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Abstract Today, diagnosis of attention deficit hyperac-

tivity disorder (ADHD) still primarily relies on a series of

subjective evaluations that highly rely on a doctor’s

experiences and intuitions from diagnostic interviews and

observed behavior measures. An accurate and objective

diagnosis of ADHD is still a challenge and leaves much to

be desired. Many children and adults are inappropriately

labeled with ADHD conditions, whereas many are left

undiagnosed and untreated. Recent advances in neu-

roimaging studies have enabled us to search for both

structural (e.g., cortical thickness, brain volume) and

functional (functional connectivity) abnormalities that can

potentially be used as new biomarkers of ADHD. However,

structural and functional characteristics of neuroimaging

data, especially magnetic resonance imaging (MRI), usu-

ally generate a large number of features. With a limited

sample size, traditional machine learning techniques can be

problematic to discover the true characteristic features of

ADHD due to the significant issues of overfitting, com-

putational burden, and interpretability of the model. There

is an urgent need of efficient approaches to identify

meaningful discriminative variables from a higher dimen-

sional feature space when sample size is small compared

with the number of features. To tackle this problem, this

paper proposes a novel integrated feature ranking and

selection framework that utilizes normalized brain cortical

thickness features extracted from MRI data to discriminate

ADHD subjects against healthy controls. The proposed

framework combines information theoretic criteria and the

least absolute shrinkage and selection operator (Lasso)

method into a two-step feature selection process which is

capable of selecting a sparse model while preserving the

most informative features. The experimental results

showed that the proposed framework generated the high-

est/comparable ADHD prediction accuracy compared with

the state-of-the-art feature selection approaches with min-

imum number of features in the final model. The selected

regions of interest in our model were consistent with recent

brain–behavior studies of ADHD development, and thus

confirmed the validity of the selected features by the pro-

posed approach.

1 Introduction

Attention deficit hyperactivity disorder (ADHD) is among

the most common child and adult neurodevelopmental

disorder. ADHD symptoms include inattention, hyperac-

tivity, and impulsivity. It affects approximately 5–10 % of

all school-age children and nearly 5 % of adults on their

motor, cognitive, and emotional development [1]. Diag-

nosis of ADHD still remains a challenge, requiring long-

term and extended involvement from clinicians, parents,

and teachers. Clinicians rely heavily on experiences and

intuitions when conducting diagnostic interview and

observational measures. A delay or incorrect diagnosis of

ADHD could have a significant negative impact on a

patient’s social and emotional development, while an early

and accurate detection of ADHD can strongly influence the
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course of the condition development by delivery of

appropriate treatments to the patient. In addition to the

traditional clinical diagnosis, there is a pressing need to

find a set of more discriminative and objective features to

characterize ADHD that can be used to facilitate ADHD

diagnosis.

Previous studies on the etiology of ADHD are mostly

based on structural or functional neuroimaging research of

group level (ADHD vs. control) differences. Some infor-

mative features extracted are blood oxygenation level-de-

pendent (BOLD) signals from functional magnetic

resonance imaging (fMRI) data [2], wavelet synchronization

likelihoods extracted from electroencephalography (EEG)

data [3], rolandic spikes from EEG data [4], brain volume

measure extracted from magnetic resonance imaging (MRI)

data [5]. The pursuit of neuroanatomical biomarkers has a

great potential to facilitate new discriminative methods that

are etiologically informed and validated by neuropsycho-

logical theories. However, due to high cost of neuroimaging

data acquisition, most current ADHD studies are based on

relatively small sample sizes, which reduce the statistical

power needed to validatemeaningful discriminative variable

from a very large number of features extracted from struc-

tural MRI [6]. A limited sample size with equivalent number

of features raises new challenges to traditional machine

learning algorithms, such as logistic regression or support

vector machines (SVM), as they tend to overfit and lack a

generalization power when training on a dataset containing

the number of features far larger than the sample size (p � n

problem). In previous work, some models either use hun-

dreds of features as an input or exhaustively search on a

preselected smaller subset of features. SVM is mostly

favored [7] and some variant of feedforward neural networks

[8] is also used. We believe that those methods are either

susceptible to overfitting or too restrictive in the search

space. The interpretation of the final models is very difficult

to validate by existing neuropsychological theories.

In this study, we propose an integrated feature ranking

and selection framework that uses brain cortical thickness,

extracted from structural MRI data, as features and con-

structs a prediction model to identify ADHD subjects

versus normal controls. The framework performs a two-

step feature selection process based on both information

theoretic criteria and regularization concept. To mitigate

the inconsistent feature selection issue of regularization,

especially the lasso method [9], the framework preanalyzes

all features to rank informative features based on mutual

information scores [10]. In feature selection, it extends the

lasso method [11] to construct a prediction model by fixing

those preselected highly informative features when per-

forming regression. Tested on both simulated and real

datasets, our framework is shown to effectively preserve

highly informative features identified in the feature ranking

step and improve the model accuracy while searching in a

full-feature space and maintaining the sparsity in the fea-

ture selection step. With a prediction accuracy of 80.9 %,

our framework selects two sparse models, each with only 4

or 5 cortical thickness features. Previous neurodevelop-

mental studies of ADHD also consistently suggest that the

features selected in our models have a deeper connection to

the neurodevelopmental basis of ADHD, and thus making

the models highly interpretable to clinicians. The proposed

feature selection and prediction framework is a necessary

first step to help clinicians find more features of charac-

terizing ADHD using an objective measure with high dis-

criminative accuracy.

The rest of the paper is organized as follows. In Sect. 2,

we introduce the background of ADHD, including the brain

cortical thickness and its connection to ADHD. We also

review the current feature ranking and selection algorithms.

Section 3 presents the proposed two-step feature ranking

and selection framework, including the model formulations

and model validation using simulated datasets. Section 4

shows the experimental results of the proposed framework

on ADHD characterization using a real MRI neuroimaging

dataset. Finally, we conclude the study in Sect. 5.

2 Background

2.1 Feature extraction of ADHD

ADHD is considered a neurodevelopmental disorder given

the age-related differences in cortical maturation that

characterize ADHD. Researchers suggest that the origins of

attention can be observed in infants as young as three

months when the young infant is able to selectively attend

(i.e., recognize and orient toward) to their caregiver’s face

[12]. According to these researchers, attention is composed

of differential structures and circuits, called an organ sys-

tem. Furthermore, as a child matures during preschool and

early elementary school years, attention response grows

into the ability to self-regulate (i.e., adjust one’s emotional

state/behavior depending on the demands of the environ-

ment) in a changing and dynamic environment. Those

higher level attention abilities are often described with the

term ‘‘executive functions.’’ Such development not only

relies on social demand, but also is due to the brain mat-

uration of the prefrontal cortex. In Posner and Fan’s (2008)

model, self-regulation leads to the second stage in attention

development, the executive network. During the ages of

5–9, children with deficits in self-regulation and attention

are noticed by teachers and parents, as their behaviors

deviate from what would be developmentally appropriate.

Choosing brain cortical thickness as the features in ADHD

characterization is not only supported by theory, but also
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benefits from advances of neuroimaging techniques.

Numerous theories have hypothesized the cause of ADHD

[13–18]. Those hypothesis are further supported by neu-

roimaging research, which provides an accurate way to

measure the relationship between behaviors or symptoms and

underlying brain morphology and brain functioning. As

structural and functional neuroimaging techniques have

improved vastly over the last thirty years, MRI provides

excellent spatial resolution, uses no ionizing radiation (unlike

computed tomography, CT), and thus can be used in pediatric

samples of clinical and non-clinical typically developing

controls. Cortical and surfaced-based neuroimaging tech-

niques improve on conventional volumetric analysis by

allowing for a direct measure of cortical thickness in mil-

limeters, thus may present a more sensitive tool for under-

standing and measuring brain abnormalities in children with

ADHD. So far, a large number of neuroimaging studies have

observed that ADHD manifests via a general deficit in the

dopaminergic system of the brain including prefrontal cortex

[13, 5] or abnormalities in brain structures rich in dopamine

receptors in children and adults with ADHD [19–23, 5].

2.2 Feature selection

Although recent advances in neuroimaging studies have

enabled us to search for structural brain abnormalities

caused by the disease that can potentially be used as new

biomarkers of ADHD, characterization using traditional

machine learning techniques can be difficult because

structural characteristics of neuroimaging data, especially

MRI data, usually result in large number of features. Even

grouping raw features into region of interests (ROI), find-

ing discriminative features for ADHD is still not easy due

to relative small sample size with a limited number of

patients and healthy participants. Learning from limited

sample size with equivalent feature size raises significant

issues of overfitting and interpretability of the final model.

This study is motivated by the challenge and is aimed to

develop efficient feature selection approaches that can

construct a sparse model with the most clinical meaningful

features preserved. In particular, this paper proposes a

novel integrated feature ranking and selection framework

which combines information theoretic criteria and the least

absolute shrinkage and selection operator (Lasso) method

into a two-step feature selection process. The current

information theory-based and the Lasso-based feature

selection approaches will be discussed in the following.

2.2.1 Feature selection using mutual information

Mutual information [24, 10] is a measure of the inherent

dependence expressed in the joint distribution of X and Y

relative to the joint distribution of X and Y under the

assumption of independence. MI measures how much

information a feature contains about the class without

making any assumptions about the nature of their under-

lying relationships. It is formulated as

IðX; YÞ ¼
X

y2Y

X

x2X
pðx; yÞ log pðx; yÞ

pðxÞpðyÞ

� �
:

If the feature is a perfect indicator for the class membership,

its MI reaches its maximum value. A basic intuition is that a

stronger mutual information implies a greater predictive

ability when using the feature. As an information theoretic

criteria, MI have been applied in many feature selection

problems [25]. To know whether a given candidate feature

should be included, one must be able to evaluate the joint

mutual information I(X, Y). However, as feature matrix X is

generally multi-dimensional with a continuous distribution,

the joint mutual information I(X, Y) is thus extremely dif-

ficult to reliably estimate. To solve the problem, one can

assume each feature is independent of all other features, and

rank the features in descending order according to their

individual mutual information score IðXi; YÞ. The feature

selection is simply picking the top K features, where K can

be determined by a predefined certain number of features or

some stopping criterion. The feature selection criterion

based on mutual information score is commonly adopted in

literature. It is often referred as Mutual Information Maxi-

mization (MIM) approaches [26]. However, the perfor-

mance of this approach is known to be suboptimal if

features are interdependent, which is a general case in most

studies. In addition, it is widely accepted that a useful set of

features should not only be individually relevant to class

label, but also should not be redundant with respect to each

other, that is features should not be highly correlated in the

selected subset. To consider both relevancy and redun-

dancy, a number of approaches have been proposed. For

example, Battiti [27] proposed the Mutual Information

Feature Selection (MIFS) criterion, which introduces an

inter-feature correlation term into the MIM criterion. A

penalty parameter b is employed to control the tradeoff

between relevancy and redundancy. If the penalty param-

eter b is set to 0, it is equivalent to the MIM criterion. Peng

et. al. [28] presented the Maximum-Relevance-Minimum-

Redundancy (MRMR) criterion, which is in principle

equivalent to MIFS with the b ¼ 1=ðn� 1Þ, where n is the

number of selected features in the current subset. Yang and

Moody [29] used Joint Mutual Information (JMI) to focus

on increasing complementary information between fea-

tures. In particular, the mutual information between the

class label and a joint random variable XkXj is calculated.

By pairing a candidate Xk with each previously selected

feature. The principle idea is that if the candidate feature is
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‘complementary’ with the existing features, it should be

included in the feature subset. Fleuret proposed the Con-

ditional Mutual Information Maximization (CMIM) crite-

rion [30], which examines the information between a

feature and the class label, conditioned on each current

feature. Instead of taking the mean of the redundancy term,

CMIM takes the maximum value in the redundancy term

and thus penalize more on feature redundancy.

Although mutual information-based feature selection

approaches gained wide popularity in the literature, there are

still some significant issues unsolved. First, all these criteria

rely on highly restrictive assumptions on the underlying data

distributions. In particular, due to the computational diffi-

culties in high-dimensional mutual information estimation,

most approaches only consider pairwise and conditional

pairwise interactions, and omit the higher-order interactions.

Second, most current MI-based approaches perform feature

selection sequentially starting from high-ranked features. As

a result, by excluding low MI ranking features, such

approaches deny the possibility that a set of low-ranked

features combined together may generate strong predictive

power (e.g., in the famous XOR problem [31]). We have the

risk of missing that strong signal by only working on the

preselected candidate set [32, 33, 28].

2.2.2 Feature selection with regularization

In medical research, due to high cost of data acquisition,

researchers often run into the issue of insufficient samples

to train and validate developed models. Instead of heuristic

selection schemes (such as many MI-based approaches),

objective optimization methods have received more atten-

tion since they can be conveniently formulated as convex

optimization problems with global optimal solutions. A

typical objective function consists of an error term and a

regularization term. One of the most widely used such

feature selection algorithms is the least absolute shrinkage

and selection operator (Lasso) [34]), which allows com-

putationally efficient feature selection based on linear

dependencies between input features and output values.

The Lasso method as a shrinkage and selection method for

linear regression gradually receives high recognition and a

fast coordinate descent algorithm has been devised to solve

the optimization problem. The optimization framework of

lasso to minimize the sum of squared errors with a l1-norm

penalty (bound on the sum of the absolute values of the

coefficients) is formulated as follows:

Xn

i¼1

yi � bxið Þ2þkjjbjj1:

By penalizing and forcing some variables to be zero, lasso

can effectively select a sparse model. However, it sacrifices

unbiasedness to reduce the variance of the predicted value

[35].

There are still some challenges for application of Lasso

method in feature selection. The Lasso result is often

subject to the scaling of features. Inappropriate scaling may

cause imbalanced penalty on linear coefficients. The true

underlining features with high coefficients may be sup-

pressed to have smaller coefficients. As a result, the total

explained variance is limited. Instead of rescaling all fea-

tures, more generally one can employ adaptive Lasso [36]

with penalty term k
P

wijjbijj1. Even so, effects of strong

signal will be diminished due to shrinkage.

3 New integrated feature ranking and selection model

3.1 Model formulation and solution

The proposed integrated feature ranking and selection

framework is performed in two stages: mutual information-

based feature ranking and Lasso-based feature selection. In

the feature ranking step, all features are ranked by their MI

scores, and a subset of high-ranked features are selected and

considered to have the best informative power. Among

those features, a redundancy removal step is performed by

checking pairwise correlation between the features. For a

highly correlated feature pair (higher than a threshold), the

feature with lower MI score is considered redundant and

removed from the feature subset to prevent multicollinear-

ity. In the feature selection step, we set the best informative

features penalty-free in the generalized lasso method. We

use Lasso to select additional features from the full-feature

space, not restricted to the subset of high MI features. The

additional features selected, although have lower MI scores

individually, can improve model classification performance

when combined together. Within the subset of high MI

features, we start with setting the single top-ranked feature

penalty-free, then all combinations of two top features, then

all combinations of three top features, iteratively. The fea-

ture selection and classification model was validated by

leave-one-out cross-validation (LOOCV). The search pro-

cess stops when validation accuracy cannot be further

improved. The resulting model will be the best model for

class prediction. Comparing with other MI-ranking-based

methods, the proposed framework can select from the full-

feature space while still creating a sparse model. Comparing

with standard regression approaches with regularization, the

proposed framework integrates the information theoretic

criteria in the generalized Lasso model, and sets the most

informative features penalty-free to improve prediction

accuracy and enhance model interpretability. The

flowchart of the proposed integrated feature ranking and

selection framework is shown in Fig. 1.
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Mathematically, our framework can be formulated as an

optimization problem. Let M be the set of indexes of top

MI features selected from the MI ranking step. We set

indexes in S penalty-free, where S is a subset of M. For

each S, we want to solve the following problem.

min
b

Xn

i¼1

�
yi � b0 �

Xp

j¼1

bjxij

�2

þ k
Xp

j¼1

jbjj ð1Þ

s.t. bj2S ¼ 0: ð2Þ

The optimization model in our Integrated Feature Ranking

and Selection Framework can be solved under generalized

lasso framework [37], which is more flexible than lasso and

is better in representing the intention to set coefficients of

certain informative features penalty-free. Basically, it

introduces an arbitrary matrix D 2 Rm�p;m� p to define

the weights and relations of each element in b.

min
b2Rp

����y� Xb
����2
2
þ k

����Db
����
1
:

We can construct a proper D in the generalized lasso frame-

work to adjust penalty levels for each feature.Tofind such aD,

we propose and prove the following two propositions.

Proposition 1

min
b2Rp

����y� Xb
����2
2
þ
�����k1b1; k2b2; . . .; kpbp

�����
1
:

The above problem of assigning weights kk for each feature
is equivalent to the generalized lasso with diagonal matrix

D and kk ¼ dkk. (The above formula has also been previ-

ously presented as adaptive lasso [36].)

Proof Let D be diagonal matrix diagðd1; d2; . . .; dpÞ, we
have

k
����Dbjj1 ¼ k

�����d1b1; d2b2; . . .; dpbp
�T ����

1

¼
�����k1b1; . . .; kpbp

�����
1
:

If D is p� p and invertible, b can be transformed into

h ¼ Db. The generalized form can be reduced to the

standard lasso:

min
h2Rp

����y� XD�1h
����2
2
þ k

����h
����
1
:

h

Proposition 2 Without loss of generality, to keeping

features Xp�kþ1;Xp�kþ2; . . .;Xp penalty-free is equivalent to

setting dp�kþ1 ¼ 0; dp�kþ2 ¼ 0; . . .; dp ¼ 0.

Proof In this case, D is a rank-deficient matrix

diagðd1; d2; . . .; dp�k; 0; . . .; 0Þ:

k
����Db

����
1
¼

�����k1b1; k2b2; . . .; kp�kbp�k

�����
1
:

Following the construction procedures in [37], we can

transform and reduce the problem to a standard lasso

problem. First, we create a full rank matrix ~D by removing

the last k rows from D and adding k � p matrix A to the

bottom, where m ¼ p� k\p.

~D ¼

d1 � � � 0 0 � � � 0

..

. . .
. ..

.

0 � � � dm
..
.

0 1 � � � 0

..

. ..
. . .

. ..
.

0 � � � 0 � � � 1

2
66666666664

3
77777777775

p�p

:

In the above matrix ~D, A’s rows are clearly orthogonal to

those in D. Let h ¼ ~Db ¼ ðha; bbÞT , where ha is related to

the coefficient vector ba of the first m features that are not

in the desired set. Now the objective function is

min
h2Rp

����y� Xaha � Xbbb
����2
2
þ k

����ha
����
1
;

where Xa is the rescaled first m columns of X, Xb is the

original last k columns.

We optimize bb, ha in a sequential way. First, fixing ha,
the problem regarding bb is a standard linear regression.

The new objective function is to

Input: feature vector and label (xi, yi)

identify top features by MI

reduce redundancy and get top
MI feature subset M , |M | = m

let penalty-free set be S ⊆ M ,
|S| = k, initialize k = 1, ACC0 = 0

run lasso with fixing all S, return
highest accuracy ACCk for kth run

ACCk >
ACCk−1

k = k + 1

Output: model with ACCk−1

yes

no

Fig. 1 Flowchart of Integrated Feature Ranking and Selection Model
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min
ha2Rm

����ð1� PÞy� ð1� PÞXaha
����2
2
þ k

����ha
����
1
;

where P ¼ XbðXT
b XbÞ�1

XT
b . We get a standard lasso prob-

lem regarding ha. After solving ha, we can in turn deter-

mine bb by b̂b ¼ ðXT
b XbÞ�1

XT
b ðy� XaĥaÞ from the result of

linear regression. The solution of the original generalized

lasso solution is b̂ ¼ ~D�1ĥ ¼ ~D�1 ĥa; b̂b
� �T

. h

Despite the formulation similarity between our model

and adaptive lasso [36], adaptive lasso was previously

proposed to include a data-dependent weight vector w. The

weight vector is estimated as ŵ ¼ 1=jb̂jc and no element is

intended to be zero. From the formulation perspective,

adaptive lasso is a special case of generalized lasso with a

full-rank diagonal matrix. In our case, we construct D as a

(0,1)-matrix that has exact one non-zero element in each

row (i.e.,
P

j dij ¼ 1) and at most one non-zero element in

each column (i.e.,
P

i dij � 1). The column indices of non-

zero elements are the features subject to l1 penalty. The

complement set of p� m features are those, we believe,

that are information rich and thus set penalty-free.

3.2 Performance evaluation using simulated dataset

To evaluate the performance of the proposed feature

selection framework, we used a simulated dataset with

binary response and contain p ¼ 45 predictors and n ¼ 50

samples. The dataset was generated in such a way that only

two predictors were related to the response. Using LOOCV,

the proposed framework achieved a validation accuracy of

0.92 with five features selected. As a comparison, we also

tested the logistic regression (LR) with lasso, which gen-

erated a validation accuracy of 0.86 with 8 features selected.

The detailed comparison results are summarized in Table 1

as well as Figs. 1 and 2. From those results, one can see

clearly that the proposed framework is capable of selecting

a model with higher validation accuracy while with less

selected features compared to lasso (Fig. 3).

4 Application in the diagnosis of ADHD

4.1 Dataset

This study used a dataset that was collected as part of a

larger study from the University of Texas at Austin and the

University of Texas Health Science Center in San Antonio

by Dr. Margaret Semrud-Clikeman.

A total of 47 subjects matched on gender, SES, and

ethnicity participated in the study. All subjects were right

handed. There were two groups: 32 ADHD-Combined

participants and 15 healthy subjects in a control group. All

ADHD participants had less than 15 standard score point

differences between general conceptual ability (DAS-

GCA) and all achievement measures. The ADHD subjects

were matched on severity of symptoms as measured by

Conners’ Ratings Scale (Conners, 1998a). All ADHD

subjects met DSM IV-TR criterion for ADHD Combined-

type and no other psychiatric or psychological disorder

including Learning Disorders, Anxiety Disorders, Mood

Disorder, or Oppositional Defiant Disorder. Control par-

ticipants did not meet any criteria for a psychiatric or

learning diagnosis nor have a history of medication treat-

ment. All participants were recruited from a diversity of

socioeconomic and ethnic backgrounds in order to control

for potential group differences.

MRI images are acquired at the University of Texas

Health Science Center at San Antonio using three-dimen-

sional gradient recalled acquisitions in the study state (3D-

GRASS) with a repetition time (TR) = 33 msec, echo time

(TE) = 12 msec, and a flip angle of 60 degrees to obtain a

256 � 192 � 192 volume of data with a spatial resolution

Table 1 Performance comparison on simulated dataset

Method Validation accuracy Training accuracy Features selected

Our Model 0.92 0.94 5

LR ? lasso 0.86 0.97 8

Fig. 2 Best prediction error using LR ? lasso (green curve as

training error, red curve as testing error, dashed line cuts at min

testing error)
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of 1mm � 1mm � 1mm. Then all MRI images were

processed and normalized using the FreeSurfer image

analysis suite [38, 39] by Dr. Jesse Bledsoe on a Linux

platform at MSU. All regions of interest (ROI) in the

FreeSurfer suite (45 cortical ROIs) were developed using

an automated labeling system based on gyral regions of the

Desikan-Killiany Atlas [40]. We employed the brain cor-

tical thickness of those ROIs as possible features for

ADHD feature characterization and selection in this study.

4.2 Results of feature ranking and decorrelation step

The first step in our framework is to perform feature

ranking using mutual information. The top ten features of

cortical thickness with highest MI were picked first for

further analysis. They are right rostral anterior cingulate

(MI = 0.124), total rostral anterior cingulate (0.122), left

rostral anterior cingulate (0.078), left caudal middle

frontal (0.071), right frontal pole (0.068), right lateral

orbito frontal (0.063), left caudal anterior cingulate

(0.062), total caudal middle frontal (0.051), left inferior

parietal (0.051), and left pars orbitalis (0.05). In the next

step, we calculated the correlation between each pair of

the high-ranked 10 features. If the correlation of a pair of

features is 0.6 or higher, we consider one feature in the

pair to be redundant, and remove the feature with a lower

mutual information value. In this way, the following two

features were removed: total rostral anterior cingulate and

total caudal middle frontal. The remaining eight features

were used as feature candidates in the Lasso-based feature

selection step.

4.3 Results of feature selection step

4.3.1 Comparison of testing accuracy

In feature selection step, within top eight highest MI and

uncorrelated feature set, we started with fixing the single

top feature penalty-free, then all combinations of two

features penalty-free, then all combinations of three fea-

tures, iteratively. We evaluated the selection and prediction

model using the validation accuracies in a LOOCV pro-

cedure. The model search process stops at fixing four

features penalty-free, as when fixing more features, the

validation accuracy started to decrease. The resulting

model is the best prediction model with the highest

LOOCV validation accuracy. As shown in Table 2, the

proposed framework achieved a testing accuracy of 0.81

with a sensitivity of 0.81 and a specificity of 0.80.

In addition, we also tested and compared the perfor-

mance of the state-of-the-art feature selection algorithms,

including the aforementioned information theoretic meth-

ods MRMR [28], MIFS [27], JMI [29], CMIM [30], MIM

[26], as well as the popular Pudil’s floating search method

[41], and the principle component analysis (PCA)-based

approach, for which we took the components that account

for 95 % of data variance as the selected features in pre-

diction. The prediction results of these approaches are also

summarized in Table 2. One can observe that the proposed

method achieved higher validation accuracy (0.81) than all

other compared feature selection approaches, while using

the lowest number of features in the final prediction model.

These experimental results confirmed that our model is

efficient to select the most predictive features of ADHD

given a small sample size.

4.3.2 Analysis of features in best models

To investigate the model interpretability, we also checked

the locations of the selected cortical thickness. All the

features (regions of interest) selected by the best models

were located in prefrontal cortex (PFC), anterior cingulate

cortex, and parietal cortex. Structural and functional

impairments are in accordance with current understanding

of brain–behavior relationships in ADHD.

The prefrontal cortex (PFC) is connected with nearly

every cortical structure of the central nervous system [42]

and is involved in nearly all aspects of human personality

and cognition. The PFC has received much attention in the

ADHD literature given a large body of research on

impairments in tests thought to tap PFC functioning [43,

44]. For example, the PFC has been implicated in complex

behavior relevant to central impairments in ADHD such as

inhibitory control [45, 46], attention, working memory, and

planning [42, 47]. Furthermore, specific differences within

Fig. 3 Best prediction error using our framework (green curve as

training error, red curve as testing error, dashed line cuts at min

testing error)
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the frontal pole and orbital frontal cortex observed here

may provide further evidence for impairments in frontal

limbic structures and emotional disorders which often co-

occur in children with ADHD [48].

The anterior cingulate cortex is a key structure implicated

in attentional control [47]. It is implicated in awide variety of

cognitive operations including response inhibition, reward

processing, behavioral motivation, target detection, and

decision making [49]. Functional neuroimaging studies

suggest hypoactivation of areas of the anterior cingulate in

children and adults with ADHD [50–52]. Studies observed

decreased activation of the anterior cingulate in tasks thought

to require behavioral inhibition (e.g., counting Stroop task)

in children with ADHD compared to controls [50, 52] also

reported reduced activation of the anterior cingulate during

tasks of behavioral inhibition (e.g., stop signal task) in

children with ADHD-C. Further, cortical thinning of the

anterior cingulate cortex has been demonstrated in adults

with ADHD [53]. Moreover, the right rostral anterior cin-

gulate cortex (ACC) contributed the most predictive vari-

ance in classifying those with ADHD from typically

developing controls. This finding supports the hypothesis

that abnormal development of the the right ACC, in partic-

ular, may be considered a biomarker for ADHD and inhibi-

tory control [54]. TheACC is likely implicated inADHDdue

to its involvement in complex behavior. However, the ACC,

itself, is unlikely to contribute to impaired attention. Rather,

future work will need to address the complex networks and

systems that involve theACC in order to provide valid causal

pathways for ADHD.

The left inferior parietal cortex also contributed to the

classification of ADHD versus healthy children. This was a

particularly interesting finding given recent work that has

implicated abnormalities in parietal cortex during resting-

state functional MRI [55]. Prior to this work, the posterior

cortex was proposed to underlie the basis for arousal and

vigilance which were considered precursors for targeted

attention [47, 56]. And, more recent work has found the

posterior parietal lobe to be important for shifting attention

during dynamic attention tasks [57]. Structurally, reduced

cortical thinning of the right-parietal cortex has also been

observed in adults with ADHD [53]. Taken together, the

parietal cortex, likely due to its frontal projections, is

another important area in the attention network that may

undergo abnormal development in those with ADHD.

The prefrontal cortex, anterior cingulate cortex, and

parietal cortex have all been implicated in attentional

control and ADHD. Given these regions provided the best

classification of ADHD from controls, the proposed model

would appear to be theoretically valid. A significant

advantage of the proposed approach is that we novelly

integrate the information theoretic feature selection

framework with the generalized lasso framework. Through

adaptively manipulating penalty weights of each feature in

regularization term, we are able to preserve the most

informative features in the final model and eliminate less

informative and redundant features.

5 Conclusion

ADHD feature characterization and selection has never

been an easy task. In this paper, the proposed integrated

feature ranking and selection framework provides a sparse,

accurate, and highly interpretable model to assist ADHD

feature characterization. With the proposed two-step for-

mulation, one can integrate information theory conve-

niently to supervise the feature selection process while the

optimal solutions can be guaranteed due to the convex

optimization formulations in a generalized lasso frame-

work. The information-guided selection structure enforces

the most useful discriminative predictors to be included in

the final prediction model while eliminating less-informa-

tive and redundant variables to create an accurate sparse

prediction model. In addition to mutual information, due to

the flexible structure of the proposed framework, one can

also conveniently integrate clinical prior knowledge into

the feature selection model. For example, one can set

Table 2 Comparison of testing results (leave-one-out cross-validation)

Selected features Testing accuracy Training accuracy Sensitivity Specificity Selection method

4 0.81 0.87 0.81 0.80 Proposed method

5 0.76 0.78 0.75 0.80 MRMR [28]

7 0.66 0.76 0.66 0.67 Pudil’s floating search [41]

14 0.70 0.74 0.72 0.67 PCA

5 0.74 0.75 0.81 0.60 MIM [33]

5 0.70 0.76 0.69 0.73 MIFS [27]

5 0.72 0.78 0.72 0.73 JMI [29]

5 0.74 0.76 0.75 0.73 CMIM [30]
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clinician-identified potentially important features penalty-

free and encourage them to be included in the final pre-

diction model. The information theory-guided and clinical

prior knowledge-guided feature selection framework will

be greatly useful to construct prediction models that are

more transparent and interpretable by medical and health-

care professionals. Such a supervised feature selection

framework is highly demanded in making clinical deci-

sions compared to the ‘black box’ predictive models gen-

erated by traditional machine learning algorithms. As this

is a general feature selection approach, the proposed

technique can also be applied to other decision-making

problems that require interpretable prediction models. The

research in this study also suggest that machine learning

techniques can be useful tools for understanding and

measuring brain abnormalities associated with ADHD.
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