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Abstract Large-scale brain initiatives such as the US

BRAIN initiative and the European Human Brain Project

aim to marshall a vast amount of data and tools for the

purpose of furthering our understanding of brains. Funda-

mental to this goal is that neuronal morphologies must be

seamlessly reconstructed and aggregated on scales up to

the whole rodent brain. The experimental labor needed to

manually produce this number of digital morphologies is

prohibitively large. The BigNeuron initiative is assembling

community-generated, open-source, automated recon-

struction algorithms into an open platform, and is begin-

ning to generate an increasing flow of high-quality

reconstructed neurons. We propose a novel extension of

this workflow to use this data stream to generate an

unlimited number of statistically equivalent, yet distinct,

digital morphologies. This will bring automated processing

of reconstructed cells into digital neurons to the wider

neuroscience community, and enable a range of morpho-

logically accurate computational models.
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1 Introduction

Neuron morphologies are fundamental to brain function,

but are difficult to quantify. Many schemes have been

created that capture some features of selected cell types,

but they are hard to generalize to many cell types. One

bottleneck is that describing the shape of a neuron requires

quantitatively specifying many morphological features,

examples of which are the length and branching patterns of

neurites, and their spatial distribution. Another is that

obtaining accurate 3D digital representations of neurons

has traditionally been a slow, expensive, manual process.

The public database Neuromorpho.org currently contains

about 34,000 reconstructed neurons at different levels of

completeness. A small fraction of such documented neu-

rons are from mammalian nervous systems as the result of

many years work by many groups. The Blue Brain project,

which recently published a first draft reconstruction and

simulation of a portion of rat somatosensory cortex [1], has

collected around 2000 biological reconstructions using

standardized protocols. However, these datasets are insuf-

ficient to map even a small part of the rodent brain, which

contains of the order of 100 million neurons.

In addition, the quality of neuron morphologies pro-

duced by existing efforts, such as those stored in Neu-

roMorpho.org, varies widely, reflecting the different

protocols used in the experiments and reconstruction. If the

ambitious goals of large-scale projects like the European

Human Brain project and the US BRAIN initiative are to

be realized, an automated workflow is required to produce

large numbers of reconstructed, biological neurons, quan-

titatively analyze their shapes, and generate from them the

vast number of cells needed for whole brain modeling.

Each stage should not only preferably be independently

executable, so that many community use cases are satisfied,

but also be seamlessly connected to fulfill the integrated

need of larger brain modeling projects.

We believe an automated workflow such as that

demonstrated in Fig. 1 would eliminate the barrier that
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experimentally reconstructing neuronal morphologies is

labor-intensive, slow and does not scale to the generation

of sufficient cells for whole brain exploration. By using

open data formats and combining community-generated

algorithms on a common hardware platform, such a

workflow will reduce the need for expert knowledge in

processing the brain slices, tracing out the neuronal shapes,

and extracting the morphometric features needed for cre-

ating artificial neurons. This workflow also builds on a

recent trend by large international organizations toward

developing open-source software tools for the neuroscience

community that can be leveraged to embed currently

manual tasks into a single, seamless workflow.

There are essentially three stages in our workflow

(Fig. 1):

• Reconstruction of digital 3D neuronal structures from

brain slice images;

• Morphometric analysis of the digital neurons to extract

quantitative features that characterize them; and

• Generation of arbitrary numbers of cells using these

statistical features.

2 Automated neuronal reconstruction

The BigNeuron initiative (http://bigneuron.org) [2, 3] is led

by the Allen Institute for Brain Science and co-sponsored by

15 organizations across the world. The project aims to

combinemultiple, community-authored automated neuronal

reconstruction algorithms in one open-source platform. By

applying many independent algorithms to a standardized

image dataset, BigNeuron will produce a potentially better

estimate of the neuronal shape than any single algorithm. It

also enables anyone who wants to contribute a new recon-

struction algorithm to compare it with existing ones, and to

test it on the large set of image slices provided.

The technical platform of BigNeuron is built upon the

Vaa3D software (http://vaa3d.org) [4, 5], an open-source

visualization and analysis software suite created and

maintained by Janelia Research Campus of Howard

Hughes Medical Institute and the Allen Institute for Brain

Science. Figure 1 illustrates how the plugin architecture of

Vaa3D exposes community-provided tools needed for

neuron reconstruction and subsequent stages of analysis.

Fig. 1 Vaa3D is a cross-platform framework that provides a plugin

architecture to expose community-provided features for neuronal

reconstruction, morphometric analysis, and digital neuron synthesis.

Individual plugins allow users to solve many current neuron

reconstruction use cases separately, or take advantage of the unified

workflow that uses automated reconstruction and analysis algorithms

to generate multiple digital neurons for network modeling and

simulation
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Plugins typically are also open-source software tools that

can be used individually, or combined into automated

workflows. Plugins can be used to solve typical use cases in

reconstruction, such as testing reconstruction algorithms on

image slices, optimizing staining protocols in the labora-

tory, and analyzing reconstructed neurons to extract

quantitative morphometric features. Eventually, Vaa3D

will unify the tools needed to automate the process of using

brain slice images to ultimately generate large numbers of

synthesized neurons automatically.

Reconstruction algorithms are developed independently

by the individual groups, who can choose to release their

algorithms as plugins to the software that are then available

to all. The input dataset of mouse brain images were

contributed by the Allen Institute for Brain Science and

other research organizations using a standardized protocol.

This makes it possible to explore the effects of changes to

the algorithms on the reconstruction quality, and give

feedback both to the experimental groups doing the image

stains and the software developers producing the image

analysis plugins.

The BigNeuron initiative has run a series of hackathons

in 2015 (http://alleninstitute.org/bigneuron/hackathons-

workshops/) at which developers work with image recon-

struction methods to make their algorithms available on the

Vaa3D platform. Because the platform is open source, any

member of the community can create their own plugin for

their private use or take advantage of those deposited by

the community. Currently, BigNeuron incorporates around

30 reconstruction algorithms that can be applied to a set of

30,000? multi-dimensional image stacks. This has so far

resulted in more than one million reconstructed neurons

from different species. For mouse and other mammal

brains, there are hundreds of increasingly high-quality

reconstructions. The first official data release is planned for

2016 in the common swc format (http://research.mssm.edu/

cnic/swc.html).

3 Automated neuronal morphology analysis

Given a large number of reconstructed neurons, the next

stage is to transform their 3D structures into a set of

morphometric features that can be used to create digital

cells. Vaa3D comes with a set of morphometric features

that are consistent with the popular neuron morphometric

analysis tool L-measure [6]. Vaa3D also provides neuron

search and comparison tools such as BlastNeuron [7].

The Blue Brain Project (BBP) in Switzerland has

recently released an open-source software tool called

NeuroM (https://github.com/BlueBrain/NeuroM) that

allows a user to import digitally reconstructed neurons in

swc format, apply simple checks on the quality of the

reconstruction, quantify a variety of features, find correla-

tions between features, and explore the spatial distribution

of the neurites. The tool is written in python and depends

only on common open-source python packages. It is

designed to help neuroscientists quantitatively and objec-

tively measure neuronal features, assign neurons to

stable classes, and share their results between laboratories.

An initial suite of analysis functions is provided by NeuroM

that allows a user to extract simple morphometric features.

The neuroscience community has not yet converged on the

optimal set of features needed to reliably describe neurons

of any cell class [8]. Consequently, a tool that allows the

measurement of a large number of morphological features is

desirable. Python users can easily extend the initial func-

tionality of NeuroM to contribute more advanced morpho-

logical measurements to the community.

Classifying neurons into distinct classes based on their

morphological features has occupied many scientists since

Cajal. Neurons have a large diversity of shapes, electrical

behavior, and gene expression signatures that together

determine the role of each neuron in the brain. Increasing

quantities of genetic, physiological, and morphological

data about neurons are being produced around the world. In

order to make sense of this data, and to be able to com-

municate it intelligibly between different groups, it is

necessary to assign it to widely accepted, stable cell clas-

ses. The difficulty of finding these classes has recently been

illustrated by DeFelipe et al. [9] who attempted to produce

an expert-independent set of categories for GABAergic

aspiny or sparsely spiny cortical interneurons.

A group of 42 experts were asked to label each cell in a

large set with a variety of features, and the agreement and

disagreement between experts were measured. These fea-

tures included geometric properties such as intralaminar

(axonal arbor remains in the same cortical layer as the

soma) or translaminar (axonal arbor is distributed mainly

above or below the cortical layer containing the soma);

intracolumnar or transcolumnar, which applies the same

criterion as the previous feature but to the arbitrarily

selected region delineated by a circular column of diameter

300 microns centered on the soma. The experts were also

asked to assign the cells to widely recognized neuronal

classes such as Martinotti, Chandelier, Neurogliaform cell,

etc. Their study concluded that a purely morphological

approach to neuron classification is currently not feasible,

and that different investigators use mutually inconsistent

schemes for classifying neurons. They also found that

several experts assigned a different type to a neuron in their

study than the one the experts had chosen in earlier pub-

lications involving the same neuron.

Objective classification of neurons requires standardized

brain slice imaging and neuron reconstruction protocols,

and a common set of morphometric features for the
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consistent quantifying of cell morphologies. The increasing

number of morphologies being generated by BigNeuron

fulfills the first requirement, and the inclusion of NeuroM

in the BigNeuron extension pipeline brings a common set

of quantitative analysis tools to the community. The Blue

Brain project is continuing to develop NeuroM and release

its improvements via the public github repository.

The final stage of the proposed unified workflow is to

grow, or synthesize, digital neurons that are statistically

indistinguishable from the original biological reconstruc-

tions from which the features were extracted. Currently,

statistical distributions for only a few features (the total

number of sections, section lengths, and bifurcation angles)

are required to synthesize neurons whose basal dendrites

resemble biological cells. But, the wide variation in

appearance of different neuron types, and especially the

variety of axonal arbor shapes, suggests that each class of

cell will require its own specific set of features to reproduce

it. Whereas the software for the first two stages in this

workflow has been released to the community, the final

stage of synthesis is still being developed at the BBP.

4 Neuron synthesis

For many years, groups have been trying to find ways of

accurately recreating the highly ramified shapes of neurons

on a computer. For example, the Trees toolbox [10] creates

dendrites by first distributing points in 3D space according

to the density obtained by overlapping many examples of a

given cell type, and then uses a minimal spanning tree to

connect the points in a stochastic way that yet reproduces

the connectivity and appearance of various neuron classes.

The NetMorph algorithm [11] grows each neurite as a

quasi-random walk in space where the next point is chosen

by summing up forces that reflect biophysical properties

such as microtubule-based neurite stiffness and biochemi-

cal processes that lead to bifurcations. Luczak [12] has

used a Diffusion Limited Aggregation scheme with a

spatially imhomogeneous distribution of diffusing particles

within a prescribed volume to create distinct neuronal

dendritic shapes.

These algorithms derive morphological features from a

set of biological neurons and recreate each synthesized cell

independently with little or no information about the sur-

rounding space. Essentially, the shape of the cell, which is

clearly influenced by the composition of the tissue within

which it grows and the presence of other cells, is abstracted

into a set of statistical distributions. This means that some

biological influences on cell growth are ignored while other

aspects that would arise naturally as a result of simulta-

neous development of many cells must be inserted manu-

ally. Neurite tortuosity, for example, likely reflects the

need for neurites to wind around rather than pass through

each other, and so should not need to be explicitly

parametrized.

However, biological neurons do not grow in a vacuum.

The cells produced by the above schemes, although they

can accurately capture some neuronal shapes, inevitably

intersect unrealistically when many are placed together in a

limited volume of space to build a network. This has direct

consequences for neuron simulations; in that the mass

distribution is unrealistic and reduces the accuracy of

metabolic models and distributed electric field effects. A

more realistic approach is to compose a tissue by simul-

taneously growing many neurons within the desired vol-

ume [13–15]. The BBP synthesizer, which forms stage 3 of

the workflow in Fig. 1, uses a neuron class-dependent set

of statistical features obtained from the NeuroM tool to

simultaneously grow a large number of cells within a user-

defined volume of space. The software incorporates

external boundaries, such as the pia and white matter, and

internal (transparent) boundaries such as the six layers in

the cortex. It is designed to capture other internal occluding

structures such as the vasculature. An immediate question

arises with such an approach: given that cortical gray

matter is on average 70 % filled with axons and dendrites

[16]: is it possible to grow a large number of neurons

simultaneously? What happens if they run out of space? A

necessary condition for simultaneous growth of many

neurons to be feasible is that the computational cost of

adding mass to the neurites should be linear in the total

mass over a wide range of volume fractions, otherwise the

algorithm will not scale to the size of a brain, not even that

of a mouse.

We can estimate this computational cost by considering

the number of calculations a program must make to grow

the neurites by adding small units of mass. A naive algo-

rithm would simply add a mass unit and check that it does

not overlap with any existing mass. But this results in an

O(N2) cost which grows prohibitively with the linear

dimension of the system. A more accurate calculation can

be compared to the integration of Newton’s laws for fluid

elements in hydrodynamic flow. In both cases, the only

forces that act on a small material element are local and

must propagate across the surface of the element. In the

fluid simulation, the forces between all adjacent fluid ele-

ments must be calculated and summed to provide the net

force that is then integrated to find the new positions and

momenta of the elements. In the synthesis case, we con-

sider the computational cost of each growing tip having to

find a space around itself to place a new piece of mass. This

calculation leads to the conclusion that synthesizing a large

number of neurons simultaneously is linear in the total

mass of the neurons. This is a prerequisite if synthesis is to

be scalable. The BBP synthesizer is planned to be
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integrated into the Vaa3D plugin architecture, and released

to the community, thereby completing the workflow

described at the beginning of this article.

The workflow of Fig. 1 emphasizes that algorithms that

are developed as open-source software tools and adhere to

common data standards satisfy many existing use cases

relating to automatic neuronal reconstruction and mor-

phological analysis. The common platform encourages

users to collaborate toward improving tools according to

community standards. And when combined in a common

platform, users can leverage high-throughput data genera-

tion and feature extraction to synthesize large numbers of

neurons of specified types within prescribed volumes of

tissue for use in modeling and simulation. This will bring

morphologically accurate neuron simulations to the wider

community, and help accelerate our pursuit of under-

standing the mammalian brain.
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