rank = 3)]: a 6

radial lines (time point 100); b 12 radial lines (time point 100); c 24

radial lines (time point 100)
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Fig. 4 Resting-state fMRI data—original and reconstructed slice no.

24 [left to right Original; LR ? S; Optshrink LR ? S (rank = 1);

Optshrink LR ? S (rank = 2); Optshrink LR ? S (rank = 3)]: a 6

radial lines (time point 100); b 12 radial lines (time point 100); c 24

radial lines (time point 100)
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(c)

Fig. 5 Normalized mean square error versus time points on task-based fMRI dataset (slice no. 18): a 6 radial lines (12.856 acceleration factor);

b 12 radial lines (6.065 acceleration factor); c 24 radial lines (3.495 acceleration factor)
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X̂ ¼ arg min
X

Y� UFXk k2Fþk3 WXk k1; ð16Þ

where W is a wavelet matrix operator. We used Daube-

chies’ orthogonal wavelet ‘db4’ (filter lengths 8) with

three-level decomposition as the sparsifying basis to

exploit wavelet sparsity as used in [13]. This method

requires one parameter k3 to be specified as shown in (16).

In [44], k3 is restricted to satisfy the below condition:

k3\max UT IFT Yð Þð Þ
� �

: ð17Þ

In order to meet the above condition, we chose

k3 ¼ 0:009�max UT IFT Yð Þð Þ
� �

ð18Þ

that meets (17).

For all reconstruction methods, we set the maximum

number of iterations equal to 500 and use the following

convergence criterion: objective function valueðendÞ�
objective function valueðend� 1Þ\10�5, also specified in

Algorithm 1. Figure 2 shows objective function value

versus number of iterations on one subject of the task-

based dataset with the proposed Optshrink LR ? S

method. From this figure, we observe that the objective

function converges monotonically. We observed the same
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Fig. 6 Normalized mean square error versus time points on resting-state fMRI dataset (slice no. 24): a 6 radial lines (12.856 acceleration factor);

b 12 radial lines (6.065 acceleration factor); c 24 radial lines (3.495 acceleration factor)

Table 1 Reconstruction results with different methods on two datasets

Dataset Method NMSE PSNR

6 lines 12 lines 24 lines 6 lines 12 lines 24 lines

Task-based dataset Direct IFT 0.3088 0.2177 0.1595 3.54 6.58 9.63

CS with wavelet sparsity [13] 0.2435 0.219 0.138 4.828 7.79 12.07

LR ? S [15] 0.1992 0.1215 0.0699 6.583 10.87 15.67

Proposed Optshrink LR ? S (r = 1) 0.0497 0.0442 0.0401 18.62 19.65 20.49

Proposed Optshrink LR ? S (r = 2) 0.0501 0.0437 0.0401 18.571 19.76 20.49

Proposed Optshrink LR ? S (r = 3) 0.0496 0.0435 0.0401 18.649 19.78 20.49

Resting-state dataset Direct IFT 0.4067 0.286 0.1979 2.93 6.09 9.415

CS with wavelet sparsity [13] 0.2917 0.2054 0.1193 5.42 8.465 13.19

LR ? S [15] 0.2351 0.1198 0.0576 7.321 13.16 19.52

Proposed Optshrink LR ? S (r = 1) 0.0469 0.0359 0.031 21.32 23.64 24.91

Proposed Optshrink LR ? S (r = 2) 0.0462 0.036 0.0311 21.44 23.62 24.88

Proposed Optshrink LR ? S (r = 3) 0.0473 0.0364 0.0312 21.24 23.52 24.85

Task-based data—false belief task fMRI data, subject no. 1, results on slice number 18, averaged over all time points

Resting-state data—Baltimore fMRI data, subject no. 1, results on slice number 24, averaged over all time points
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trend with every data, and hence, we may safely state that

the proposed Optshrink LR ? S method convergences to

provide solution.

Figure 3 shows one of the reconstructed brain slices of

task-based fMRI dataset (false belief task) using the pro-

posed Optshrink LR ? S and the existing LR ? S [15]

method. Reconstructed data are visually shown at different

radial lines in Fig. 3a, b, c corresponding to the middle

slice (slice number 18 of 36 no. of total slices) captured at

the 100th time point.

Likewise, Fig. 4 shows one of the reconstructed brain

slices of resting-state dataset (Baltimore dataset) using the

proposed Optshrink LR ? S and the existing LR ? S [15]

method. Reconstructed data are visually shown at different

radial lines in Fig. 4a, b, c corresponding to the middle

slice (slice number 24 of 47 no. of total slices) captured at

the 100th time point.

Following observations can be drawn from the recon-

structed slices of both task-based and resting-state data

shown in Figs. 3 and 4:

1. Slices reconstructed using LR ? S method show a

decline in quality with decrease in the number of radial

sampling lines. On the other hand, reconstruction

results with the proposed Optshrink LR ? S method

are quite consistent and the reconstruction quality does

not fall by a great deal with the reduction in number of

sampling lines.

Table 2 Statistical analysis results for uncorrected

Method 6 lines 12 lines 24 lines

Cluster

size

Z score MNI

position

Cluster

size

Z score MNI

position

Cluster

size

Z score MNI

position

1 LR ? S [15] (without

smoothing)

12 3.7 23 -31 62 14 3 -6 -13 29 36 4.06 45 -24 34

2 LR ? S [15] (with smoothing) 93 2.41 58 14 15 50 3.74 54 -24 35 122 4.56 -57 -30 28

3 Proposed Optshrink LR ? S

(r = 1) (without smoothing)

35 4.94 39 -20 34 57 5.64 -9 -16 33 42 4.52 42 -23 34

4 Proposed Optshrink LR ? S

(r = 1) [with smoothing

(FWHM = 6 mm)]

218 4.93 -54 -24 24 204 4.34 -54 -27 28 162 4.6 -54 -27 28

Task-based data—false belief task fMRI data, subject no. 1

Fully sampled fMRI data—cluster size = 26, Z score = 4.79, MNI position (in mm) = -57 -27 28

Smoothed fully sampled fMRI data with FWHM = 6 mm—cluster size = 112, Z score = 3.99, MNI position (in mm) = -57 -27 28

Please note that the coordinates of most active voxel are reported via Z score. Cluster size denotes the number of active voxels surrounding this

most active voxel
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Fig. 7 Task-based fMRI dataset, slice no. 18, time point 100: NMSE

versus rank of the proposed Optshrink LR ? S method using 6 radial

lines
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Fig. 8 Resting-state fMRI dataset—slice no. 24, time point 100:

NMSE versus rank of the proposed Optshrink LR ? S method using 6

radial lines
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2. Slices reconstructed using different radial sampling

patterns consistently show that LR ? S method output

is blurred and the slices have artifacts at the center and

the boundary compared to the proposed Optshrink

LR ? S. This observation indicates that there is SNR

loss with LR ? S method that may lead to incorrect

brain activation detection. On the other hand, slices

reconstructed using the proposed Optshrink LR ? S

method are very clear and free of artifacts.

3. Reconstruction using Optshrink LR ? S method is

robust to input rank specification. Hence, rank defini-

tion is not a bottleneck in the proposed Optshrink

LR ? S.

All the above observations indicate that we can recon-

struct fMRI data with greater quality by sampling much

lesser measurements in k–t space with the proposed Opt-

shrink LR ? S method compared to the existing LR ? S

method. Hence, higher acceleration rate is possible with

Optshrink LR ? S method.

Figures 5 and 6 show quantitative results via normalized

mean square error (NMSE) versus time for both the dataset

with different radial sampling patterns where:

NMSE ¼ I� Î
�
�

�
�
2
= Ik k2; ð19Þ

jj � jj2 denotes l2 norm and, I and Î are the original and

reconstructed brain slices, respectively. NMSE values are

computed between reconstructed and original slice at each

time point.We represent reconstructed results using LR ? S

method and Optshrink LR ? S method. In consonance with

the qualitative results of Figs. 3 and 4, we observe higher

NMSE with LR ? S method compared to the proposed

Optshrink LR ? S method. While the NMSE increases

rapidly with decrease in radial lines with LR ? S method, it

remains quite consistent with Optshrink LR ? S method. In

order to assess other reconstruction methods quantitatively,

we present reconstruction results in Table 1 in terms of

NMSE and peak signal-to-noise ratio (PSNR) on both the

datasets. From Table 1, we note that NMSE increases with

decrease in the number of radial lines, i.e., with fewer k-space

measurements with existing reconstruction methods. On the

other hand, the proposed Optshrink LR ? S method shows

consistent PSNR and NMSE values at different radial lines.

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Subject number

N
or

m
al

is
ed

 m
ea

n 
sq

ua
re

 e
rr

or
 (N

M
S

E
)

OptShrink LR+S (proposed)
LR+S

Fig. 9 Task-based fMRI dataset—slice no. 18: NMSE versus subject

number with the proposed Optshrink LR ? S method (rank = 1)

using 6 radial lines

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Subject number

N
or

m
al

is
ed

 m
ea

n 
sq

ua
re

 e
rr

or
 (N

M
S

E
)

OptShrink LR+S (proposed)
LR+S

Fig. 10 Resting-state fMRI dataset—slice no. 24: NMSE versus

subject number with the proposed Optshrink LR ? S method

(rank = 1) using 6 radial lines

Fig. 11 Design matrix of task-based fMRI dataset (false belief task)

cFig. 12 False belief fMRI data shown on sagittal, coronal, and axial

planes: a fully sampled fMRI data; b smoothed fully sampled fMRI

data; c reconstructed fMRI data using LR ? S (6 radial lines)

(without smoothing); d reconstructed fMRI data using LR ? S (6

radial lines) (with smoothing); e reconstructed fMRI data using

proposed Optshrink LR ? S method (rank = 1) (6 radial lines)

(without smoothing); f reconstructed fMRI data using proposed

Optshrink LR ? S method (rank = 1) (6 radial lines) (with

smoothing)

74 P. Aggarwal et al.

123



Optshrink LR ? S: accelerated fMRI reconstruction using non-convex optimal singular value... 75

123



76 P. Aggarwal et al.

123



Moreover, Optshrink LR ? S results are similar with

different input rank specification. These results are in line

with the qualitative results observed with the reconstructed

slice quality in Figs. 3 and 4. This is to note that the pro-

posed Optshrink LR ? S method estimates a denoised

version of low-rank matrix and hence yields better results.

In order to further ascertain the robustness of Optshrink

LR ? S method to rank, we present NMSE versus rank and

PSNR versus rank for both the dataset in Figs. 7 and 8. We

use 6 radial lines for undersampling k-space data and

provide different rank as input to Optshrink LR ? S

method. The reconstruction accuracy remains similar for

different rank values, and hence, any rough estimate of

rank may be provided as input to this method for fMRI

signal reconstruction.

3.2 Group-level analysis

In Figs. 9 and 10, we present NMSE and PSNR results for

five subjects each of task-based dataset and resting-state

dataset, respectively. We use 6 radial lines for undersam-

pling the k-space data. These results indicate that our

proposed Optshrink LR ? S is robust to subject variability

and are reproducible across subjects.

3.3 Subject-level statistical analysis on activation maps

In this section, we would like to study the effectiveness of

Optshrink LR ? S method with reference to brain acti-

vation detection. To this end, reconstruction is performed

on the task-based dataset (false belief task) using LR ? S

method and Optshrink LR ? S (rank = 1) method. Pre-

processing of the original and the reconstructed fMRI

dataset are performed using SPM12.3 We performed

motion correction that is used to suppress motion-related

artifacts. In general, motion correction is followed by

smoothing as a preprocessing step so that the noise is

Gaussian-distributed (by Central Limit Theorem). This

establishes the validity of statistical tests using general

linear model (GLM)-based analysis, a univariate

approach, used for detecting brain activation in task-based

fMRI data [45]. Since Optshrink LR ? S method is sup-

posed to provide denoised low-rank matrix, we tested the

robustness of the proposed method on brain activation

detection both with and without smoothing in the pre-

processing pipeline.

In GLM, linear model is fitted to each voxel time series

using the design matrix corresponding to the task stimu-

lus. The estimated parameters are used to build statistical

parametric maps (SPMs) [46]. Figure 11 shows the design

matrix for the false belief dataset that consists of five

conditions. First four conditions correspond to four dif-

ferent block stimuli (false belief story, false belief ques-

tion, false photograph story, false photograph question

[38]) that are convolved with the canonical hemodynamic

response function (HRF) and form first four columns of

the design matrix. The last column captures the linear

trend of data.

Reconstruction is performed on undersampled fMRI

data on three radial sampling patterns of 6, 12, and 24

radial lines. Figures 12, 13, and 14 show the corre-

sponding statistical maps obtained using (a) original fully

sampled k–t space data without smoothing operation

(b) original smoothed fully sampled data, (c) recon-

structed data using LR ? S method (without smoothing),

(d) reconstructed data using LR ? S method (with

smoothing), (e) reconstructed data using the proposed

Optshrink LR ? S method (without smoothing), and

(f) reconstructed data using the proposed Optshrink

LR ? S method (with smoothing). We present results on

representative slices having peak voxel of activation,

whereas Montreal Neurological Institute (MNI) position

of this most active voxel is listed in Table 2. We also

report cluster sizes and maximum z-scores values in this

table. Activation maps are thresholded t test at cluster

level with uncorrected p value = 0.05. Clusters with less

than 12 voxels are rejected.

Brain activation maps using original fully sampled

smoothed data show better results compared to the original

fully sampled data without smoothing [compare (b) with

(a) in Figs. 12, 13, 14]. As evident from Figs. 12, 13, 14

and Table 2, we notice that LR ? S method provides

inferior results, while activation maps using data recon-

structed withOptshrink LR ? Smethod (with smoothing in

preprocessing) provides activation maps similar to those of

(b). The MNI position of the most active voxel on the

reconstructed data using the proposed Optshrink LR ? S

method (with smoothing) is same as that obtained with the

original data. Smoothing helps in increasing the sensitivity

of BOLD time series. It can be noticed via increase in

cluster size containing active voxels. Original smoothed

fMRI data cluster size is 112 while without smoothed

cluster size is 26. In the case of the proposed Optshrink

bFig. 13 False belief fMRI data shown on sagittal, coronal, and axial

planes: a fully sampled fMRI data; b smoothed fully sampled fMRI

data; c reconstructed fMRI data using LR ? S (12 radial lines)

(without smoothing); d reconstructed fMRI data using LR ? S (12

radial lines) (with smoothing); e reconstructed fMRI data using

proposed Optshrink LR ? S method (rank = 1) (12 radial lines)

(without smoothing); (f) reconstructed fMRI data using proposed

Optshrink LR ? S method (rank = 1) (12 radial lines) (with

smoothing)

3 http://www.fil.ion.ucl.ac.uk/spm/
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LR ? S method (with smoothing), the cluster size of

reconstructed data is 204. Also, these clusters of activation

maps are consistently good at all acceleration factors. This

clearly shows that the proposed method provides enhanced

brain activation maps and is indeed better compared to

other reconstruction methods.

3.4 Reproducibility of resting-state networks

In this section, we test the efficacy of the proposed Opt-

shrink LR ? S method on resting-state fMRI dataset. We

evaluate performance in terms of reproducibility of resting-

state networks (RSNs). We compare RSNs of Optshrink

LR ? S-based reconstructed data with the RSNs obtained

from the fully sampled original fMRI data that is consid-

ered as the ground truth. RSNs are identified using the

spatial independent component analysis (ICA) of GIFT

toolbox.4

Before ICA is applied, data are preprocessed. The first

five fMRI brain volumes are discarded followed by slice-

time correction. Next, realignment is done for motion

correction followed by spatial normalization onto the

Montreal Neurological Institute (MNI) space (3-mm iso-

tropic voxels). In the end, brain volumes are spatially

smoothed with a Gaussian kernel [full width half maximum

(FWHM) = 6 mm].

After preprocessing, we utilize InfomaxICA algorithm

in GIFT to obtain 100 independent spatial components. We

identified 54 RSNs from mean maps of all five fully

sampled ground truth fMRI data (corresponding to five

subjects) after removing artifact components. These RSNs

can be broadly categorized into 10 RSNs: (1) Visual net-

work (VN), (2) Somatomotor network (SMN), (3) Limbic

network (LN), (4) Dorsal attention network (DAN), (5)

Ventral attention network (VAN), (6) Default mode

network (DMN), (7) Frontoparietal network (FPN), (8)

Temporal ? Frontal network (TFN), (9) Subcortical net-

work (SCN), and (10) Cerebellar network (CN). We also

ran ICA on the reconstructed data. These dataset are

reconstructed using 16.49% (12 radial lines) acquired

samples in k-space using Optshrink LR ? S with rank one.

We identified 56 RSNs from mean spatial components.

These RSNs can be further classified into various cate-

gories as mentioned above.

Figures 15 and 16 show some of the RSNs obtained

from fully sampled ground truth data and Optshrink

LR ? S reconstructed data. From this figure, we observe

that RSNs identified by Optshrink LR ? S reconstructed

data resemble with the ground truth fully sampled data.

This shows that Optshrink LR ? S method is able to pre-

serve functional characteristics of data. This is the most

desirable need in neuroimaging research. Please note that

we also ran ICA on reconstructed data using LR ? S. We

observed more artifact components with a total 100 spatial

components. This again validates our claim that the pro-

posed Optshrink LR ? S method is working better than

existing methods in the literature.

4 Conclusion

In this paper, we have proposed a new accelerated fMRI

method, named Optshrink LR ? S method, for fMRI

reconstruction from undersampled k–t space data. The

proposed method exploits sparsity and low-rank decom-

position with denoising to improve fMRI reconstruction

accuracy. Comparison results demonstrate that the

reconstruction performance of the proposed Optshrink

LR ? S method is superior to existing methods at various

acceleration factors. While the performance of the exist-

ing methods falls rapidly at faster acceleration rates,

Optshrink LR ? S method performs consistently. Quan-

titative and qualitative results, group-level and subject-

level analyses, show the superior performance of the

proposed method. In addition, Optshrink LR ? S method

provides enhanced brain activation maps that is an added

but most useful advantage of the proposed method.

MATLAB implementation of proposed algorithm is

available online.5

4 https://www.nitrc.org/projects/gift.

5 http://in.mathworks.com/matlabcentral/fileexchange/60836-optshrink-

lr?s–accelerated-fmri-reconstruction-using-non-convex-optimal-singular-

value-shrinkage.

bFig. 14 False belief fMRI data shown on sagittal, coronal, and axial

planes: a fully sampled fMRI data; b smoothed fully sampled fMRI

data; c reconstructed fMRI data using LR ? S (24 radial lines)

(without smoothing); d reconstructed fMRI data using LR ? S (24

radial lines) (with smoothing); e reconstructed fMRI data using

proposed Optshrink LR ? S method (rank = 1) (24 radial lines)

(without smoothing); f reconstructed fMRI data using proposed

Optshrink LR ? S method (rank = 1) (24 radial lines) (with

smoothing)
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Fig. 15 Axial view of spatial maps of various RSNs where left part of each figure is from the original fully available dataset and right part is

from the Optshrink LR ? S reconstructed data
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