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Abstract

Artificial intelligence (Al) literacy is a global strategic objective in education. How-
ever, little is known about how Al should be taught. In this paper, 46 studies in aca-
demic conferences and journals are reviewed to investigate pedagogical strategies,
learning tools, assessment methods in Al literacy education in K-12 contexts, and
students’ learning outcomes. The investigation reveals that the promotion of Al lit-
eracy education has seen significant progress in the past two decades. This high-
lights that intelligent agents, including Google’s Teachable Machine, Learning ML,
and Machine Learning for Kids, are age-appropriate tools for Al literacy education
in K-12 contexts. Kindergarten students can benefit from learning tools such as Pop-
Bots, while software devices, such as Scratch and Python, which help to develop
the computational thinking of AI algorithms, can be introduced to both primary and
secondary schools. The research shows that project-based, human—computer col-
laborative learning and play- and game-based approaches, with constructivist meth-
odologies, have been applied frequently in Al literacy education. Cognitive, affec-
tive, and behavioral learning outcomes, course satisfaction and soft skills acquisition
have been reported. The paper informs educators of appropriate learning tools, peda-
gogical strategies, assessment methodologies in Al literacy education, and students’
learning outcomes. Research implications and future research directions within the
K-12 context are also discussed.
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Introduction

Artificial intelligence (AI) was defined in 1956 as “the science and engineering of
creating intelligent machines” (McCarthy, 2004, p.2). Al education is considered
a driver of economic growth, future workforce development, and global com-
petitiveness (Cetindamar et al., 2022; Sestino & De Mauro, 2022). Researchers’
interest in equipping students with Al knowledge, skills, and attitudes to thrive in
an Al-rich future (Miao et al., 2021; Rina et al., 2022; Wang & Cheng, 2021) has
given rise to the term “Al literacy”, which concerns the design and implementa-
tion of Al learning activities, learning tools and applications, and pedagogical
models. Some educators focus on demonstrating machine learning through activi-
ties for mastering coding skills and Al concepts (Marques et al., 2020), while
others suggest focusing on computational thinking and engagement in deductive
and logical reasoning practices (Wong, 2020). In this paper, it is argued that Al
education should be extended beyond universities to K-12 students.

There have been a number of recent studies of Al in the context of kinder-
gartens (Su & Yang, 2022; Williams et al., 2019a, 2019b), primary schools (Ali
et al., 2019; Shamir & Levin, 2021), and secondary schools (Norouzi et al., 2020;
Yoder et al., 2020). However, little is known about what and how AI should be
taught (Su et al., 2023a; Ng et al., 2023; Van Brummelen et al., 2021). One chal-
lenge is delivering Al content in an age-appropriate and effective manner (Su
et al., 2023b; Su & Yang, 2023). Despite the numerous Al learning tools avail-
able in K-12 contexts (Rizvi et al., 2023; Van Brummelen et al., 2021), such as
Turtle Robot (Papert & Solomon, 1971), PopBots (Williams et al., 2019a) and
LearningML applications (Rodriguez-Garcia et al., 2020), many educators are
concerned about the suitability of these tools (Chiu & Chai, 2020; Su & Yang,
2023).

With the development of age-appropriate learning tools, Al concepts can be
simplified via visual representation, such as block-based programming (Estevez
et al., 2019). For example, Scratch, a high-level block-based programming lan-
guage, allows students with limited reading ability to create computer programs
by using illustrations and visual elements (such as icons and shapes) without hav-
ing to rely on traditional written instructions (Park & Shin, 2021). AI tools and
platforms, including Zhorai (Lin et al., 2020), Learning ML (Rodriguez-Garcia
et al., 2021), Machine Learning for Kids (Sabuncuoglu, 2020), and Scratch (Li &
Song, 2019), have a positive impact on students’ Al knowledge and skills. Chen
et al. (2020) noted that despite the introduction of various learning tools to teach
Al, there has not been enough discussion on how Al content should be taught and
how tools should be used to support pedagogical strategies and related educa-
tional outcomes.
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Theoretical model

The technology-based learning model of Hsu et al. (2012) is adopted and modi-
fied in this study; it has been widely used by other researchers conducting similar
systematic reviews (Chang et al., 2018, 2022; Darmawansah et al., 2023; Tu &
Hwang, 2020), as shown in Fig. 1. Hsu et al. (2012) suggested cross-analyzing
academic research trends by examining the associations among three catego-
ries: research methods, research issues, and application domains. They argue, for
example, that by exploring how the topic of a study may affect the selection of
its sample and participants, a more thorough and comprehensive analysis can be
conducted. Their proposed technology-based learning model has helped frame
the research questions of the present study.

According to Hsu et al. (2012), “research methods”, “research issues”, and
“application domains” are the three main categories to be considered in the develop-
ment of a coding scheme to gauge research trends in the field of technology-based
learning and education. In terms of research methods, a quantitative, qualitative,
and mixed approach is employed in this study to construct the coding scheme for

Research Issue:

Leaming Outcomes (Chang et al., 2018)

Al literacy
Education

in K-12 context

Application Domains: Research Methods:
Pedagogical strategies (Lai & Classified as quantitative,
Hwang, 2015) and Al learning tools qualitative, and mixed methods
| (Ngetal., 2021) (McMillan & Schumacher, 2006)

Fig. 1 Modified technology-based learning model by the researchers of this review (adopted from Hsu
etal., 2012)
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the review of the literature (McMillan & Schumacher, 2010). In terms of research
issues, with reference to Chang et al. (2018), learning outcomes are categorized
as cognitive, affective, behavioral, and skills acquisition outcomes. Finally, two
application domains are pursued in this paper: (1) the pedagogical strategies com-
monly used in science courses, which were employed by Lai and Hwang (2015) and
which include constructive, reflective, didactic, and unplugged pedagogies (Cope
& Kalantzis, 2016), and (2) the learning tools, namely, hardware, software, intelli-
gent agents, and unplugged strategies, which are coded as suggested by Ng and Chu
(2021).

Research objectives

In this study, the literature on pedagogical strategies, assessment methods, learning
tools, and learning outcomes in Al K-12 settings is studied. Four research questions
are formulated.

— RQI1: What are the potential learning tools identified in AI K-12 education?

— RQ2: What pedagogical strategies are commonly proposed by studies on Al
K-12 learning tools?

— RQ3: What learning outcomes have been demonstrated in studies on Al K-12
learning tools?

— RQ4: What are the research and assessment methods used in studies on Al K-12
learning tools?

Methods

This study follows the same four steps employed in other studies on Al literacy
in K-12 (e.g., Ng et al., 2022; Su et al., 2022): (1) identifying relevant studies, (2)
selecting and excluding eligible studies, (3) data analysis, and (4) reporting findings.
In this study, the preferred reporting items for systematic reviews and meta-analyses
(PRISMA) guidelines (Moher et al., 2015) are followed.

Identifying relevant studies

The electronic databases used for the literature search were ACM, EBSCO, Web of
Science, and Scopus. The aim of this review is to provide a comprehensive K-12
education for learning tools, encompassing early childhood education and primary
and secondary education. As the education systems of different countries may dif-
fer from each other, the search string used in the paper for K-12 includes from kin-
dergarten to secondary school students. In addition, learning tools are defined as
a variety of learning platforms and systems, educational applications and activities
that can enhance the teaching process and support students in Al literacy learning.
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Table 1 Search string

Databases Search string

ACM [[Title: “artificial intelligence”] OR [Title: “ai”’] OR [Title: “ai literacy”’] OR [Title:
“artificial intelligence literacy”] OR [Title: “machine learning”] OR [Title:
“ml”]] AND [[Title: “primary school*”’] OR [Title: “preschool*”] OR [Title: “kin-
dergarten*”] OR [Title: “pre-k*”] OR [Title: “secondary school*”’] OR [Title: “high
school*”’] OR [Title: “k-12"]]

EBSCO TI (“Artificial Intelligence” OR “AI” OR “Al literacy” OR “Artificial Intelligence
literacy” OR “Machine learning” OR “ML”) AND TI ( “primary school*” OR
“preschool*” OR “kindergarten*” OR “pre-k*” OR “secondary school*”” OR “high
school*” OR “K-12") AND TI ( “learning” OR “learning tools” OR “learning
systems”)

Web of Science “Artificial Intelligence” OR “AI” OR “Al literacy” OR “Artificial Intelligence literacy”
OR “Machine learning” OR “ML” (Title) AND “primary school*” OR “preschool*”
OR “kindergarten*” OR “pre-k*” OR “secondary school*” OR “high school*” OR
“K-12” (Title) AND “learning” OR “learning tools” OR “learning systems” (Title)

Scopus AT ( “Artificial Intelligence” OR “AI” OR “Al literacy” OR “Artificial Intelligence
literacy” OR “Machine learning” OR “ML”) AND AT ( “primary school*” OR
“preschool*” OR “kindergarten*” OR “pre-k*” OR “secondary school*”” OR “high
school*” OR “K-12”) AND AT( “learning” OR “learning tools” OR “learning
systems”)

Therefore, the search strings are reflected with specific definitions for K-12 and
learning tools to search for target articles and data, as shown in Table 1.

Study selection and exclusion

To ensure the generalizability of the findings and to avoid biases in article selec-
tion, specific inclusion and exclusion criteria are employed in this study (Table 2).

As shown in Fig. 2, a total of 326 articles were identified, 105 from EBSCO,
81 from Web of Science, 110 from Scopus, and 30 from ACM. The exclusion
criteria were as follows: (1) studies that were irrelevant to the research topic
(N=251). For example, Bai and Yang (2019) were excluded since the research
applied a deep learning technology recommendation system to improve teachers’
information technology ability. It was conducted in contexts other than those of
Al literacy education, learning and instruction. Mahon et al. (2022) presented the
design of an online machine learning and artificial intelligence course for second-
ary school students; however, they did not discuss in detail what type of learning
tools can be used and how to support students’ Al literacy learning. A discussion
paper by Karalekas et al. (2023), a theoretical paper by Leitner et al. (2023) and
a scoping review by Marques et al. (2020) were also removed because they were
not empirical studies, and they did not involve conducting any practical experi-
ment. (2) Duplicate studies (N=10), (3) studies that were not written in Eng-
lish (N=4), (4) non research studies (N =10), and other types of articles (N =8).
Finally, 46 studies were selected, as shown in Appendix 1.
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Fig.2 PRISMA diagram of included articles in the scoping review

The snowball method

To enhance the systematic search for relevant literature, the snowballing method as
outlined by Sayers (2008) was employed. This involved tracing references in previ-
ously selected articles. The focus was on the references cited in the earlier selected
articles as discovered through Google Scholar. Utilizing the snowballing method
led to the identification of three additional articles that met the eligibility criteria
described above.

Overview of selected studies

Table 3 presents an overview of the 46 selected studies, including the type of arti-
cles, year of publication, and educational level.
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Table 3 The characteristics of

the reviewed articles Variables Categories N %
Types of articles Conference papers 28 60.87
Journal articles 18 39.13
Year 1995 1 2.17
2010 1 2.17
2012 1 2.17
2018 4 8.70
2019 7 15.22
2020 10 21.74
2021 14 30.44
2022 4 8.70
2023 (up to Sept) 4 8.70
Countries Australia 2 4.34
Brazil 1 2.17
China 7 15.22
Denmark 1 2.17
Finland 3 6.52
Greece 1 2.17
Hong Kong 3 6.52
Indonesia 1 2.17
Israel 3 6.52
Japan 2 4.35
New Zealand 1 2.17
Norway 1 2.17
Spain 3 6.52
Sweden 1 2.17
Thailand 1 2.17
UK 1 2.17
USA 8 17.39
Do not mention 6 13.07
Educational level Kindergarten 5 10.87
Primary School 20 43.48
Secondary School 20 43.48
Across K-12 1 2.17

Publication trends
Forty-six articles were identified: 28 conference papers and 18 journal articles.

The first article was published in 1995, and 39 articles have been published in the
past 5 years, with a peak in 2021 (Fig. 3).
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Most research took place in the USA (N=8), China (N=7), Finland (N=3),
Hong Kong (N=3), Israel (N=3), Spain (N=3), Australia (N=2) and Japan
(N=2). Others were conducted in Brazil, Denmark, Greece, Indonesia, New Zea-
land, Norway, Sweden, Thailand, and the UK. The locations of the remaining six
articles are unknown.

Educational levels

Primary and secondary schools are both the most researched educational levels,
each covering 44% of the selected articles, followed by kindergartens (11%) and
K-12 education (2%).

These selected studies generally include samples of students of both genders
and a wide range of ages, from 3-year-old kindergarten students (Vartiainen
et al., 2020) to 20-year-old Danish high school students (Kaspersen et al., 2021).
It also encompasses participants in science technology engineering mathemat-
ics (STEM) classes (Ho et al., 2019), high-performing students of the Scientists
in School program (Heinze et al., 2010), students with and without an AI back-
ground (Yoder et al.,, 2020), and students from varying socioeconomic back-
grounds (Kaspersen et al., 2021).

There were three Al-related research studies between 1995 and 2017, mostly
adopting unplugged activities and games for Al teaching, which are different
from research conducted after 2017. The first article was published by Scherz and
Haberman (1995), who designed a special Al curriculum with the use of abstract
data types and instructional models (e.g., graphs and decision trees) to teach Al
concepts such as logic programming and Al systems to high school students in
Israel. In another two studies, the use of programming robots (Heinze et al., 2010)
and computer science unplugged activities (Lucas, 2009) were explored with
Australian and New Zealand K-6 students, respectively. Since then, a greater vari-
ety of learning tools have been employed and expanded to European and Asian

@ Springer



Journal of Computers in Education

countries across all educational levels in K-12 settings. Appendix 1 provides an
overview of the selected articles.

Findings
RQ1: What are the potential learning tools identified in Al K-12 education?

The potential learning tools identified in K-12 contexts were intelligent agents
(N = 20), software-focused devices (N = 19), hardware-focused devices (N = 10),
and unplugged activities (N = 6) (Fig. 4 and Table 4). In this section, intelligent
agents, software devices, and hardware devices are discussed.

Intelligent agents

Intelligent agents, such as Google Teachable Machine, Learning ML, and Machine
Learning for Kids, which make decisions based on environmental inputs by using
their sensors and actuators, are the most popular learning tools for enhancing stu-
dents’ computational thinking skills within K-12 contexts. Teachable Machine is
a web-based tool developed by Google and is found to be more effective than are
unplugged activities in kindergarten settings (Lucas, 2009; Vartiainen et al., 2020).
In Vartiainen et al. (2020), children aged between 3 and 9 autonomously explored
the input—output relationship with Google Teachable Machine, which fostered their
intellectual curiosity, developed their computational thinking, and enhanced their
understanding of machine learning. In both primary (Toivonen et al., 2020; Melsion
et al., 2021) and secondary schools (Kilhoffer et al., 2023; Martins et al., 2023),
Google Teachable Machine has been employed, allowing students to use their web-
cams, images, or sounds without coding to develop their own machine learning clas-
sification models.

In addition, Learning ML has been employed for primary schools to create Al-
driven solutions and models, for example, to teach the supervised machine learn-
ing principle (Voulgari et al., 2021; Rodriguez-Garcid et al., 2021), which simpli-
fies abstract Al algorithms for primary school students. Machine Learning for Kids,

Fig.4 Summary of learning
tools used in AI K-12 education Total

Kindergarten Studies
Primary School Studies

Secondary School Studies

o
%}
=
5]
=
[
N
o

25

H Hardware-focused device ® Software-focused device

M Intelligent agents W Unplugged activities
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which introduces the power of the IBM Watson engine for AI modelling (Fernan-
dez-Martinez et al., 2021), Cognimates (Sabuncuoglu, 2020; Fernandez-Martinez
et al., 2021), which allows students to practice coding, and Ecraft2Learn, which
contains a deep learning functionality (Kahn et al., 2018), have also been used in
secondary school classrooms. Intelligent agents often offer students hands-on expe-
rience to develop datasets and to build customized machine learning systems.

Software devices

Software devices are adopted to enable mostly primary and secondary school stu-
dents to learn about computational thinking, including programming for sequences,
rule-based and conditional mechanisms, as well as data science and machine learn-
ing using visual language. For example, Scratch, a block-based programming soft-
ware, is frequently used in both primary (Dai et al., 2023; Li & Song, 2019; Shamir
& Levin, 2021) and secondary schools (Estevez et al., 2019; Fernandez-Martinez
et al., 2021). Other software is used for visualizing and scaffolding abstract Al con-
cepts through online games and experiences, such as Quick and Draw (Martins
et al., 2023) and Music Box (Han et al., 2018). In primary schools, Kitten is used
to teach block-based programming (Li & Song, 2019), whereas C++ and JavaS-
cript are used for logical thinking and simulation (Gong et al., 2020). In second-
ary schools, researchers have often employed free online software and tools, such
as Snap (Yoder et al., 2020) and Python (Gong et al., 2018; Norouzi et al., 2020),
for algorithm automation, as well as RapidMiner for no-code data science learning
(Sakulkueakulsuk et al., 2018). To introduce machine learning concepts to second-
ary school students, other researchers have focused on developing online games such
as the Rock Paper Game (Kajiwara et al., 2023) and the 3D role-player video game
Quest (Priya et al., 2022).

Hardware devices

In addition, hardware, such as robotics and physical artifacts, has also been used
with built-in software to supplement students’ understanding of AI concepts. Wil-
liams et al. (2019a, 2019b) introduced a preschool originated programming platform
consisting of a social robot (PopBot) and a block-based programming interface. In
Williams et al. (2019a), 80 prekindergartens to second-grade children (aged four to
seven) were asked to build their own LEGO robot characters by using DUPLO block
programming. PopBot is used as a learning companion to demonstrate its human-
like behavior and to demystify Al concepts to younger students.

The lawn bowling robot (Ho et al., 2019), Zhorai conversational robot (Lin
et al., 2020), Micro: Bits (Lin et al., 2021), and Plush toys (Tseng et al., 2021)
have been used in primary schools, while CUHKiCar (Chiu et al., 2021), the
Alpha robot dog (Chai et al., 2020), Raspberry Pi Raspbian and a four-wheel
drive chassis (Gong et al., 2018) have been used in secondary schools. For
example, in Ho et al. (2019), grade six students built lawn-bowling robots for
games and competitions while learning about the binary search and optimization
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algorithms of machine learning. Chiu et al. (2021) introduced the robotic CUH-
KiCar to secondary school students so that they could perform face-tracking and
line following tasks.

RQ2: What pedagogical strategies are commonly proposed by studies on Al K-12
learning tools?

As shown in Fig. 5, the four orientations of pedagogy are summarized as authen-
tic/constructive, reflective, didactic, and unplugged. While a total of 17 potential
pedagogical strategies were identified within the four orientations in K-12 con-
texts (Table 5), authentic/constructive methodologies with project-based learning
(N = 27) were the most popular pedagogy used across kindergartens (Williams
et al., 2019a, 2019b), primary schools (Toivonen et al., 2020; Rodriguez-Garcia
et al., 2021), and secondary schools (Gong et al., 2018; Kilhoffer et al., 2023;
Sakulkueakulsuk et al., 2018). When teaching Al to students with a diverse range
of needs, the evidence demonstrates the positive impact of combining multiple
pedagogical approaches in K-12 studies (Heinze et al., 2010; Lee et al., 2021;
Williams et al., 2019a, 2019b).

First, authentic and constructive methodologies, project-based (N = 27),
human-computer interaction (N = 7), and play-based active learning (N = 5)
approaches have been commonly used in K-12 education. Offering hands-on
opportunities to students to learn about real-world applications of Al is an exam-
ple of project-based learning (Fernandez-Martinez et al., 2021; Han et al., 2018;
Williams et al., 2019a). Other researchers have examined whether students can
acquire Al knowledge on human-computer interactive experiences and have
found that this does not require any prior knowledge of Al models, such as Zohari
(Melsioén et al., 2021) and Google Teachable Machine (Lin et al., 2020; Varti-
ainen et al., 2020). In addition, child-centered play-based learning can effectively
engage students and encourage them to take the initiative to construct knowledge
during the process of imaginative play (Heinze et al., 2010), which involves stu-
dents adopting the role of Al developer, tester, and Al robot (Henry et al., 2021).

Fig.5 Four orientations of ped-
agogical strategies commonly
used in AI K-12 education

Total

Kindergarten studies

Primary school studies

lr|.|r

Secondary school studies

0 10 20 30 40 50 60

W Authentic / Constructive
Reflective/ Children or Human-computer interaction
m Didactic / Direct instruction

M Unplugged activities
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Pedagogical strategies in kindergartens

Researchers have often used project-based approaches (N = 3), human-computer
interactions (N = 3), play-based learning (N = 1), and unplugged activities (N = 1)
to teach younger students Al concepts. In a project-based learning approach, stu-
dents learn by actively engaging in real-world projects. Williams et al. (2019a,
2019b) used a hands-on project allowing prekindergarten and kindergarten students
to acquire Al concepts, including knowledge-based systems, supervised machine
learning, and Al generative music. Alternatively, Vartiainen et al. (2020) studied
human-computer interactions that allowed students to freely explore the input—out-
put relationship with Google Teachable Machine to identify and to evaluate a prob-
lem and find a solution to it. Heinze et al. (2010) focused on imaginative play, which
is relevant to young students, as play is associated with various levels of autonomy
and provides an engaging introduction to Al and the formation of scientific con-
cepts. Lucas (2009) used unplugged activities to teach the key concepts of comput-
ing, including data encoding, data compression, and error detection.

Pedagogical strategies in primary schools

Project-based learning is more frequently used in primary schools than in kindergar-
tens: It has been reported as a learning approach in 14 of the 18 studies of primary
school settings, compared to only three of the five studies in the kindergarten setting.
Similarly, in primary school settings, studies have revealed a strong dependence
on play/game-based (N = 5) and human-computer interaction learning approaches
(N =3).

Projects that demonstrate students’ improved AI knowledge have been con-
ducted. Machine learning projects (Toivonen et al., 2020), LearningML projects
(Rodriguez-Garcia et al., 2021), and “Al+” projects (Han et al., 2018) have been
designed to demystify Al knowledge. Henry et al. (2021) integrated machine learn-
ing in role-playing games, while Shamir and Levin (2021) allowed students to play
with Al chatbots to develop Al models and to construct a rule-based machine-learn-
ing system. Some researchers have designed learning programs that offer human-
computer interaction activities to educate students about gender bias (Melsi6n et al.,
2021) and the social impact of mistakes made by Al models in training datasets (Lin
et al., 2020).

Pedagogical strategies in secondary schools

The project-based learning approach (N = 10) is also the most dominant in sec-
ondary schools, followed by collaborative learning (N = 5). First, project-based
learning is used to engage students by applying their Al knowledge to solve real-
world problems. Teachers have reported that Al projects and hands-on activities are
effective in keeping students focused on tasks (Kilhoffer et al., 2023). For example,
a smart car-themed Al project (Gong et al., 2018), the Redesign YouTube project
(Fernandez-Martinez et al., 2021), and the agriculture-based AI Challenge project
(Sakulkueakulsuk et al., 2018) have been introduced to provide hands-on experience
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for students to connect their knowledge to their day-to-day lives. Through active
exploration, such projects prompt secondary school students to contemplate the per-
sonal, social, economic, and ethical consequences of Al technologies (Kaspersen
et al., 2021).

Second, collaborative learning allows students to work in groups to promote
cognitive knowledge, as it engages them in scientific inquiry with the help of smart
devices (Wan et al., 2020). Kaspersen et al. (2021) designed a collaborative learn-
ing tool, VotestratesML, together with a voting project allowing students to build
machine learning models based on real-world voting data to predict results.

RQ3: What learning outcomes have been demonstrated in studies on Al K-12
learning tools?

Of the 46 articles, 31 reported potential learning outcomes: (1) cognitive outcomes,
(2) affective and behavioral outcomes, and (3) the level of course satisfaction and
soft skills acquisition.

Cognitive outcomes

Thirty-one studies documented various degrees of positive cognitive outcomes. Stu-
dents generally showed a basic understanding of Al, including Al rule-based sys-
tems (Ho et al., 2019), machine learning principles and applications (Han et al.,
2018; Shamir & Levin, 2021), Al ethics (Melsién et al., 2021), and Al limitations
(Lin et al., 2020). In Williams et al. (2019a), 70% of prekindergarten and kindergar-
ten students understood knowledge-based systems, whereas Vartiainen et al. (2020)
found that, through Al learning tools, younger students developed their computa-
tional thinking and their understanding of machine-learning principles and appli-
cations. Then, Dai et al. (2023) reported that primary school students taught with
analogy-based pedagogy (i.e., using humans as a reference to teach and learn Al)
significantly outperformed primary school students taught with the conventional
direct instructional approach in terms of developing their conceptual understand-
ing and increasing their Al technical knowledge proficiency as well as their ethical
awareness of Al Other researchers have argued that primary school students have
demonstrated their understanding of AI by constructing and applying machine-
learning algorithms with the help of digital role-playing games (Voulgari et al.,
2021) and project-based pedagogy (Shamir & Levin, 2021). Through designing and
programming a robot, students increased their understanding of AI biases (Mel-
si6n et al., 2021). In secondary schools, researchers have also reported an increase
in students’ knowledge of Al algorithms (Yoder et al., 2020) and machine learning
concepts (Sakulkueakulsuk et al., 2018), as well as their recognition of Al patterns
(Wan et al., 2020). For example, students understood the fundamental neural net-
works of machine learning concepts by developing a classification model of recy-
cling images (Martins et al., 2023).
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Affective and behavioral outcomes

Affective and behavioral outcomes have been identified in Al learning tool studies
within K-12 contexts. In general, students’ motivation to learn Al (Han et al., 2018;
Shamir & Levin, 2021, 2022) and their interest in the course (Mariescu-Istodor &
Jormanainen, 2019; Martins et al., 2023) were enhanced as a result of Al learning
activities. Students’ perceptions of the relevance of Al to their life also increased
(Kajiwara et al., 2023; Lin et al., 2021). Students scored high on self-efficacy (Kaji-
wara et al., 2023; Shamir & Levin, 2022) and confidence (Shamir & Levin, 2021) in
training and validating an Al system. In Martins et al. (2023), over 45% of 108 sec-
ondary school student participants in the introductory course “Machine Learning for
all” reported that they perceived Al learning as an enjoyable experience, and 63% of
them hoped to learn more about machine learning in the future.

Moreover, students reported that they were highly motivated to explore the
Teachable Machine (Vartiainen et al., 2020), to design the robotic arm and computer
source codes (Ho et al., 2019), to draw animals and sea creatures for the machine
learning project (Mariescu-Istodor & Jormanainen, 2019), and to predict the sweet-
ness of mangoes by using machine learning models (Sakulkueakulsuk et al., 2018).

From the behavioral perspective, high student engagement was reported in pro-
ject-based (Kaspersen et al., 2021; Shamir & Levin, 2021; Wan et al., 2020) and
play/game-based (Heinze et al., 2010; Voulgari et al., 2021) settings. Primary stu-
dents attended all sessions and expressed a desire to join an upcoming Al con-
tingency course (Shamir & Levin, 2021), while secondary students were actively
engaged in scientific inquiry (Wan et al., 2020). Students were also keen on recom-
mending Al games to their friends (Voulgari et al., 2021). Therefore, a combina-
tion of play/game-based and project-based approaches may consolidate Al concepts
through gameplay while enhancing students’ engagement in Al projects (Han et al.,
2018).

Level of satisfaction and soft skills acquisition

Students’ level of satisfaction was found to be positively influenced by constructivist
(e.g., project-based) and reflective (e.g., learning by design and learning by teach-
ing) pedagogies (Ho et al., 2019; Shamir & Levin, 2021, 2022). In Lin et al. (2020),
students reported a high satisfaction level upon acquiring AI knowledge. Their
computational thinking and subsequent project performance were also enhanced.
All students completed the course and their Al tasks without any previous learning
experience (Toivonen et al., 2020).

The findings from the selected articles reveal that a deep understanding of Al
promotes the acquisition of various soft skills. Ali et al. (2019) found that students’
intellectual curiosity increased after engaging in the construction of an Al neu-
ron. By using bulletin boards shared electronically and online chats for feedback,
their collaboration and communication skills were also enhanced (Shamir & Levin,
2021). Moreover, students reported gaining problem solving and technical skills
when working with Al systems, including coding, designing simple algorithms, and
debugging in Scratch learning activities (Dai et al., 2023).
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RQ4: What were the research and assessment methods used in Al K-12 learning
tools studies?

In this section, an overview is presented of research methods and data collection
procedures within K-12 contexts. Overall, researchers adopted a mixed method
(N = 19), qualitative (N = 15) and quantitative methods (N = 12) in Al learning
tools in K-12 research. Mixed methods are predominantly used in both primary
school (e.g., Dai et al., 2023; Martins et al., 2023; Shamir & Levin, 2021; Toivonen
et al., 2020) and secondary school contexts (e.g., Chiu et al., 2021; Estevez et al.,
2019), whereas qualitative methods are commonly used in kindergartens (e.g.,
Heinze et al., 2010; Vartiainen et al., 2020), as shown in Table 6.

A variety of assessment methods were used: questionnaires and surveys (N = 30),
artifacts/performance-based evaluation (N = 15), interviews (N = 14), observations
(N =5), games assessment (N = 1), and field visits (N = 1) (Table 7). The two most
commonly used data collection methods - questionnaires and surveys and artifacts/
performance-based evaluation - are discussed in this section.

In terms of assessment methods, questionnaires and surveys (N=30) and arti-
facts/performance-based evaluation (N=17) are the two most commonly used data
collection methods across K-12 contexts (Table 7).

Questionnaires and surveys are used in a quantitative methodology to understand
the perception of robotics and theory of mind (e.g., knowledge access, content false
belief and explicit false belief). For example, perception of robotics and theory of
mind were used in kindergartens (Williams et al., 2019a, 2019b).

Surveys were used to evaluate primary school students’ motivation (Lin et al.,
2021), self-efficacy in Al learning (Shamir & Levin, 2022), and perceived knowl-
edge and competence (Dai et al., 2023; Mariescu-Istodor & Jormanainen, 2019; Ng
et al., 2022). In addition to Ali et al. (2019), who used the Torrance test for assess-
ment, researchers also utilized pre- and posttests (Tseng et al., 2021) to compare
the Al learning outcomes of control and treatment groups in primary school set-
tings (Melsion et al., 2021). Others provided Al educational experience without stat-
ing the assessment method (Ho et al., 2019; Lee et al., 2020; Tseng et al., 2021).
Heinze et al. (2010) conducted Al learning activities without assessing learning out-
comes. Shamir and Levin (2022) designed a questionnaire based on “construction-
ist validated robotics learning” for machine learning construction (the questionnaire
included statements such as "I can make a ML system", "I can propose ideas for
using ML to solve problems."). Dai et al. (2023) used multiple choice questions (e.g.,
"Which of the following devices or systems is an intelligent agent?") to evaluate the
Al knowledge of primary school students according to Bloom’s Taxonomy.

In secondary schools, surveys are used to measure students’ information knowl-
edge acquisition (Priya et al., 2022), perceived abilities (Chiu et al., 2021; Ng &
Chu, 2021) and futuristic thinking, engagement, interactivity, and interdisciplinary
thinking skills (Sakulkueakulsuk et al., 2018). For example, in Priya et al. (2022),
surveys were used in the first phase of their study to test the knowledge gained by
students in three Al areas, namely, supervised learning (e.g., "What is the underlying
idea behind supervised learning?"), gradient descent (e.g., "In gradient descent how
do we reach optimum point?"), and KNN classifications (e.g., "Using underlying
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principle of KNN classification classify a fruit which is surrounded by 2 apples and
1 mango in its nearest neighbors."). In the second phase of the study, surveys were
used to evaluate students’ satisfaction with the design of the game “ML Quest”,
which introduced machine learning concepts based on the quality factors of the tech-
nological acceptance model (e.g., “Visualizations displayed by ML-Game are rel-
evant to the concept taught at each level”).

Artifact-based/performance-based assessments are embedded in a large number
of studies to evaluate learning outcomes. Through artifacts (e.g., Popbots), Williams
et al.,, 2019a, 2019b) evaluated kindergarteners’ knowledge and understanding of
supervised machine learning. Ho et al. (2019) used a performance-based assessment
to assess primary students’ understanding of optimal data training and its Al appli-
cations. The artifact analysis of Shamir and Levin (2021) involved the construction
of a rule-based Al system, which included designing, understanding, and creating
the Al neural network agent. Dai et al. (2023) used a drawing assessment to evalu-
ate primary school students’ understanding of Al and its impact on their cognitive
development using prompt questions (e.g., "What Al can do? What would you like to
use Al for?") to stimulate their thinking.

Moreover, Yoder et al. (2020) focused on secondary school students’ block-based
programming artifacts to examine their knowledge of Al search algorithms and
breadth-first search (BFS), as well as their understanding of the possibility of gender
bias when using Al screening tools in recruitment. In Martins et al. (2023), machine
learning model artifacts created by students were used as evidence to demonstrate
their learning outcomes. The performance-based assessment was used to evaluate
students’ ability to correctly label the recycling trash images in the classification
process.

Discussion and conclusion

The results of this study are consistent with Kandlhofer et al. (2016), who found that
a variety of learning tools have been designed to support various learning objectives
for students from kindergarten to university. The previous literature also indicates
that many learning tools, such as intelligent agents and software, are effective in
facilitating adolescents’ and university students’ acquisition of computational think-
ing skills (Cakiroglu et al., 2018; Van Brummelen et al., 2021), whereas the avail-
ability of such tools for kindergarten and primary students is often overlooked. Few
researchers have investigated whether Al learning tools can bridge the learning gap
of younger students (Zhou et al., 2020). This study revealed that without prior pro-
gramming experience, these learning tools (such as Popbots, Teachable Machine,
and Scratch) can help address the diverse needs of younger students across K-12
educational levels (Resnick et al., 2005), leading to a richer visual learning experi-
ence and improving instructional quality (Kaspersen et al., 2021; Long & Magerko,
2020).

Previous reviews have indicated that many pedagogies are suitable in Al edu-
cation, although this was done without reference to students’ learning outcomes
(Sanui & Oyelere, 2020). The findings of this study enrich existing knowledge of
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the positive effects of authentic and constructivist pedagogies in affective, behav-
ioral, and cognitive aspects, as well as students’ level of satisfaction in Al learning.
This study reveals that multiple pedagogies, such as project-based learning, experi-
ential learning, game-based learning, collaborative learning, and human—computer
interaction, are widely used in K-12 educational settings. An emerging form of anal-
ogy-based pedagogy to evaluate the Al knowledge of primary school students by
assessing their drawings is identified. The focus of this analogy-based pedagogical
strategy is the comparison of humans and Al, where humans are gradually moved
from an analogy and to a contrast to highlight the characteristics, mechanism, and
learning procedures of Al It demonstrates and reflects the dialogic quality of the
relationship with shared enquiry and shared thinking among students and Al learn-
ing tools. This is significant given the new cognitive demand of the Al era, as it
provokes a shift in the role of the students by thinking together and learning to learn
together (Wegerif, 2011). In future studies, exploration of additional emerging peda-
gogies (Yim, 2023), the co-creation of arts-based possibility spaces (Burnard et al.,
2022), and dialogic learning spaces (Wegerif, 2007) in Al literacy education can be
considered.

In addition, educational tools and applications are used not only to contribute
new ways of knowing and doing but also to embed learning tools at the center of
the AI literacy activities and programs instead of playing a supporting role in the
primary purpose of education. This is expanding to serve the human need for educa-
tion. The use of multiple educational learning tools and pedagogical strategies may
be influenced by various factors in the teaching process, including students’ gender,
background knowledge, and educational setting, all of which may affect their learn-
ing styles and motivation to learn Al. These factors and issues can be explored in
future studies.

In this review, it was found that some studies assessed students’ performance by
using the Torrance test for creativity (Ali et al., 2019), an AI knowledge test (Ng
et al., 2022; Wan et al., 2020), pre- and postsurveys (Chiu et al., 2021; Estevez et al.,
2019), and comparisons between control and treatment groups (Dai et al., 2023;
Melsién et al., 2021), while others used subjective measures, including self-report
surveys. Although artifact-based and performance-based approaches have been
increasingly adopted in data collection procedures, some researchers used them
as evidence of learning, without scoring according to established marking criteria
for assessment purposes. There is room for introducing objective and rubric-based
evaluation mechanisms to assess the quality of suggested methodologies. However,
the lack of agreement on assessment criteria and instructional feedback shows that
further research is needed to support the wide application of Al teaching in K-12
classrooms.

Research implications
From this study, the use of intelligent agents is recommended, including Teachable

Machines, Machine Learning for Kids, and Learning for ML. Kindergarten students
can benefit from learning tools such as PopBots, while software devices such as
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Scratch and Python can be introduced to demystify core Al principles to primary
school students and create Al-driven solutions and models for secondary school stu-
dents. Although hardware such as robotics and physical artifacts are generally effec-
tive, they may be costly for scalability.

This review reveals that constructivism, constructionism, and computational
thinking are instrumental in addressing Al literacy education. Unfortunately, little
research has adopted theoretical frameworks or conceptual models of reference for
Al curricula, educational activities, or the design of Al learning tools and applica-
tions. To guide teaching, learning and effectiveness in using Al learning tools within
Al literacy education, Al literacy learning theoretical frameworks are needed to
guide the teaching instruction of kindergarten, primary and secondary school stu-
dents. Usability, Al ethics, and transparency must be addressed in tool design to
ensure that issues pertaining to data privacy and security will not arise. Moreover,
there is currently insufficient theory-based, rigorous research on the effectiveness of
Al educational tools to meet the diverse learning needs of students. Children may
be invited to codesign with application designers. Thus, researchers may conduct
theory-based and outcome-oriented quantitative and qualitative research on Al edu-
cational tools, which may be significantly beneficial to students.

More evaluation and documented analysis regarding the effectiveness of learn-
ing tools should be conducted to inform stakeholders of the existing trends in the
field, pedagogical strategies, and instructional methods for teacher professional
development.

More research, analysis, and evidence are needed to determine the effective-
ness of Al learning tools before they are scaled up based on a risk-benefit analysis.
Researchers should also clearly define the educational settings in which specific Al
learning tools are appropriate to support the effective delivery of Al content in the
classroom.

Recommendations
For educators

Aside from providing students with AI knowledge and skills that the market
demands (Burgsteiner et al., 2016) and encouraging all citizens to be Al literate
(Goel, 2017; Pedro et al., 2019), educators may promote holistic Al literacy educa-
tion by considering humans, nonhumans (e.g., animals and machines) (Yim, 2023)
and environmental elements (Miao & Shiohira, 2022) in their teaching content.
Ethical questions should also be considered, including inclusivity, fairness, respon-
sibility, transparency, data justice, and social responsibility (Crawford, 2021; Ben-
jamin, 2019). To provide a roadmap for sustainable Al education implementation
and development, it is essential to involve teachers in the design of learning tools
and understand their perceptions regarding Al literacy education, as well as provide
pedagogical strategies, resource development, and needs-based professional training
for both preservice and in-service teachers.
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For teachers

Children learn best at a certain stage of cognitive development (Ghazi & Ullah,
2015). It is recommended that the content of instruction is consistent with students’
cognitive developmental level, as it influences their readiness and ability to learn
(Piaget, 2000). As a result, the technical and content depth of the educational learn-
ing tools should align with students’ age and the teaching objectives, and teachers
should understand students’ cognitive development to plan age-appropriate activities
with suitable learning tools. More collaboration among teachers with various peda-
gogical experiences across various educational levels may lead to more innovative
and efficient teaching processes.

For researchers

Researchers should report evidence of the reliability. and validity of their find-
ings where applicable since such data are crucial to evaluating the quality of their
recommended learning tools or pedagogies. This can also aid other academics in
updating their research on existing and developing pedagogical strategies. Research-
ers may consider designing and developing a standardized AI assessment mecha-
nism that can be used across different grade levels to compare students’ Al literacy.
This approach permits the standardization of assessment criteria and instructional
feedback and thus better supports the wider application of Al teaching in K-12
classrooms.

Appendix 1: Overview of the selected articles

Author Research Learning tools Pedagogies Country Education Level
methods
Williams et al.  Quantitative PopBots Project-based ~ USA Kindergarten
(2019a) learning; and pre-kinder-
human—com- garten
puter interac-
tion
Williams et al.  Quantitative PopBots Project-based ~ USA Kindergarten
(2019b) learning; and pre-kinder-
human—com- garten
puter interac-
tion
Heinze et al. Qualitative Writing stories ~ Project-based ~ Australia K-6
(2010) with robots learning;
and Lego play-based
Mindstorms; learning

JavaScript to
program robots
and computer
games
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Author Research Learning tools Pedagogies Country Education Level
methods
Lucas (2009)  Qualitative csunplugged. Unplugged New Zealand K-6
org— activity
unplugged
activities
Vartiainen Qualitative Google Teach- Participatory ~ Finland Kindergarten
et al. (2020) able Machine learning; and primary
human—com- school
puter interac-
tion
Ali et al. Mixed Jibo, PopBots, Project-based  / Primary school
(2019) Google Teach- learning;
able Machine, unplugged
paper prototyp-  activities
ing activity,
Droodle
creativity game
and abstract
drawing
Dai et al. Mixed Scratch, Machine Analogy-based China Primary school
(2023) Learning for learning
Kids
Gong et al. Mixed Al-in-a-Box, Project-based ~ China Primary school
(2020) Squirrel learning
Al, Scratch
and Kitten,
Python C++,
JavaScript AL
textbooks
Han et al. Qualitative Music box Project-based ~ China Lower primary
(2018) mobile applica-  learning; school
tion game-based
learning
Ho et al. Qualitative Disney prin- Project-based  Australia Upper primary
(2019) cesses, Lego learning; school
Mindstorms unplugged
EV3 kit, lawn activities
bowling robot
Lee et al. Qualitative PRIMARY Al Project-based  / Upper primary
(2020) tools learning; school
game-based
learning;
problem-
based
learning;
collaborative
learning
Lin et al. Quantitative Zhorai Learn by USA Primary school
(2020) teaching;
human—-com-

puter interac-

tion
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Author Research Learning tools Pedagogies Country Education Level
methods
Lin et al. Quantitative Al curriculum Direct China Upper primary
(2021) textbook (Qin instruction, school
etal., 2019) followed by
issued by the hands-on

local education  activity
authority, and a

device similar

to Micro:bit

Melsiénetal.  Mixed Grad-CAM Project-based ~ Sweden Upper primary
(2021) explainability learning; school
technique experiential
in an image learning;
captioning human—com-
system(https:/ puter interac-
biaix.now.sh); tion
Google Teach-
able Machine
Ng et al. Mixed Story Jumper Inquiry-based Hong Kong  Primary school
(2022) (digital story learning

creations tool),
Al ocean activ-
ity (website:
code.org),
Quick Draw,
Google Teach-
able Machine,
Kahoot, Siri,
Al translation
and Al-driven

robots
Shamir and Mixed Scratch Project-based  Israel Upper Primary
Levin (2021) learning; pro-
gramming;
experiential
learning
Shamir and Mixed Al Chatbot; the ~ Project-based  / Upper Primary
Levin (2022) Code.org plat- learning;
form for algo- learning by
rithm creation; design
the Mitsuku
website for Al
conversation;
Scratch; IBM
Watson engine
Toivonen et al. Mixed Google Teach- Project-based  Finland Upper Primary
(2020) able Machine, learning;
web applica- learning by
tions with design
HTMLS and
JavaScript
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Author Research Learning tools Pedagogies Country Education Level
methods
Tseng et al. Qualitative PlushPal Play-based Japan Primary school
(2021) learning;
story-telling;
human—com-
puter interac-
tion
Voulgarietal. Mixed Artbot (an Game-based Greece Primary and
(2021) educational learning secondary
game design school
employed on
the Learn ML
website http://
learnml.eu/g
ames.php)
Henry et al. Qualitative Role-playing Project-based  / Primary and
(2021) games learning; lower second-
play-based ary school
learning
Mariescu- Qualitative Web application  Project-based  Finland Primary and
Istodor and (HTML and learning; secondary
Jormanainen JavaScript), problem- school
(2019) YouTube learn-  based learn-
ing videos, ing
hand-drawn
illustration
Li and Song Qualitative Scratch Programming  China Primary and
(2019) secondary
school
Rodriguez- Quantitative LearningML Project-based  / Primary and
Garcia et al. platform learning secondary
(2020) school
Rodriguez- Quantitative LearningML Project-based ~ Spain Primary and
Garcié et al. platform learning secondary
(2021) school
Chai et al. Quantitative Alpha dog robot  / China Secondary
(2020) school
Chiu et al. Mixed Jupyter, Blockly, Experiential Hong Kong  Lower secondary
(2021) WebApps cog-  learning; school
nitive services, collaborative
google teach- learning
able machine,
CUHKiCar
(self-developed
robotic car)
Estevez et al. Mixed Scratch Experiential Spain Upper secondary
(2019) learning: school
Project-based
learning
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Author Research Learning tools Pedagogies Country Education Level
methods
Fernandez-Ma  Quantitative Scratch, Machine Project-based ~ Spain Lower secondary
rtinez et al. Learning for learning school
(2021) kids, Cogni-
mates
Gong et al. Qualitative Raspberry Pi Project-based ~ China Upper secondary
(2018) Raspbian, learning; school
Python collaborative
learning
Gunasilan Mixed Google collabo-  Active UK Upper secondary
(2021) rator, Python, learning; school
Excel experiential
learning
Kahn et al. Mixed Snap!, Project-based  Indonesia Upper secondary
(2018) ecraft2learn learning; school
experiential
learning
Kajiwara et al.  Quantitative Machine Game-based Japan K-12 and beyond
(2023) Learning-Rock  learning
Paper game
Kaspersen Qualitative VotestratesML,  Project-based ~ Denmark Secondary
et al. (2021) computational learning; school
empowerment collaborative
learning tool learning;
Kilhoffer et al.  Qualitative Google Teach- Project-based ~ USA Secondary
(2023) able Machine, learning; school
gamified game-based
approach learning
(SpotTheTroll.
org)
Lee et al. Qualitative MIT STEP Lab, Project-based  USA Lower secondary
(2021) MIT PRG, learning school
Scratch, google
classroom
Martins et al. ~ Mixed Quick Draw!; Active learning Brazil Secondary
(2023) Object school
Detector and
Classifier app,
Google Teach-
able Machine,
MIT Moral
Machine
Ng and Chu Mixed Al Ocean; Online syn- Hong Kong  Lower secondary
(2021) Code,org chronous school
learning
Norouzi et al.  Mixed Colab Project-based  USA Upper secondary
(2020) learning school
Perach and Quantitative Coursera’s Deep  Online syn- Israel Upper secondary
Alexandron Learning Spe- chronous school
(2022) cialization learning
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Author Research Learning tools Pedagogies Country Education Level
methods
Priya et al. Quantitative Machine Learn- ~ Game-based / Secondary
(2022) ing Quest learning; school
Project-based
learning
Sabuncuoglu Mixed Cognimates, Project-based ~ Norway Lower secondary
(2020) Machine learning school
Learning
for Kids,
ecraft2learn,
YouTube
videos
Sakulkue- Mixed RapidMiner Project-based ~ Thailand Lower secondary
akulsuk et al. learning; school
(2018) collaborative
learning
Scherz and Qualitative Prolog Project-based  Israel Secondary
Haberman learning school
(1995)
Wan et al. Mixed SmileyCluster Project-based ~ USA Upper secondary
(2020) learning; school
collaborative
learning;
human-com-
puter interac-
tion
Yoder et al. Qualitative Snap; GPS navi- Problem-based USA Secondary
(2020) gation; coding learning school
activities
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