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Abstract

Let gt be a loop in the space of monic complex polynomials in one variable of fixed
degree n. If the roots of gt are distinct for all t , they form a braid B1 on n strands.
Likewise, if the critical points of gt are distinct for all t , they form a braid B2 on n − 1
strands. In this paper we study the relationship between B1 and B2. Composing the
polynomials gt with the argument map defines a pseudo-fibration map on the
complement of the closure of B1 in C × S1, whose critical points lie on B2. We prove
that for B1 a T-homogeneous braid and B2 the trivial braid this map can be taken to be a
fibration map. In the case of homogeneous braids we present a visualization of this fact.
Our work implies that for every pair of links L1 and L2 there is a mixed polynomial
f : C2 → C in complex variables u, v and the complex conjugate v such that both f
and the derivative fu have a weakly isolated singularity at the origin with L1 as the link of
the singularity of f and L2 as a sublink of the link of the singularity of fu.
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1 Introduction
The braid group on n strands can be defined as the fundamental group of the space of
monic, complex polynomials in one variable, of degreen andwithdistinct roots. In thisway
braids offer a close connection between algebraic geometry and topology. In this paper
we illustrate how this connection is beneficial in both directions. We use topological
arguments to prove that there exist polynomial maps with singularities and prescribed
topological properties and we use insights on polynomial maps to obtain visualizations
of certain topological phenomena. Our hope is that we may encourage further research
interactions between the two areas.
Onewell-known intersection of the two areas is the study of links of isolated singularities

of polynomialmaps. Let f := (f1, f2) : R4 → R
2 be a real polynomialmap in variablesx1, x2,

x3 and x4 that satisfies f (0, 0, 0, 0) = (0, 0) and ∂fi
∂xj (0, 0, 0, 0) = 0 for all i = 1, 2, j = 1, 2, 3, 4.

A critical point of f is a point x in R
4 where the Jacobian matrix ∇f (x) =

(
∂fi
∂xj (x)

)
i,j
does

not have full rank. We denote the set of critical points of f by �f and the set of zeros of f ,
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i.e., all x ∈ R
4 with f (x) = (0, 0), by Vf . In particular, we have (0, 0, 0, 0) ∈ �f ∩ Vf . We

say that f has a weakly isolated singularity at the origin if there is a neighborhoodU of the
origin inR

4 such thatU ∩�f ∩Vf = {(0, 0, 0, 0)}. In other words, the rank of∇f (0, 0, 0, 0)
should be 0, but for all other x ∈ U ∩ Vf \{(0, 0, 0, 0)} the rank of ∇f (x) should be 2.
Let S3ρ denote the Euclidean 3-sphere of radius ρ, centered at the origin. If f has a weakly

isolated singularity at the origin, then the intersection of Vf and S3ρ results in a closed 1-
dimensional submanifold, a link, if ρ is chosen sufficiently small. Furthermore, the link
type of Lf := Vf ∩S3ρ , that is, its ambient isotopy class in S3, is independent of the radius ρ,
as long as ρ is sufficiently small. This link is thus a topological property of the singularity.
We call Lf the link of the singularity.
The nameweakly isolated singularity is justified in the sense that it does not impose any

restrictions on the link types that arise in this way. Akbulut and King proved that every
link is the link of a weakly isolated singularity of some real polynomial map [1]. However,
there is also a stronger notion of isolation.We say that the origin is an isolated singularity
of f if there is a neighborhood U of the origin in R

4 such that U ∩ �f = {(0, 0, 0, 0)}. So
the rank of ∇f (0, 0, 0, 0) should be 0, but for all other x ∈ U\{(0, 0, 0, 0)} the rank of ∇f (x)
should be 2. Naturally, isolated singularities are weakly isolated. A link type is called real
algebraic if it arises as the link of an isolated singularity of some real polynomial map.
The definitions above generalize to other dimensions as well as to complex polynomial

maps. While links of isolated singularities of complex plane curves f : C2 → C are
completely classified, it is not known which links are real algebraic.
A link L in S3 is called fibered if it is the binding of an open book decomposition of S3.

In other words, there is a fibration map ϕ : S3\L → S1 with a specified behavior on a
tubular neighborhood of L. The term fibrationmeans that ϕ has no critical points, i.e., no
points x ∈ S3\L, where the directional derivatives of ϕ in any three linearly independent
directions are all 0. The required behavior of ϕ on the tubular neighborhood N (L) of L is
as follows. Every connected component ofN (L) is an open solid torus. Removing L leaves
S1 × (D\{0}), where D denotes the open (unit) disk in C. On S1 × (D\{0}) we require
that ϕ(t, z) = arg(z), where arg denotes the argument map that sends a nonzero complex
number z to z

|z| .
The set of fibered links is a promising candidate for the still unknown set of real algebraic

links.Milnor proved that all real algebraic links are fibered [28], while Benedetti and Shiota
conjecture that the two sets of links are identical [3].
In the last couple of years several constructions of polynomialswith isolated singularities

have been proposed [7,10,13]. These have not resulted in a proof of Benedetti’s and
Shiota’s conjecture, butwenowhave several infinite families of fibered links that are known
to be real algebraic. All of these constructions are based on braids and produce so-called
semiholomorphic polynomials. This means that when the constructed real polynomial
map f : R4 → R

2 is written as a mixed polynomial f : C2 → C in complex variables u,
v and their complex conjugates ū and v̄ (which is clearly possible for any real polynomial
map), then f is holomorphic with respect to u, i.e., ∂f

∂ū = 0. From now on we write fu for
∂f
∂u .
With a similar construction we obtained the semiholomorphic version of Akbulut’s

and King’s result: Every link type arises as the link of a weakly isolated singularity of a
semiholomorphic polynomial [12].Oneof themain results of this paper is an improvement
on this construction. We may perform the construction from [12] to obtain the desired f
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and obtain any given link L2 as a sublink of the link of a singularity of fu, i.e. L2 is a subset
of the connected components of Lfu . We thus have a certain control not only over the
topology of Vf but also over the topology of Vfu at the same time.

Theorem 1.1 Let L1 andL2 be links in S3. Then there exists a semiholomorphic polynomial
f : C2 → C such that both f and fu have a weakly isolated singularity at the origin with
L1 as the link of the singularity of f and L2 a sublink of the link of the singularity of fu.

A braid on n strands is a set of disjoint parametric curves

⋃
t∈[0,2π ]

n⋃
j=1

(zj(t), t) ⊂ C × [0, 2π ], (1)

where zj(t) : [0, 2π ] → C are smooth functions with zi(t) �= zj(t) for all t ∈ [0, 2π ] and
all i �= j. Furthermore, for every index i there should be an index j with zi(0) = zj(2π ).
Since the curves are parametrized by the height coordinate t, no strand can loop back and
cross itself. The parametrization induces an orientation on the braid.Writing γj(t) for the
curve (zj(t), t), the tangent vector γ ′(t) has a positive coefficient of ∂t , namely +1. We say
that the curves are positively transverse to the horizontal planesC× {t} for all t ∈ [0, 2π ].
Occasionally, we might encounter a set of parametric curves B in C × [0, 2π ] that are
transverse to all of these planes, but that are not parametrized by t itself. In this case there
is a choice of orientation for B so that is a braid, but it might not match the orientation
induced by the parametrization. We could thus consider B as an unoriented braid.
A braid isotopy is an isotopy of a braid in C× [0, 2π ] that fixes the start- and endpoints

at t = 0 and t = 2π , and maintains the braid property throughout the isotopy. Often a
braid isotopy class is also called a braid.When we want to emphasize that we are referring
to a representative of an isotopy class instead of the isotopy class itself, we usually call the
representative a geometric braid.
Fixing the start- and endpoints zi(0) we obtain a group structure on the set of isotopy

classes of braids on n strands, where the group operation is given by concatenation and
rescaling of the interval. This way we may interpret the braid group on n strands Bn as
the fundamental group of the configuration space Cn of n distinct, unmarked points in
the complex plane, where the chosen set of start- and endpoints zi(0) corresponds to the
basepoint of the loop. Cn is thus given by the quotient (Cn\�)/Sn, where � is the set
of n-tuples where at least two entries are identical and Sn is the symmetric group on n
elements acting on n-tuples by permutation. The space (Cn\�) is an open subset of Cn

with the smooth structure of its ambient space R
2n ∼= C

n. By the Quotient Manifold
Theorem (e.g., [23]) the quotient space Cn inherits a unique smooth structure so that the
quotient map is a smooth submersion.
By the fundamental theorem of algebra the space Xn of monic polynomials in one

complex variable of degree n and with distinct roots is in bijection with Cn. This cor-
respondence identifies an unordered n-tuple {z1, z2, . . . , zn} ∈ Cn with the polynomial
g : C → C, g(u) := ∏n

j=1(u − zj).
The smooth structure on Cn thus gives a smooth structure on Xn, so that the bijection

established by the fundamental theorem of algebra is a diffeomorphism.
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Every geometric braid, parametrized as in Eq. (1), is a loop in Cn and thus corresponds
to a loop in Xn, given by gt : C → C,

gt (u) =
n∏

j=1
(u − zj(t)). (2)

Conversely, the roots of any smooth loop in this spaceXn of polynomials form a geometric
braid on n strands.
The natural smooth structure on Xn explained above matches common intuition as

follows. Since the coefficients of a polynomial are smooth functions of its roots (with a
smooth local inverse if the roots are distinct), a loop

gt (u) =
n∏

j=1
(u − zj(t)) = un +

n−1∑
j=0

aj(t)uj (3)

in Xn is smooth if and only if its coefficients aj(t), j = 1, 2, . . . , n−1, are smooth functions
of t, which occurs if and only if the strands of the corresponding braid are parametrized
by smooth functions zj(t), j = 1, 2, . . . , n [18].
This paper focuses on a subset of this space of polynomials Xn. We define X̂n to be the

space of monic polynomials of degree n with distinct roots, distinct critical values and
constant term not equal to any of its critical values. If the critical values are distinct, so
are the critical points. Since the critical points of a complex polynomial g in one variable
u are exactly the roots of ∂g

∂u , which is a polynomial of degree n− 1, it follows that we can
associate to every loop gt in X̂n three braids: one braid on n strands that is formed by the
roots of gt , one braid that is formed by the critical values and one braid on n − 1 strands
that is formed by the critical points of gt . The relation between the braid that is formed
by the roots of a loop in X̂n with constant term equal to 0, and the braid that is formed by
its critical values was studied in detail in [9].
By holomorphicity each critical point of a polynomial p in X̂n must also be a critical

point of arg(p). Furthermore, it is a saddle point of arg(p), that is, it is neither a local
maximum nor a local minimum. For this reason we also call the braid that is formed by
the critical points of gt the saddle point braid of gt . One major topic of this article is the
relation between the braid formed by the roots and the saddle point braid of a given loop
of polynomials gt in X̂n. We prove that any pair of braids can be realized as the roots and
saddle point braid of an appropriate loop of polynomials.

Theorem 1.2 Let B and B′ be braids on n and n − 1 strands, respectively. Then there is a
loop gt : C → C in X̂n such that

• the roots {(u, t) ∈ C × [0, 2π ]|gt (u) = 0} form the braid B,
• the saddle point braid, given by {(u, t) ∈ C × [0, 2π ]| ∂gt

∂u (u) = 0}, is B′.

Theorem 1.2 is related to work in [38], where it was shown that not every braid can be
realized as the union of roots and saddle point braid of some loop of polynomials, even
when certain immediate convexity constraints are taken into account. So by Theorem 1.2
we can control the topology of the braid of roots B and the saddle point braid B′ at the
same time, but we do not have control over the braid type of their union, which is a braid
on 2n − 1 strands.
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At almost every height t ∈ [0, 2π ] we may order the strands of a braid at that height by
the real parts of their complex coordinate. That is, if

⋃n
j=1(zj(t), t), then the first strand

at height t = t∗ is the strand with smallest Re(zj(t∗)). The second strand has the next
smallest value of Re(zj(t∗)) and so on. The braid group on n strands is generated by the
Artin generators σi, i = 1, 2, . . . , n − 1, which correspond to positive half-twists between
the ith strand and the (i + 1)st strand.

Definition 1.3 A braid B = ∏

j=1 σ

εj
ij on n strands is called homogeneous if

i) for every k ∈ {1, 2, . . . , n − 1} there is a j ∈ {1, 2, . . . , 
} with ij = k ,
ii) for every j, j′ ∈ {1, 2, . . . , 
 − 1}, ij = ij′ implies εj = εj′ .

In other words, a braid is homogeneous if for all i ∈ {1, 2, . . . , n − 1} its word contains
the generator σi if and only if it does not contain its inverse σ−1

i . In the literature (in
particular in [36]) braids are sometimes called homogeneous if they satisfy the second
condition above and strictly homogeneous if they satisfy both conditions above.
Since the start- and endpoints of any geometric braid B match, we may identify the

t = 0-plane and the t = 2π-plane to obtain a link in C × S1. Embedding this open solid
torus as an untwisted neighborhood of a planar circle in S3 results in a well-defined link
in S3, the closure of the braid B, whose ambient isotopy class in S3 does not depend on
the representative of the braid isotopy class of B.
Stallings showed that closures of homogeneous braids are fibered links [40]. In fact

Definition 1.3 has a generalization in the form of T-homogeneous braids, which were
introduced and shown to close to fibered links by Rudolph [36]. In Sect. 2 we will review
the definition and some properties of T-homogeneous braids.
We say that a geometric braid B parametrized by

⋃n
j=1(zj(t), t) is P-fibered (short for

“fibered via polynomials”) if the corresponding loop of polynomials gt(u) = ∏n
j=1(u−zj(t))

defines an explicit fibration map via arg(g) : (C × S1)\B → S1, where g : C × S1 →
C, g(u, eit ) = gt (u). We say that a braid isotopy class is P-fibered if it has a P-fibered
representative. Sometimes this condition isweakened to require a P-fibered representative
in its conjugacy class in Bn. Closures of P-fibered braids are fibered links in S3 [10], but it
is not known if every fibered link is the closure of a P-fibered braid.
T-homogeneous braids are P-fibered [11,36] and closures of T-homogeneous braids

have also recently been proved to be real algebraic [13]. We prove that the loop of poly-
nomials that realizes a T-homogeneous braid as a P-fibered braid can be taken to have a
trivial saddle point braid.

Theorem 1.4 Let B be a T-homogeneous braid on n strands. Then there is a loop gt : C →
C in X̂n such that

• the roots {(u, t) ∈ C × [0, 2π ]|gt (u) = 0} trace out the braid B,
• (u, t) �→ gt (u) �→ arg gt (u) is a fibration of (C × S1)\B over S1,
• the saddle point braid, given by {(u, t) ∈ C × [0, 2π ]| ∂gt

∂u (u) = 0}, is the trivial braid
on n − 1 strands.

The condition that the map (u, t) �→ arg gt (u) is a fibration means that it does not have
any critical points. If the map (u, t) �→ arg gt (u) for a given loop of polynomials gt has a
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finite number of non-degenerate critical points, i.e., it is a circle-valued Morse map, we
call it a pseudo-fibration.
A construction similar to the one employed in [13] results in the following theorem.

Theorem 1.5 Let L be the closure of a T-homogeneous braid B on n strands. Then there is
a semiholomorphic polynomial f : C2 → C such that f has an isolated singularity at the
origin with link L and fu has a weakly isolated singularity at the origin whose link is the
unlink with n − 1 components.

The structure of the rest of the article is as follows. Section 2 reviews some properties
of loops of polynomials in X̂n, resulting in a proof of Theorem 1.4 and Theorem 1.2.
We also give a new upper bound on the Morse–Novikov number of a link, the minimal
number of critical points of a pseudo-fibration. In Sect. 3 we modify the constructions of
(weakly) isolated singularities from [12] and [13] to prove Theorem 1.1 and Theorem 1.5.
In appendix (Sect. Appendix 1) we then study the argument map arg(gt ) of a loop of
polynomials gt in X̂n and offer different visualizations of the fibration for homogeneous
braids as well as of pseudo-fibrations for general braids.

2 Saddle point braids
The space X̂n of monic polynomials of fixed degree n and distinct roots, distinct critical
values and constant term different from all critical values is defined in such a way that
both the roots and the critical points of a loop in X̂n form a (closed) braid in C × S1. A
parametrization zj(t), j = 1, 2, . . . , n, of the roots can be easily obtained by decomposing
the polynomials into their irreducible factors, i.e. gt (u) = ∏n

j=1(u − zj(t)). Likewise, the
critical points of a loop gt , which form the saddle point braid, are given by

⋃n−1
j=1 (cj(t), t)

where ∂gt
∂u (u) = n

∏n−1
j=1 (u − cj(t)). The relation between these polynomials is then obvi-

ously gt (u) = ∫ u
0

∂gt
∂u (w)dw.

Wemaywrite vj(t) = gt (cj(t)), j = 1, 2, . . . , n−1, for the critical values of gt . The relation
between the braid that is parametrized by the vj (or more precisely the union of the vj and
{0} × [0, 2π ]) and the braid that is formed by the roots of gt was the object of study in [9].
One aspect that continues to be relevant in this paper is that deformations of the braid
of critical values lift to deformations in X̂n and thus also to deformations of the braid of
roots and the saddle point braid.
More precisely, we may write

Vn := {(v1, v2, . . . , vn−1) ∈ (C\{0})n−1 : vi �= vj if i �= j}/Sn−1, (4)

for the space of critical values of polynomials in X̂n, where the symmetric group Sn−1
acts on n− 1-tuples of non-zero complex numbers by permutation. Note that the critical
values are nonzero, since polynomials in X̂n have distinct roots. We then define

V̂n := {(v, a0) ∈ Vn × C : a0 �= vj for all j}. (5)

Then by Corollary 2.20 in [11] themap θn that sends a polynomial in X̂n to its set of critical
values v ∈ Vn and its constant term a0 is a covering map of degree nn−1.
Suppose now that gt is a loop in X̂n and let vt denote the loopof the corresponding critical

values. That is, if we denote the projection map V̂n → Vn by π , we have vt = π (θn(gt )).
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Any homotopy of vt in Vn is a braid isotopy that therefore extends to an ambient isotopy
and gives a homotopy of θn(gt ) in V̂n, which then lifts to a homotopy of gt in X̂n. By
definition of X̂n the braid type of the braid formed by the roots and the braid type of the
saddle point braid do not change during this homotopy.
The relation between the braid formed by the roots and the braid formed by the critical

values is important in the context of fibrations.
Recall that the property that arg(g) is a fibration map means that it does not have

any critical points. By [10] (u∗, t∗) ∈ (C × S1)\B is a critical point of arg(g) if and only
if ∂g

∂u (u∗, t∗) = ∂ arg(g)
∂t (u∗, t∗) = 0. This implies that all critical points must lie on the

saddle point braid, i.e., there is some j ∈ {1, 2, . . . , n − 1} such that cj(t∗) = u∗, where
cj(t), j = 1, 2, . . . , n − 1, parametrize the saddle point braid. The property of being P-
fibered is therefore also equivalent to ∂ arg(vj(t))

∂t �= 0 for all j and all t, which has the
geometric interpretation that each critical value vj(t), interpreted as a curve (vj(t), t) in
C × [0, 2π ], has a fixed orientation (clockwise or counter-clockwise) with which it twists
around 0 × [0, 2π ] ⊂ C × [0, 2π ].
We nowdefine a particular family of P-fibered braids, theT-homogeneous braids, which

feature in Theorems 1.4 and 1.5. They are a generalization of the homogeneous braids
defined in Definition 1.3.
Let T be an embedded tree graph in the complex plane with n vertices. Furthermore,

every edge e ofT should be associated with a sign εe ∈ {+,−}. See Fig. 1a for an example.
After a planar isotopy of T we may assume that the vertices of T are the n roots of
a complex polynomial in X̂n. We consider loops in X̂n whose basepoint is given by the
n-tuple of the vertices of T . For every edge e there is a loop gεe

e in X̂n that exchanges the
endpoints of the edge, where the sign of the twist matches εe as in Fig. 1b. Note that every
twist occurs in a neighborhood of the edge. A braid on n strands is calledT -homogeneous
if it has a representative of the form gt = ∏


j=1 g
εej
ej , where for every edge e there is an index

j ∈ {1, 2, . . . , 
} with ej = e. Here
∏

refers to the concatenation of loops, not a product of
polynomials. The order in which the twists occur or the number of times each twist occurs
is not relevant for this definition. In general we say that a braid B is T-homogeneous if
there is some embedded tree T with choice of signs εe, such that B is T -homogeneous
with respect toT and the chosen signs. Figure 1c shows an example of aT -homogeneous
braid for the embedded tree in Fig. 1a. Here and in all figures of braids in this article where
a braid is drawn vertically, t is increasing from 0 to 2π as we go from the bottom to the
top of the picture.
Every homogeneous braid B isT -homogeneous, ifT is the line graph. Numbering the

edges from left to right means that the sign εj of the edge j ∈ {1, 2, . . . , n−1} is the unique
sign with which σj appears in the homogeneous braid word B.
We now explain how embedded trees arise naturally in the study of complex polynomi-

als. Let p : C → C be a complex polynomial in X̂nwith critical values vk , k = 1, 2, . . . , n−1,
such that arg(vi) �= arg(vj) for all i �= j. Then the argument map arg(p) induces a singular
foliation on C whose leaves are connected components of level sets of arg(p). The singu-
lar foliation has two types of singularities; elliptic singularities, which are the roots of p,
and hyperbolic singularities, which are the critical points of p. Every singular leaf of this
foliation has the shape of a cross, consisting of one line connecting two roots of p and one



   33 Page 8 of 39 B. Bode, M. Hirasawa Res Math Sci          (2024) 11:33 

Fig. 1 a An embedded treeT in the complex plane. The signs εe are drawn on each edge e. b The loop ge
exchanges the roots on the endpoints of e as in the upper picture if εe = +1 and as in the lower picture if
εe = −1. c AT -homogeneous braid withT as in Subfigure (a) with t increasing from 0 to 2π from the
bottom to the top

going to the circle boundary ∂D = S1 of C ∼= D. The two lines meet in a critical point of
p.
The nth roots of unity divide ∂D = S1 into n arcs. We denote the arcs by Aj , j =

1, 2, . . . , n, increasing the label as we go around the circle clockwise. The choice of arc
that is labeled A1 is arbitrary, but it should be the same for all polynomials p. Let ck ,
k = 1, 2, . . . , n−1be the critical points ofpwith vk = p(ck ). Since the roots ofp are distinct,
vk �= 0 for all k . We may assume that 0 < arg(v1) < arg(v2) < . . . < arg(vn−1) < 2π .
We may then associate to each critical point ck (or to each critical value vk = p(ck ))

a transposition τk ∈ Sn, where Sn denotes the permutation group on n elements. As
mentioned above, ck lies on a unique singular leaf of the singular foliation of D induced
by arg(p). This singular leaf has two endpoints on ∂D = S1 that lie on two different arcs
Ai and Aj , i �= j. Then τk = (i j). It turns out that every such list of ordered transpositions
τk satisfies

∏n−1
k=1 τk = (1 2 . . . n − 1 n). The ordered list {τk}k∈{1,2,...,n−1} is called the

cactus of the polynomial p, see [11,13,20] for more details. Note that labeling the arcs Aj
clockwise is the convention from [13], which is the opposite of that of [11].
The definition of τk is illustrated in Fig. 2a. In Fig. 2b we show the singular leaves of

the singular foliation induced by arg(p), where p is a polynomial of degree 4. The regular
leaves can easily be filled in, since they always connect a root to the boundary circle. The
cactus of the displayed polynomial is τ1 = (1 4), τ2 = (2 4), τ3 = (3 4).



B. Bode, M. Hirasawa Res Math Sci           (2024) 11:33 Page 9 of 39    33 

Fig. 2 Defining the cactus of a polynomial p from the singular foliation induced by arg(p). a A singular leaf
with a critical point ck with τk = (i j). b The singular leaves of the singular foliation induced by arg(p). c The
embedded tree associated with a polynomial p

Fig. 3 Planar tree graph associated with a polynomial p is mapped to a star graph by p

We may also associate with p in X̂n a planar graph embedded in C, whose vertices
are the roots of p and whose edges are the parts of the singular leaves that connect two
roots, see Fig. 2c. This combinatorial structure is essentially equivalent to the cactus of
the polynomial p. The resulting graph is always a tree and up to planar isotopy every
embedded tree arises in this way.
Let T be the embedded tree associated with a polynomial p in X̂n. Suppose that the

critical values vj , j = 1, 2, . . . , n − 1, all have distinct arguments. Then the image of T
under p is a star graph with n−1 edges. Since the vertices ofT are by definition the roots
of p, they all get mapped to the origin in C. Every edge of T contains a unique critical
point cj and by definition arg(p) is constant along each edge of T , so that the image of
each edge of T is a straight line from the origin in C to the corresponding critical value
vj = p(cj), see Fig. 3.
There is a connection between embedded trees and subsets of the BKL-generators ai,j ,

i, j ∈ {1, 2, . . . , n}, i �= j, which were introduced by Birman, Ko and Lee in [5], and which
also generate Bn. The generator ai,j represents a positive half-twist between the ith strand
and the jth strand such that in the projection the twist lies in front of all strands whose
indices are between i and j. See Fig. 4 for an example. In particular, the Artin generator
σi is given by ai,i+1. BKL-generators (or band generators as they are also called) are often
used to describe braided surfaces in C × [0, 2π ], where each strand corresponds to a disk
and each generator ai,j to a half-twisted band between the ith and the jth disk. In this way
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Fig. 4 Band generator a2,5

a word in the BKL-generators describes a surface whose boundary is the corresponding
braid represented by the same BKL-word.
For every embedded treeT the twists gej around edges ej , j = 1, 2, . . . , n−1, generate the

braid group on n strands, where n is the number of vertices of T , see [36]. After a planar
isotopy ofT (which does not change the set of correspondingT -homogeneous braids up
to conjugacy) these generators can be realized as a subset of the band generators or BKL-
generators [5,36].We call the set ST of BKL-generators associatedwith a given embedded
treeT theT -generators. Thismeans thatwe candefine the set ofT -homogeneous braids
analogously to Definition 1.3. Naturally this definition is equivalent to the one explained
above in terms of embedded trees and twists around edges.

Definition 2.1 Let ST = {s1, s2, . . . , sn−1} be the set of T -generators of Bn for some
embedded tree T in C. Let B = ∏


j=1 s
εj
ij be a braid word in the T -generators. Then B is

a T -homogeneous braid word if

i) for every k ∈ {1, 2, . . . , n − 1} there is a j ∈ {1, 2, . . . , 
} with ij = k ,
ii) for every j, j′ ∈ {1, 2, . . . , 
 − 1}, ij = ij′ implies εj = εj′ .

We say that a braid B is T-homogeneous if there exists an embedded tree T with T -
generators ST such that B can be represented by a T -homogeneous braid word. Thus
the set of T-homogeneous braids is the union of all T -homogeneous braids, where the
union is taken over all embedded trees T in C.

Clearly, Definition 2.1 reduces to Definition 1.3 if T is taken to be the line graph and
ST is the set of Artin generators.
In [15] we introduced the inhomogeneity β(B) of a braid B, a natural number that mea-

sures how far away a given braid word B in Artin generators is from being homogeneous.
In particular, β(B) = 0 if and only if B is a homogeneous braid.
Wemay now define for every embedded treeT theT -inhomogeneity βT (B) of a braid

B as follows. Denote the T -generators by s1, s2, . . . , sn−1. Then express B as a word in
these generators B = ∏


j=1 s
εj
ij . Then we count for each i ∈ {1, 2, . . . , n − 1} the number

of sign changes of the generator si as we traverse the braid word cyclically. We add all
these numbers and add 2 for every generator that does not appear in the braid word at all,
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neither with a positive nor with a negative sign. This is expressed as

βT (B) =
n−1∑
i=1

|{j ∈ {1, 2, . . . , 
 − 1} : ∃k ∈ {1, 2, . . . , 
 − 1} s.t. ij = ij+k mod 
 = i,

ij+mmod 
 �= i for allm < k and εjεj+k mod 
 = −1}|
+ 2|{j ∈ {1, 2, . . . , n − 1} : There is no k s.t. ik = j}|. (6)

IfT is the line graph, theT -generators are the usual Artin generators and βT (B) = β(B).
Note that by definition βT (B) = 0 if and only B is a T -homogeneous braid word. We
should interpret βT (B) as a property of a braid word. Of course, we may take any braid,
inflate its word artificially by inserting arbitrarily many copies of sjs−1

j and thereby make
βT (B) arbitrarily large. If we wanted to insist on a topological invariant, we would thus
have to take theminimumover all braidwords representing the same braidB. For practical
purposes, it is of course much simpler to consider βT (B) as a function from the set of
words in T -generators (and their inverses) to the natural numbers.
In order to prove Theorem 1.4 we need to find a loop of polynomials gt in X̂n whose

roots form a given T-homogeneous braid B, realized as a P-fibered geometric braid, and
such that its saddle point braid is the trivial braid on n − 1 strands. Loops of polynomials
that realize B as a P-fibered geometric braid have been constructed in [11,36] and to
some extent (for homogeneous braids) already in [6,8,35]. However, these articles do not
mention the saddle point braid in this context. We quickly review the main steps in this
construction and explain why the corresponding saddle point braid is the trivial braid.

Proposition 2.2 Let T be an embedded tree in C with n vertices and let B be a word in
the T -generators. Then there is a loop gt in X̂n such that the roots of gt form the braid B,
its saddle point braid is the trivial braid on n − 1 strands and arg(g) : (C × S1)\B → S1,
arg(g)(u, eit) := arg(gt (u)), has exactly βT (B) critical points.

Proof After a planar isotopy of T we may assume that T is exactly the embedded tree
associated with the polynomial p(u) := ∏n

j=1(u − zj) (see, for example, Theorem 5.3 in
[11]), where z1, z2, . . . , zn are the vertices of T . We now study the loop of polynomials in
X̂n whose roots form B and that has p as a basepoint.
Each T -generator sj corresponds to a twist gej along an edge ej of T . Thus B is a

concatenation of twists gej along edges ej ofT , say
∏


k=1 g
εk
ejk , where the product refers to

concatenation of loops in X̂n. Each twist gej corresponds to a very particular motion of the
critical values and the constant term in V̂n.
Let c1, c2, . . . , cn−1 be the critical points of p, let vj = p(cj), j = 1, 2, . . . , n − 1, be

the critical values of p and let a0 be its constant term. After a small deformation of the
embedded graph we may assume that arg(vi) �= arg(vj) if i �= j. After a translation ofT in
C, which does not affect the critical values or the graph structure, we may further assume
that one of the zj is equal to 0 and so a0 = 0 �= vj for all j, so in particular, p ∈ X̂n. SinceT
is the embedded tree associated with p, every edge ofT contains exactly one critical point
cj of p. We may thus choose the indexing of the edges ofT such that ej contains cj . There
is now a one-to-one correspondence between edges ofT and critical values of p, where an
edge ej corresponds to the critical value vj = p(cj), see also Fig. 3. The twist gej (u) can be
explicitly realized as a loop in X̂n via p(u)− γj(t), where γj(t) is a loop inC with basepoint
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)c()b()a(

Fig. 5 a Critical values vj , j = 1, 2, . . . , n − 1 (in black), the origin 0 ∈ C (in red) and γj (t) (in thick green), both
as curves in C × S1 and as motions in C. b Curves vj − γj (t), j = 1, 2, . . . , n − 1 (in black), the origin 0 ∈ C (in
red) and the constant term −γj (t) (in thick blue), both as curves in C × S1 and as motions in C. c A
deformation of the curves from Subfigure (b) so that all but one critical value become stationary

at the origin and the property that it encircles the critical value vj counterclockwise in an
ellipse that does not contain any other critical values vi with i �= j as shown in Fig. 5a. We
denote the inverse loop of γj(t) that encircles vj in a clockwise direction by γj(t)−1. �

Thus we have realized B as the roots of a loop in X̂n that is given by
∏


k=1(p − γjk (t)εk ),
where again the product refers to concatenation of loops in X̂n. Since the constant term
is the only term that depends on t, the saddle point braid of the corresponding loop of
polynomials is the trivial braid on n − 1 strands.
The motion of the critical values of a loop gej is shown in Fig. 5b. As in Fig. 5c we may

deform the loop of critical values and constant term−γj(t) such that vi(t) does not depend
on t if i �= j and vj encircles {0} × [0, 2π ] counterclockwise in an ellipse. Thus the loop
of critical values and constant term θn(

∏

k=1(p − γjk (t)εk )) can be deformed in V̂n so that

in each interval t ∈
[
2π (k−1)



, 2πk




]
the critical values vi(t) with i �= jk do not depend on

t, while vjk moves on an ellipse around the origin, going counterclockwise if εk = 1 and
clockwise if εk = −1.
Wemay now deform the loop of critical values slightly to make ∂t arg(vi(t)) nonzero for

all t ∈
[
2π (k−1)



, 2πk




]
and all i �= jk . All of these deformations are homotopies in V̂n and

lift to a homotopy of
∏


k=1(p − γjk (t)εk ) in X̂n. The resulting loop gt in X̂n therefore still
has the same braid of roots and the saddle point braid as

∏

k=1(p− γjk (t)εk ), that is, B and

the trivial braid on n − 1 strands, respectively.
The corresponding braid of critical values consists of strands that are motions of points

on ellipses. We know that critical points of arg(g) are exactly points where a critical value
vi(t) changes its directionwithwhich itmoveson its ellipse, clockwiseor counterclockwise.
Since the direction ofmotion on the ellipse is given by the signs εk with jk = i, this number
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is exactly

|{k ∈ {1, 2, . . . , 
 − 1} :∃h ∈ {1, 2, . . . , 
 − 1} s.t. jk = jk+hmod 
 = i,

jk+mmod 
 �= i for allm < h and εkεk+hmod 
 = −1}|. (7)

If there is no k with jk = i, i.e., the T -generator corresponding to gei does not appear
in the braid word with any sign, then vi(t) can be taken to be constant. In order to obtain
a Morse function, we deform this stationary strand such that arg(vi(t)) has exactly two
critical points. Thus the number of critical points of arg(g) is exactly βT (B). �
Proof of Theorem 1.4 Let B be a T -homogeneous braid for some embedded tree T with
chosen signs. By definition βT (B) = 0 and so the theorem follows from Proposition 2.2.

�
Fibered links in S3 are exactly the bindings of open book decompositions of S3. We

say that an open book in S3 is a braided open book if its binding is the closure of a P-
fibered braid [11]. The braid axis can then be thought of as a braid axis for the entire open
book, not only for the binding, that is, all fiber surfaces (the pages of the open book) are
positioned in a very natural way relative to this braid axis. They are all braided surfaces in
the sense of Rudolph [36].
An equivalent definition of braided open books in S3 involves simple branched covers

S3 → S3. Montesinos and Morton conjecture that for every fibered link L in S3 there is
a simple branched cover � : S3 → S3 of degree n, branched over a link Lbranch such that
L = �−1(α) is the preimage of some braid axis α of Lbranch and Lbranch is the unlink on
n − 1 components [29].
We showed in [11] that we can construct a simple branched cover � : S3 → S3 from

any loop of polynomials gt , whose roots form a P-fibered geometric braid. The resulting
branch link Lbranch is exactly the closure of the braid that is formed by the critical values
of gt . The proof of Proposition 2.2 shows that for closures of T-homogeneous braids the
conjecture by Montesinos and Morton is true, since the braid of critical values is (exactly
like the saddle point braid) the trivial braid on n − 1 strands.
In general it is not true that the saddle point braid and the braid of critical values are

isotopic, but theymust always have the same permutation of strands. So if the saddle point
braid is the trivial braid on n − 1 strands, then the braid of critical values is a pure braid.
That is, every critical value ends at t = 2π in the same position where it starts at t = 0.
Constructing � from such a loop of polynomials gt gives a branch link Lbranch with n − 1
components, but not necessarily the unlink.
Braided open books have also been studied by Rudolph [36], who calls the saddle point

braid without orientation the “derived bibraid”. The name is justified, since the closure of
the saddle point braid, as a link in S3, is transverse to all pages of the open book whose
binding is the braid axis of the saddle point braid and also transverse to all pages of the
given braided open book.Wemay therefore choose orientations for the components of the
derived bibraid that turn it into a braid (namely, the saddle point braid) relative to its braid
axis and another (in general different) choice of orientation turns it into a generalized braid
relative to the fibered link L. Singularity theorists might also be interested in Rudolph’s
calculation of the Milnor number of a fibered link that is the binding of a braided open
book in S3 in terms of properties of the derived bibraid [36].
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TheMorse–Novikov numberMN (L) of a link L is a natural number that measures how
far a given link is from being fibered. In particular,MN (L) = 0 if and only if L is fibered.
In [15] we proved the upper bound MN (L) ≤ β(B) for all links L and all braids B that
close to L. We use the discussion above to improve this bound.
The Morse–Novikov number MN (L) is defined to be the minimal number of critical

points of any circle-valuedMorsemap on S3\L that displays the usual behavior of an open
book in a tubular neighborhood of L, that is, locally it is given by φ : S1 × (D\{0}) → S1,
φ(x, z) = arg(z). We will refer to any such map φ as a pseudo-fibration. Upper and lower
bounds of the Morse–Novikov number in terms of other link invariants have been found
in [25], [37] and [33], but we are not aware of any explicit formula or algorithm that
computes it.

Corollary 2.3 Let B be a braid on n strands whose closure is the link L. Then MN (L) ≤
minT βT (B), where the minimum is taken over all embedded trees T with n vertices.

Proof From Proposition 2.2 we have for every embedded tree T with n vertices a loop
gt in X̂n whose roots form B and with exactly βT (B) critical points of arg(g). As in [16]
we can construct from a Morse function ϕ on S3\L, where L is the closure of B with the
same number of critical points as follows. By the usual approximation arguments we can
assume that the coefficients of gt are trigonometric polynomials, i.e., polynomials in eit

and e−it . Now take this polynomial expression λngt (λ−1u), with λ ∈ R a parameter and
n := degu gt , and substitute every eit by another complex variable v and every instance
of e−it by the complex conjugate v̄. We call the resulting semiholomorphic polynomial f .
By construction it is f |v=eit = gt . It was shown in [16] that for sufficiently small values of
λ we have that Vf � S3 is the closure L of B and ϕ := arg(f )|S3\L has the same number
of critical points as g . (The polynomial f does not necessarily have a (weakly) isolated
singularity at the origin and the intersection S3ρ ∩ Vf might be different from L for small
radii ρ.) Thus ϕ satisfies the desired property on a tubular neighborhood of L and we have
MN (L) ≤ βT (B). Since this holds for any embedded tree T , the result follows. �

Note that βT (B) only depends on the set ofT -generators, not on the embedded treeT
per se. Thus the expressionminT βT (B) refers to theminimum of a finite set of numbers.

Example 2.4 Consider again the example from Fig. 1c. We already know that it
is T1-homogeneous for the embedded tree T1 in Fig. 1a. Therefore, βT1 (B) = 0
and MN (L) = 0. However, expressing the same braid in Artin generators gives
σ−1
2 σ4σ

−1
2 σ−1

3 σ1σ
−1
2 σ−1

1 σ−1
2 σ4σ

−1
3 σ1σ

−1
2 σ−1

1 . We now calculate βT2 (B) = β(B) for the
line graph T2. Every generator appears with a positive sign or a negative sign, so the last
sum in Eq. (6) does not contribute. Furthermore, the generators σ2, σ3 and σ4 all come
with a fixed sign. All instances of σ2 and σ3 are negative, while all instances of σ4 are pos-
itive. So these strands do not contribute to the count in βT2 (B). However, the sequence
of signs of σ1 as we traverse the braid word reads {+,−,+,−}. So there are three sign
changes plus one, since the first entry of this list is different from the last one. Thus the
bound from [15] would have given MN (L) = 0 ≤ 4 = β(B), while our new improved
bound in Corollary 2.3 gives

0 ≤ MN (L) ≤ min
T

βT (B) ≤ βT1 (B) = 0 (8)
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and soMN (L) = minT βT (B) = 0.

Proof of Theorem 1.2 Consider a parametrization of the braid B′, say

⋃
t∈[0,2π ]

n−1⋃
j=1

(cj(t), t) ⊂ C × [0, 2π ], (9)

with appropriate functions cj : [0, 2π ] → C. Then ht (u) := n
∫ u
0

∏n−1
j=1 (w − cj(t))dw is a

loop in the space of monic polynomials of degree nwhose critical points form the braid B′

in exactly the given parametrization. After a small deformation of ht we may assume that
its roots are also distinct. The fact that its critical points form B′ does not change with this
small deformation.
Since the roots of ht are distinct for all t ∈ [0, 2π ], they form a braid on n strands.

However, at this stage we do not know what this braid is. We will call it A. Now apply
the construction outlined in the proof to Proposition 2.2 to the braid A′ := A−1B and
basepoint g0 := h0 to obtain a loop gt in X̂n whose roots form the braid A′ and whose
saddle point braid is the trivial braid e on n − 1 strands. Then the composition of ht and
gt is a loop in X̂n whose roots form the braid AA′ = B and whose critical points form the
braid B′e = B′.

3 Singularities of semiholomorphic polynomials
Theorem 1.1 concerns the realization of link types as the link of a weakly isolated sin-
gularity of a semiholomorphic polynomial f while at the same time prescribing the link
of the singularity of fu. This type of topological flexibility of the “jet” (in the sense of the
literature on the h-principle [21]) of f (while maintaining the link type L) may appear
like a typical feature of real algebraic geometry. However, we will see in an example that
this flexibility concerning the link of fu already appears in the complex setting, which is
otherwise known to be very rigid.
First we recall some basic definitions concerning the Newton boundary of a mixed

polynomial map f : C
2 → C as described in [32]. We may write f as f (u, v) =∑

i,j,k,
≥0 ci,j,k,
uiūjvk v̄
 with all but finitely many coefficients ci,j,k,
 equal to zero. The
support of f , denoted by supp(f ), consists of all integer lattice points (μ, ν) ∈ Z

2 such
that there are non-negative integers μ1,μ2, ν1, ν2 with μ = μ1 + μ2, ν = ν1 + ν2 and
cμ1 ,μ2 ,ν1 ,ν2 �= 0.
The Newton polygon of f is the convex hull of supp(f )+ (R+)2. Its boundary consists of

a number of vertices and edges. The union of the vertices and compact edges is called the
Newton boundary�f of f . There are several properties of�f that can be used to determine
if f has a (weakly) isolated singularity, such as convenience and Newton non-degeneracy
[32] as well as inner non-degeneracy [2] or partial non-degeneracy [17]. In the case of
convenience and Newton non-degeneracy, and inner non-degeneracy it is known that
the link of the singularity only depends on the terms of f whose corresponding integer
lattice points lie on �f . The sum of these terms is called the principal part of f . In other
words, adding terms above the Newton boundary does not change the fact that we have
a (weakly) isolated singularity and it does not affect the link type. For more details on the
Newton boundary of mixed polynomials we point the reader to [2,17,32].
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Example 3.1 Consider the well-known example of f (u, v) = up − vq with p, q ∈ N with
p, q > 1, with an isolated singularity at the origin and the (p, q)-torus link Tp,q as the link
of the singularity. Since f is holomorphic, we may also study fu and fv with regards to
their singularities. However, it is easily seen that neither fu nor fv has a weakly isolated
singularity at the origin.
Instead we may consider F (u, v) = f (u, v) − uvk + vu
 with k, 
 ∈ N with k ≥ q and


 ≥ p. First of all, since both added terms lie above the Newton boundary of f and f is
convenient andNewton non-degenerate, it follows that F has an isolated singularity at the
origin, whose link is again the (p, q)-torus linkTp,q . But nowwehave Fu(u, v) = pup−1+vk ,
which has an isolated singularity with link T(p−1,k), and Fv(u, v) = u
 − qvq−1, which has
an isolated singularity with link T(
,q−1). We thus have a lot of freedom for the links of Fu
and Fv without changing the link of F .

This illustrates that the links of singularities of Fu are not topological invariants of the
links of singularities of F . There are different equivalence relations on polynomial map
germswith (weakly) isolated singularities related to topological properties (R-equivalence,
A-equivalence, V-equivalence, etc.). For example, we might say that two polynomials f1
and f2 are A-equivalent if there is a homeomorphism (or diffeomorphism) h1 : (B4

ε , 0) →
(B4

ε , 0) and h2 : (B2
ε , 0) → (B2

ε , 0) of the 4-ball and 2-ball of radius ε, respectively, such
that on B4

ε we have f2 = h2 ◦ f1 ◦ h1, so that in particular the link of f1 is ambient isotopic
to that of f2. While the link types of the singularities are topological invariants, that is,
they do not depend on the representative of the equivalence class of polynomial maps, we
cannot expect the same to be true for the link types of fu. That is, in general we should
expect that the link of (f1)u is different from that of (f2)u even if f1 and f2 are in the same
equivalence class. After all, even the property of being semiholomorphic itself depends
on the particular variables and therefore changes depending on which representative of
the equivalence is under consideration. The links of singularities of first derivatives thus
may be used to define much finer equivalence relations that treat the polynomial maps
as jets. For this note that there is no particular reason to restrict to semiholomorphic
polynomial and derivatives with respect to the complex variable. If x1, x2, x3, x4 are the
real coordinates on R

4, we may say that two real polynomial maps f1, f2 : R4 → R
2 are

link-equivalent as 1-jets if both have (weakly) isolated singularities with ambient isotopic
links and (fi)xj has a (weakly) isolated singularity for all i = 1, 2, j = 1, 2, 3, 4,with the link of
(f1)xj ambient isotopic to the link of (f2)xj .Wemight consider such an equivalence relation
up to permutation of links of (f1)xj so that a simple permutation of the variables does not
change the equivalence class. If a polynomial f is semiholomorphic with u = x1+ ix2, then
Vfu = Vfx1 = Vfx2 , so that the link types of the real derivatives contain the information
about the link of the derivative with respect to u.
We now turn our attention to the proofs of Theorem 1.1 and Theorem 1.5. First, we

review some techniques to turn loops gt of polynomials as in the previous sections into
semiholomorphic polynomials with (weakly) isolated singularities.
Since trigonometric polynomials are C1-dense in the space of 2π-periodic, C1-

functions, we may approximate any loop of polynomials of fixed degree n by a loop gt
whose coefficients are polynomials in eit and e−it . Then we may construct a function
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f : C2 → C with a singularity at the origin via

f (u, reit) = rkngt
(
u
rk

)
, (10)

where k is some sufficiently large natural number. The resulting function f is a holo-
morphic polynomial with respect to u, but is only a polynomial in the variables v = reit

and v̄ = re−it if gt (and thus its roots as well) satisfy certain symmetry requirements,
namely gt+π = gt or gt+π (u) = −gt (−u), as shown in [14]. If the roots of gt are distinct,
then ∂gt

∂u �= 0 whenever gt is nonzero. Thus fu(u∗, v∗) �= 0 , for all (u∗, v∗) ∈ Vf \{0}. By
the Cauchy–Riemann equations the real Jacobian matrix of f then has full rank at every
(u∗, v∗) ∈ Vf \{0}. In other words, if the roots of gt are distinct, then the singularity at the
origin is weakly isolated. With the same techniques as in [7,15] it can be shown that its
link is the closure of the braid formed by the roots of gt . If the roots of gt form a P-fibered
geometric braid, then the singularity is isolated [7,14].
The first author showed in [12] that every link type arises as the link of a weakly isolated

singularity of a semiholomorphic polynomial. In [13] it was proved that closures of T-
homogeneous braids are real algebraic. Both proofs are constructive and are based on a
variation in the idea described above.
In both cases we start with a loop gt that satisfies the desired symmetry constraints.

However, its roots are not distinct for all t ∈ [0, 2π ], so that they do not form a geometric
braid, but a singular braidwith intersectionpoints.Defining f from gt via Eq. (10)weobtain
a semiholomorphic polynomial, whose singularity at the origin is not weakly isolated. By
construction f is radially weighted homogeneous, that is, its support inZ2 lies on a straight
line of negative slope. In particular, the constructed f is equal to its principal part and is
Newton degenerate [17].
We may then find an additional term A(v, v̄) such that f + A has a (weakly) isolated

singularity, whose link is of the desired form, that is, all singular crossings of the singular
braids formed by the roots of gt are resolved in a very controlled way [12].
The important observation in the context of saddle point braids is that adding A(v, v̄)

does not change the derivative with respect to u, i.e., fu = (f + A)u.

Proof of Theorem 1.1 The proof is a modification of the construction in [12]. First of all
recall that for every link L and every sufficiently large integer n there is a braid on n strands
that closes to L. By the same arguments as in [10] we can find for every sufficiently large
even integer n−1 a braidB on n strands such that the closure of B2 contains L as a sublink.
Here B2 denotes the square (or double repeat) of the braid B. It follows that for every pair
of links L1 and L2 and every sufficiently large even n there exist braids B1 on n strands and
B2 on n− 1 strands, so that B1 closes to L1 and the closure of B2

2 contains L2 as a sublink.
By Theorem 1.2 there is a loop of polynomials ht in X̂n such that the roots of ht form the

trivial braid and the saddle point braid of ht is B2. Furthermore, after a homotopy of this
loop, which does not change the braid types, we may assume that h0 is a real polynomial,
i.e., all of its roots are real numbers. As in [12] we can also construct a loop of polynomials
gt whose roots form a singular braid Bsing such that for every singular crossing c there is
a choice of crossing sign εc ∈ {±1} that turns Bsing into a classical braid that is isotopic
to B1 if each singular crossing c is replaced by a classical crossing of sign εc. The loop of
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polynomials gt can be taken to consist of real polynomials, so that all of the roots of gt are
real numbers for all t ∈ [0, 2π ] [12]. We may take the basepoint of gt to be h0.
Consider now the loop that is formed by the composition of ht and gt . We may approx-

imate its coefficients by polynomials in eit and e−it . Call the resulting loop of polynomials
Gt . The approximation can be chosen arbitrarily C1-close and we can interpolate the
original coefficient functions, so that the roots of Gt form the singular braid Bsing and
the corresponding saddle point braid is B2. Note that the saddle point braid of gt was the
trivial braid, since it is a real polynomial whose n roots have at most multiplicity 2.
Therefore, the roots of the loop G2t form the singular braid B2

sing and its saddle
point braid is B2

2. Furthermore, the loop obviously satisfies the symmetry constraint
G2(t+π ) = G2t , so that f defined from G2t as in Eq. (10) is a radially weighted homo-
geneous semiholomorphic polynomial.
As in [12] we may now find an extra additive term A(v, v̄), which gives f + A a weakly

isolated singularity at the origin and resolves all singular crossings in away that guarantees
that the resulting link is the closure of B1, that is, L1. The only difference to the proof in
[12] is thatG2t is not a loop of real polynomials. However, recall that all singular crossings
of the roots of Gt occur in intervals where G2t is an arbitrarily close approximation of gt ,
which is a loop of real polynomials. This is sufficient for the arguments from [12], so that
f + A has a weakly isolated singularity whose link is L1. Furthermore, as observed above,
we have (f + A)u = fu, so that the zeros of (f + A)u are exactly

⋃n
j=1(rkcj(t), reit) ⊂ C

2

with r ≥ 0, t ∈ [0, 2π ] and
⋃n

j=1(cj(t), t) a parametrization of the saddle point braid of
G2t . Since the critical points of G2t are all distinct (they form a braid), this implies that all
roots of (f +A)u except the origin are regular points of (f +A)u. This means that (f +A)u
has a weakly isolated singularity at the origin and its link is the closure of B2

2, which by
construction contains L2 as a sublink. �
We see from the proof that in general the link of (f +A)u has extra components besides

L2. This is because by construction, the saddle point braid of G2t is a 2-periodic braid B2
2.

If on the on the other hand L2 is the closure of a 2-periodic braid B2
2 on n−1 strands, such

that n is at least the braid index of L1, then the link of the singularity of (f +A)u is exactly
L2 without any extra components. Take, for example, the figure-eight knot, which is the
closure of the 2-periodic braid (σ1σ−1

2 )2 on three strands. So we may take B2 = σ1σ
−1
2

and B1 any braid on four strands. Then the construction above gives a semiholomorphic
polynomial map f : C2 → C with a weakly isolated singularity at the origin and the
closure of B1 as the link of the singularity. Furthermore, the derivative fu also has a weakly
isolated singularity at the origin and its link is the figure-eight knot. So in this case the
given knot (41) is not only a sublink of the link of the singularity but equal to the link of
the singularity. No additional components are required.

Proof of Theorem 1.5 The theorem follows almost immediately from the construction in
[13], where we start with a loop gt , whose roots form a P-fibered geometric braid whose
closure is the unknot and that satisfies gt+π (u) = −gt (−u). We deform the critical values
of gt , so that there are some values of t for which there is a critical value equal to 0, which
means that at that value of t the roots of the deformed gt are not disjoint and thus form a
singular braid as t varies from0 to 2π . It is proved in [13] that this deformation can be done
in such a way that the resulting critical values vj(t) still satisfy the condition

∂ arg(vj(t))
∂t �= 0

for all j = 1, 2, . . . , n − 1 and all values of t with vj(t) �= 0. Furthermore, we may assume
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that the coefficients of the loop of polynomials ĝt , which is defined to be the endpoint of
the lift of the deformation of the loop of critical values, are polynomials in eit and e−it .
By Theorem 1.4 we can do this procedure, starting with a loop gt whose saddle point

braid is the trivial braid on n− 1 strands. Since the critical values are distinct throughout
the deformation, the same is true for the critical points. It follows that the saddle point
braid of ĝt is also the trivial braid on n − 1 strands.
We may then construct f from ĝ as in Eq. (10). By [13] there is a polynomial A(v, v̄)

such that f + A has an isolated singularity at the origin and its link is the closure of
the given T-homogeneous braid. Again, adding A does not affect fu, so that the roots of
(f + A)u are precisely (rkcj(t), reit ) ⊂ C

2, where r ≥ 0, t ∈ [0, 2π ] and
⋃n−1

j=1 (cj(t), t) is a
parametrization of the saddle point braid of ĝt , which is the trivial braid on n− 1 strands.
Thus (f + A)u has a weakly isolated singularity at the origin, whose link is the unlink on
n − 1 components.
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Appendix 1 Visualizations of (pseudo)fibrations
There are several characterizations of the set of fibered links in terms of link invariants
[24,31,39].However, even if theproof that a certain link is fiberedoffers adescriptionof the
corresponding fiber surface, it is often difficult to visualize how exactly these fibers fill the
link complement. For closures of P-fibered braids the whole fibration is in a nice position
relative to the unbook in S3 or if we consider the corresponding braid in C × [0, 2π ], we
might say the fibration is in a nice position relative to the height function (u, t) �→ t as
in [11]. This allows for nice visualizations of the fibrations of complements of closures of
P-fibered braids.
We present three different methods to visualize such fibrations. In the case of non-

fibered links similar tools may be used to visualize pseudo-fibration maps. Before we
describe these visualizations we would like to mention that the structure of a link and
surfaces that foliate its complement also appear in various physical systems, so that visu-
alizations of this form are of interest beyond pure mathematics.
Running a constant electric current through a closed wire in the shape of a given knot

K induces a magnetic field B : R3\K → R
3, which can be calculated explicitly (numer-

ically) from the Biot-Savart law. It has a circle-valued magnetostatic potential function
ϕ : R3\K → S1 with ∇ϕ = B. More details can be found in [4]. Under a small assump-
tion on its behavior near the point at infinity the map ϕ can be completed to a map on
S3\K with the desired behavior on a tubular neighborhood of K , so that ϕ has at least
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MN (K ) critical points. The critical points of ϕ are precisely the zeros of the magnetic
field B. The pages of an open book thus have a physical interpretation as the level sets of
a magnetostatic potential function. Note, however, that both B and ϕ depend heavily on
the geometry of K . Different, but isotopic, embeddings can lead to very different fields
and potentials. In particular, it is not known if it is possible to arrange K in R

3 such that
the resulting ϕ has exactlyMN (K ) points.
Other interpretations of fibrations appear in the context of liquid crystals, where the

knot is a defect line and the fiber surfaces correspond to layers of material along which
molecules arrange themselves [22]. In this context, critical points of amap ϕ : R3\K → S1

correspond to point defects of the liquid crystal configuration.
In singularity theory the fibrations play an important role viaMilnor fibrations, given by

the argument of a polynomialmapwith isolated singularity. The visualization of fibrations
presented in this section can therefore be interpreted as visualizations ofMilnor fibrations
on the 3-sphere S3ε\Vf , where the link of the singularity is presented as a braid.

Appendix 1.1 Visualizations from explicit functions

Suppose that B is a P-fibered geometric braid realized via the roots of gt , a loop in X̂n. If
we know the maps gt and thus g(u, eit) := gt (u), we can simply plot the level sets of arg(g)
to obtain a nice visualization.
Often we do not know gt . For example, we know that T-homogeneous braids are P-

fibered and therefore have a P-fibered geometric braid in its isotopy class, but do not have
an explicit parametrization of this representative and therefore do not have an explicit
description of gt .
However, with methods as in [15,19] we may find a parametrization of a representative

of any given braid B in terms of trigonometric polynomials. This leads to a visualization
of the corresponding pseudo-fibration. Furthermore, we may use this approach to prove
that for some given links L its Morse–Novikov number can be realized by the argument
of a polynomial map.
We illustrate this with the example of the knot 52, which is the closure of the braid

B = σ1σ 3
2 σ1σ

−1
2 and was discussed in more detail in [19].

As in [15,19] we find a parametrization of the braid B in terms of trigonometric poly-
nomials via

⋃
t∈[0,2π ]

3⋃
j=1

(zj(t), t) ⊂ C × [0, 2π ] (11)

with

zj(t) = − cos
(
2(t + 2π j)

3

)
− 3

4
cos

(
5(t + 2π j)

3

)

+ i
(
sin

(
4(t + 2π j)

3

)
+ 1

2
sin

(
t + 2π j

3

))
.

Then the corresponding loop of polynomials is as usual gt (u) := ∏3
j=1(u − zj(t)). Since

the knot 52 is not fibered, the resulting argument map arg(g), g(u, eit ) := gt (u), must have
critical points. We haveMN (52) = 2.
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Fig. 6 Level sets (arg(g))−1(eiχ ) of arg(g). From Subfigs. (a)–(o) the value χ varies from 0 to 28
15π
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Fig. 7 The graphs of arg(vj (t)), j = 1, 2, where vj (t), j = 1, 2, are the critical values of gt

Since we know the function gt , we can plot level sets of arg(g), see Fig. 6, and study
how the topology changes. All of the subfigures display level sets in C × [0, 2π ], whose
common boundary is the braid B. Identifying the bottom and the top plane, results in a
solid torusC×S1. Its complementary solid torus in S3 can be filled with meridional disks,
so that a visualization of a (pseudo-)fibration in C × [0, 2π ] can be used to visualize the
(pseudo-)fibration in S3.
Some topology changes between surfaces are easier to spot than others. We see, for

example, that between the seventh (g) and the eighth (h) subfigure the genus of the surface
decreases by one. It then increases between the ninth (i) and tenth (j) subfigure. We can
spot another change of topology between the twelfth (l) and thirteenth (m) subfigure.
This superficial visual analysis makes it easy to miss critical points that occur in rapid

succession, that is, pairs of critical points p1, p2 ∈ C × [0, 2π ] for which arg(g(p1)) and
arg(g(p2)) are very close. Going by Fig. 6 we might conclude that arg(g) has four critical
points, since the number of critical points must be even. However, this is not correct.
Figure 7 shows the graphs of arg(vj(t)), j = 1, 2,, where vj(t), j = 1, 2, are the critical

values of gt . Since critical points of arg(g) correspond to points with ∂ arg(vj(t))
∂t = 0, we see

immediately from this plot that arg(g) has exactly 6 critical points. Comparing this with
MN (52), we see that it has more critical points than necessary.
As discussed earlier, the critical points of arg(g)must lie on the saddle point braid, which

is plotted in Fig. 8a. In Fig. 8b we have colored the saddle point braid by arg(g). In this way
the critical points are seen as those points where there is a change in the direction with
which the color wheel is traversed. Figure 8b also shows a level set of arg(g). Note that
its intersection points with the saddle point braid are its points with horizontal tangent
planes.
Knowing the location of the critical points allows us to show the topology changes in the

level sets as a critical value is passed. Figure 9 shows such a change that is representative
for all changes. Two sheets move toward each other as we approach the critical level
set (Fig. 9a). When we reach the level set of the critical value, the two parts meet in a
double-cone, whose tip is a critical point of arg(g) (Fig. 9b). Increasing the value of arg(g)
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Fig. 8 a The saddle point braid and the critical points of arg(g). b The saddle point braid colored by arg(g)
and a level set of arg(g)

Fig. 9 A local change of topology of a level set of arg(g). Say χ ∈ S1 is the critical value of arg(g). a Part of
arg(g)−1(χ − ε) with ε > 0 and small. b Part of the level set arg(g)−1(χ ). c Part of the level set of
arg(g)−1(χ + ε) with ε > 0 and small

further results in a level set with a compressing disk (Fig. 9c). The genus has increased
by 1. Of course, going through this sequence of pictures in the opposite order, starting
with a compressing disk that shrinks to a double cone and splits into two separate sheets,
decreases the genus.
We know that the Morse–Novikov number of 52 is 2, but arg(g) has 6 critical points.

This immediately leads to the question: Could we have chosen a different parametrization
of a braid that closes to 52 such that the resulting argument map of the polynomial only
has two critical points? The answer to this question is “Yes”. We will explain why and
illustrate with this example a useful technique to prove that a given non-fibered link has
Morse–Novikov number equal to 2.
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(a) (b)

)d()c(

Fig. 10 The braid of critical values vj (t), j = 1, 2, in blue and green, together with the strand {0} × [0, 2π ] in

red. Black points indicate the points where ∂ arg(vj (t))
∂t vanishes, corresponding to critical points of arg(g). a The

view from the side. b The view from the top. c A knot diagram obtained from the side view. d A knot diagram
obtained from the top view

Figure 10 shows the braid that is formed by the critical values of gt and the strand
{0} × [0, 2π ] both from the side and from the top. Note that the endpoints of the blue
strand at the top and bottom match the endpoints of the green strand although the
perspective in Fig. 10 makes that difficult to see. The figures also show the six points,
where ∂ arg(vj(t))

∂t vanishes, corresponding to critical points of arg(g).
We may deform the braid of critical values in (C\{0}) × [0, 2π ] to the braid shown in

Fig. 11, which only has two points where the critical values change their orientation. There
are two pairs of such points in Fig. 10 that are very close together. In order to go from
the braid in Fig. 10 to the one in Fig. 11 we simply have to move the blue and the green
strand near these pairs of points. For the lower pair we pull the blue and the green strand
from right to left behind the red strand {0} × [0, 2π ] until the critical point on the blue
strand cancels with the next critical point on the blue strand. Likewise, for the upper pair
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(b)(a)

Fig. 11 The deformed braid of critical values. a The view from the side. b The view from the top

of points we move the blue and the green strand from right to left in front of the red
strand. In this case, two critical points on the green strand cancel.
This deformation is a homotopyof the loopπ (θn(gt )) inVn, which extends to ahomotopy

of θn(gt ) in V̂n. This homotopy lifts to a homotopy of gt in X̂n, so that there is a loop of
monic polynomials ht whose critical values form the braid in Fig. 11a, while its roots form
the braid B that closes to 52. In particular, by construction arg(h), h(u, eit) := ht (u), has
exactly 2 critical points. Since 52 is not fibered, its Morse–Novikov number must be at
least 2.We have found a circle-valuedMorsemapwith the required properties and exactly
2 critical points, which shows thatMN (52) = 2. Of course, we already knew this before,
but the method can be applied to any given non-fibered knot or link for which we can
deform the braid of critical values in such a way that the number of argument-critical
points reduces to 2.
The algorithm in [15] produces for any given link a loop of polynomials gt . We may

then study the corresponding loop of critical values π (θn(gt )) and try to deform it in a
way that reduces the number of critical points. In general, this produces an upper bound
on the Morse–Novikov number. However, if we achieve a deformation whose lift has an
endpoint ht such that arg(h) does not have any critical points, then obviously the Morse–
Novikov number is equal to zero. Likewise, if we already know that the link L in question
is not fibered (like 52 above), then MN (L) ≥ 2. Thus if we achieve a deformation of
the critical values such that the corresponding loop of polynomials ht results in exactly 2
critical points of arg(h), then the Morse–Novikov number must be equal to 2. If such a
deformation does not exist or cannot be found, thenwe have acquired no new information
and are left with the original inequalities 2 ≤ MN (L) ≤ m, where m is the number of
critical points of the circle-valued Morse map arg(g).

Appendix 1.2 Visualizations from Rampichini diagrams and films

As pointed out, the method from the previous subsection requires the knowledge of an
explicit function gt . The problem with this approach is that if we want gt to have certain
properties like inducing a fibration arg(g), usually (even for T-homogeneous braids) we
do not know the loop gt . We proved its existence in Proposition 2.2, but a key step in
this proof was to deform a loop in V̂n, which lifts to a homotopy of loops in X̂n whose
endpoint is gt . This lifting procedure requires solving a 1-parameter family of a set of
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Fig. 12 A Rampichini diagram

polynomial equations, which is challenging even with the help of computers if the degree
of the polynomials gt is n > 3.
However, for any braid B and any embedded treeT we know the loop of critical values

in Vn and the basepoint g0 of a loop gt such that arg(g) has exactly βT (B) critical points.
This is sufficient to draw the Rampichini diagram of gt as in [11]. This diagram encodes
all the information we need in order to visualize the fibration.
A Rampichini diagram consists of a square that contains a number of curves that are

labeled by transpositions. The square should be interpreted as a torus with both the hor-
izontal and vertical edges corresponding to coordinate axis, going from 0 to 2π . The
vertical direction corresponds to t, the variable that parametrizes the loop gt . The hori-
zontal direction corresponds to ϕ = arg(g).
The curves in the square keep track of the motion of the critical values vj(t), j =

1, 2, . . . , n− 1, of gt . More precisely, a point with coordinates (ϕ∗, t∗) lies on a curve if and
only if there is a j ∈ {1, 2, . . . , n − 1} such that arg(vj(t∗)) = ϕ∗.
Since the roots of gt are assumed to form a P-fibered geometric braid, no curves in

the square have horizontal or vertical tangencies. In particular, each curve is strictly
monotone increasing (if the corresponding ∂ arg(vj(t))

∂t is positive) or strictly monotone
decreasing (if the corresponding ∂ arg(vj(t))

∂t is negative). We may extend the definition
of a Rampichini diagram to loops of polynomials gt whose roots do not form P-fibered
geometric braids, in which case there are points where the curves in the square have
vertical tangencies. Assuming a generic non-degeneracy condition, the number of such
vertical tangencies is exactly the number of critical points of arg(g), g(u, eit) = gt (u). The
term “Rampichini diagram” is reserved for loops gt that correspond to P-fibered braids. If
gt does not correspond to a P-fibered braid, the resulting diagram is simply called a square
diagram.
Above we denoted the critical values of gt by vj(t). The index j is assumed to be chosen

such that the curves vj(t) : [0, 2π ] → C are smooth. For all values of t ∈ [0, 2π ] for which
the curves do not intersect each other or the line ϕ = 2π , there is another (in general
different) order. We write v(t)j , j = 1, 2, . . . , n − 1, for this second ordering of critical
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values, which orders the critical values at a fixed value of t (outside the finite number of
forbidden values mentioned above) by their argument between 0 and 2π . In other words,
0 < arg(v(t)j) < arg(v(t)k ) < 2π if and only if j < k . Note that the index coming from this
second type of order is not constant along the smooth curves cj(t). It changes at crossings
in the square diagram and when a curve crosses the line ϕ = 2π . This is also explained
in [13]. Since every point on a curve in the square corresponds to a critical value v(t)j ,
it comes with a transposition τj defined from the singular foliation induced by arg(gt ).
These transpositions label the points on the curves in the square. The labels (and thus
also the cactus) only change at the line ϕ = 2π and at intersection points of the curves,
corresponding to a critical value v(t) crossing the line ϕ = 0 or two critical values having
the same argument, respectively. Therefore, it is sufficient to label the arcs of the curves
between such points. This means that for any fixed value of t the labels in the square
diagram at that fixed height t, read from left to right, are exactly the cactus of gt . An
example of a Rampichini diagram is displayed in Fig. 12.
For each t ∈ [0, 2π ] for which the critical values have distinct arguments themap arg(gt )

induces a singular foliation on C, similar to [26]. As mentioned in Section 2, the roots of
gt are elliptic singularities and the critical points are hyperbolic points. The Rampichini
diagram essentially stores for every value of t ∈ [0, 2π ] the information about the cactus
of gt , which is enough to draw the entire singular foliation of C. This combinatorial
structure only changes at finitely many values of t ∈ [0, 2π ], so that we have a topological
description or a visualization of the fibration map arg(g). All of this is described in more
detail in [11,30,34]. This approach to visualize fibrations is quite similar to a very recent
visualization of fibrations for homogeneous braids that has been offered by [27].
Figure 13 shows a sequence of singular foliations, while the four roots trace out the braid

σ3. Rampichini calls such a sequence a film [34].
We can see in these figures that the saddle points form a trivial braid on 3 strands.

Since the first picture is the same as the last, this sequence of figures represents a loop
of polynomials. (The fact that such a loop is realized by polynomials is a consequence of
Riemann’s existence theorem [11].)We can thus compose loops of this form for any Artin
generator and its inverse. In this way, Fig. 13 represents a visual proof of Theorem 1.2.
Figure 14 shows part of a Rampichini diagram that corresponds to the film in Fig. 13.

The dotted horizontal lines indicate the heights, that is, the values of t, for which Fig. 13
shows the induced singular foliation. The lowest dotted horizontal line corresponds to the
first subfigure in the sequence in Fig. 13 and the highest dotted line corresponds to the
last image in the sequence in Fig. 13. As in [13] we only include the transposition labels
along an edge of the square and turn the intersections of lines in the square into crossings
as in a (virtual) knot diagram with the convention that a line is the undercrossing arc if
the corresponding critical value has smaller absolute value at the intersection. With this
information and the rules from [11,13] we could reproduce the entire Rampichini diagram
with all of its labels.
The cactus of the polynomials corresponding to the first three pictures in Fig. 13 is

τ1 = (2 3), τ2 = (2 4), τ3 = (1 2). The fourth figure corresponds to a value of t for
which there is a crossing in Fig. 14. Therefore, we have arg(v1) = arg(v2) and there is no
well-defined cactus. The cactus for the fifth figure is τ1 = (2 4), τ2 = (3 4), τ3 = (1 2). The
sixth figure has again has no well-defined cactus, since two critical values have the same
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argument. The cactus of the seventh figure is τ1 = (2 4), τ2 = (1 2), τ3 = (3 4). The last
cactus is equal to the first one.
Starting from any Rampichini diagram we can draw a film as in Fig. 13 that completely

describes the fibration.
Rampichini diagrams offer another way to visualize fibrations. Instead of using trans-

positions to label the curves in the square, we may use band generators, so that (i j) is
replaced by ai,j if the corresponding line is strictly monotone increasing (or, equivalently,
∂ arg(vk (t))

∂t > 0 for the corresponding critical value vk (t)) and (i j) is replaced by a−1
i,j if the

line is strictly monotone decreasing (or, equivalently, ∂ arg(vk (t))
∂t < 0 for the corresponding

critical value vk (t)).
We obtain a word in BKL-generators for the fiber surfaces of the fibration as follows.We

fix a value arg(g) = ϕ∗, which corresponds to a vertical line in the Rampichini diagram.
Reading the BKL-labels of the curves in the Rampichini diagram at intersection points
with this vertical line, going from the bottom to the top, spells a BKL-word for the fiber
arg(g)−1(ϕ∗). By varying ϕ∗ we obtain a finite sequence of band words, representing the
(topologically equivalent) braided surfaces.
An important aspect of this visualization and the one obtained from a film is the insight

that the saddle point braid consists exactly of those points where a fiber surface intersects
the corresponding horizontal plane tangentially. Since gt is holomorphic in u and has
distinct roots at each fixed value of t, its critical points cj(t) are exactly the points where
∂ arg(gt )
∂Re(u) and ∂ arg(gt )

∂Im(u) both vanish. In otherwords, the gradient vector∇ arg(gt )(u∗) is vertical
(and potentially the zero-vector) if and only if u∗ = cj(t) for some j = 1, 2, . . . , n − 1.
Therefore, u∗ ∈ C is a critical point of gt if and only if the intersection of the level set
arg(g) = arg(gt (u∗)) and C × {t} at (u∗, t) is tangential.
All of the fiber surfaces are braided surfaces and therefore consist of n disks that are

connected by a number of half-twisted bands. Each half-twisted band has exactly one
saddle point.
This is a reason why the topological type of the saddle point braid on its own is not that

helpful for the visualization. It tells us where the saddle points are, but the crucial piece of
information, which of the disks are connected by the corresponding band, is missing. For
this we need the additional information of the tree or the cactus of the polynomial, which
is stored in the Rampichini diagram.

Appendix 1.3 Fibrations for homogeneous braids

The visualization technique from Section Appendix 1.2 offers a complete graphical
description of the fibration without the knowledge of an explicit expression for the fibra-
tionmap or the loop of polynomials gt . Furthermore, it illustrates that for T-homogeneous
braids the saddle point braid may be chosen to be the trivial braid. However, it requires
some extra work to go from a sequence of figures as in Fig. 13 to a sequence of figures
as in Fig. 6, which display how the different fiber surfaces sweep out the link comple-
ment. In this section, we will describe a new visualization technique for the fibrations of
homogeneous braids. As in Section Appendix 1.2 we do not need to know an expression
of the corresponding polynomials gt and the saddle point braid is easily seen to be the
trivial braid. Yet we arrive at a graphical description of the fibration in terms of a sequence
of fiber surfaces, which makes it perhaps more practical than the technique from Sec-
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Fig. 13 A film of how the singular foliation on the disk changes during a crossing of the form σ3
corresponding to the diagram in Fig. 14
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Fig. 14 Part of a Rampichini diagram corresponding to the film in Fig. 13

tion Appendix 1.2. To a certain extent this visualization technique should be adaptable to
T-homogeneous braids. At the current stage we content ourselves with the treatment of
homogeneous braids.
The rough idea of our technique is displayed in Fig. 15a, which shows a sequence of

isotopic surfaces whose common boundary is a link, presented as a closed homogeneous
braid. The starting point is a banded surface, whose boundary is the closure of a homoge-
neous braid on four strands. The fiber surface is thus realized by four disks connected by
a number of bands, one for each crossing of the braid. Note that the sign of the crossings
within any row does not change, so that the braid is indeed homogeneous. We now push
the top disk up until it is located as in the second image in Fig. 15a. The disk is nowpointing
outwards, that is, having started with a non-zero section of tangent vectors v of the disk,
normal to its boundary, pushing the disk as described and moving the tangent vectors
with it results exactly in −v. Note that now the opposite side of the surface is pointing
upwards. In Fig. 15 the two sides of the surface are colored blue and red, respectively.
Note such a coloring is possible precisely because all fiber surfaces are orientable.
In order to move from the second image to the third image, we have to push the red

disk on the outside down, while moving the blue disk in the layer below it upwards. This
is tricky. Later we will describe in more detail how this is done and what happens with the
bands between these two disks. For now, the reader will have to accept that there is such
a motion of surfaces fixing the boundary that moves the red disk on the outside one layer
downwards, while moving the blue disk on the inside one layer up, resulting in the third
image. This motion is repeated until we reach the fifth and last image in Fig. 15a, where
the red disk on the outside has arrived at the bottom layer.
Each subfigure of Fig. 15a only shows a finite region of S3. In particular, all surfaces are

still compact with identical boundary. In the subfigures after the first one, it might look
like there is an additional boundary component originating from the red disk, which in the
figure looks like a red annulus. This is in fact not a boundary component of the surface. It
is the intersection of the surface with the boundary of the displayed region. Outside of the
displayed region the “annulus” is capped off by a disk. These disks grow bigger and bigger
while we move the red sheet downwards until it reaches the bottom layer.
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Fig. 15 Fibrations for homogeneous braids. a A visualization of several fiber surfaces of a fibration for a
homogeneous braid on four strands. b An isotopy of a fiber surface that lowers the red outside disk and raises
the blue inner disk by one level, highlighting the motion of the contour lines. Going from left to right, we see
how a fiber surface is isotoped near a band. c The same isotopy, now with a colored shading that indicates
the two sides of the surface

We may now pull the red disk on the outside down, while keeping its boundary fixed.
It passes through the point at infinity (if we think of our images as placed in R

3) and
eventually sits on the inside with its blue side facing up. We have thus reached the first
image again. Note that this sequence of surfaces fills the entire link complement, they
can be made disjoint and they are isotopies with fixed boundary of the original Seifert
surface. Thus if we have a convincing picture for the motion that lowers a red outside
disk and raises a blue inside disk one layer, we have a visualization of the fibrations
for homogeneous braids. Note that this approach is philosophically similar to Stallings’
original proof in [40] that closures of homogeneous braids are fibered. It is built on the
fact that surfaces that are obtained from fiber surfaces via an operation called Murasugi
sum are themselves fiber surfaces of a fibration. The surfaces for a homogeneous braid
are obtained by repeated Murasugi sums of fiber surfaces for braids on two strands.
Stallings’ proof therefore reduces to the (known) case of braids on two strands. Similarly,
our visualization technique is reduced to the particular case of a braid on two strands and
the general case of a homogeneous braid is obtained by stacking the pictures as in Fig. 15a.
Figure 15b and c illustrates themotion of the surface that lowers the red outside disk and

raises the blue inside disk. It is very important to understand that the displayed surface is
not meant to be a fiber surface or part of a fiber surface. Instead, it is a convenient way to
visualize the motion of a part of the fiber surface near a band. Starting at the very left of
either figure we see a red sheet on top, pointing to the front (outside), and a blue sheet at
the bottom pointing into the diagram plane (inside). The two sheets are connected by a
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(a) (b) (c)

Fig. 16 Folds and cusps. a A folded, smooth surface with two contour lines meeting in a point. b A saddle
point of a surface with one contour line. c After an isotopy the surface displays two cusps and three contour
lines

half-twisted band as usual. The shading in Fig. 15c indicates the two sides of the surface,
blue and red. Figure 15b highlights the contours of the surface, that is, the fold lines where
there is change of which side of the surface is facing the reader and thus a change of color.
Note that all surfaces are smooth. The contours are an attribute of the chosen perspective
on the surface.
Going from left to right in Fig. 15b and c we see how the surface is deformed near a band

until at the very right we see a blue sheet at the top, pointing to the back (inside), and a
red sheet at the bottom pointing to the front (outside), again connected by a half-twisted
band. Therefore, the left end of the figures shows a part of the surface at the beginning of
the motion and the right end of the figure shows the desired endpoint of the motion. We
now describe the intermediate steps in more detail.
In order to do this, it is helpful to remember some basics on projections of surfaces.

Figure 16a shows a part of a surface that is folded in way that creates two contour lines,
one blue and one red. The two lines meet at a point as illustrated.
Againwewant to emphasize that all surfaces are smooth.The intersectionpoint between

the two contours is not a singular point of the surface. It depends on the chosenperspective
on the surface and might be understood as a feature of the corresponding projection map
from the surface to the diagram plane, rather than an artifact of the surface itself. This
shows how we can apply an isotopy to a flat piece of a surface, i.e., without cusps or fold
lines, to obtain a surface with two fold lines meeting in a point. Naturally, applying the
inverse isotopy brings us from Fig. 16a to a flat, smooth piece of surface.
Figure 16b displays the neighborhood of a saddle point of a surface with one red contour

line. We may place a finger on the saddle point and push the saddle point and the surface
downwards. If our finger is not orthogonal to the diagram plane, the resulting surface
displays two cusps as in Fig. 16c. The single red contour line has split into two red lines,
each connecting the boundary to a cusp, and a blue contour that is connecting the two
cusps. We may think of this as a first Reidemeister move applied to the fold line. Again,
the cusps are not singular points of the surface. We thus have an isotopy from Fig. 16b
and c and its inverse allows us to cancel two cusps as in Fig. 16c.
We now return to Fig. 15b and c to discuss the motion of the surface. As mentioned

before we start at the left end of the figure, where we have two sheets connected by a
half-twisted band. It is also displayed on the left of Fig. 17. The top red surface extends
out of the diagram plane toward the reader, while the bottom blue surface extends into
the diagram plane. There are three fold lines (or contours) and no cusps. Each contour
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Fig. 17 The initial surface near a crossing and its change after the first step of the isotopy

Fig. 18 The surface after the second, third and fourth step of the isotopy near a band

connects two points on the boundary braid. We have two contours at the top and the
bottom of the band and one almost vertical contour next to the crossing. Which side of
the crossing it is on depends on the sign of the crossing.
Moving our gaze to the right to the next band in Fig. 15c, we see the result of a small

isotopy to our original surface in a neighborhood of the same band. It is also shown on the
right of Fig. 17. Both at the bottom and the top of the band we may hook a finger around
the contour and pull both of them toward the crossing. At the same time the piece of the
surface next to the crossing and with the nearly vertical contour is pushed to the right,
away from the crossing. Pulling the horizontal contours toward the crossing means that
their endpoints on the boundary braid also move toward the crossing. Similarly, pushing
the vertical contour away from the crossing makes its two endpoints on the boundary
move away from the crossing. Eventually, the endpoints of the horizontal contours have
to meet the endpoints of the vertical contour.
Pushing these two intersection points of the contours into the inside of the surface cre-

ates two cusps, corresponding to the points where the red (horizontal) and blue (vertical)
contours meet, as illustrated with the next band in Fig. 15b and c, also shown on the left
of Fig. 18. If we keep pulling the upper horizontal contour down and the lower horizontal
contour up, they pass each other as in a second Reidemeister move, see the middle part
of Fig. 18 or the fourth band in Fig. 15b and c. We may now apply the isotopy going from
Fig. 16b and c, which corresponds to a first Reidemeister move and cancels the two cusps.
Note that all of these isotopies of the corresponding surfaces fix the boundary braid. The
analogy with Reidemeister moves refers to the motion of the contours, not the boundary
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Fig. 19 The surface after the fifth, sixth and seventh step of the isotopy near a band

braid. The resulting surface is shown on the right in Fig. 18, which is the fifth band in
Fig. 15b and c. The resulting contour starts a bit above the crossing, goes downwards in
front of the crossing, forms a small loop and passes behind the original band back to the
boundary braid.
In the next step we grow this loop until it fills the entire gap between the original band

and the next band to the right. In doing so, the endpoints of the contour move past the
crossing until they lie on the horizontal parts of the boundary braid between two bands,
see the left and middle part of Fig. 19.
We may move the contour further toward the band that is directly to the right of the

band that we started with until it is a small vertical contour directly to the left of the
crossing as seen in the penultimate band in Fig. 15b and c as well as on the right of Fig. 19.
Pushing the surface near the crossing toward the right, produces a blue vertical contour
directly to the right of the crossing as seen in the last band of Fig. 15b and c. We have
described most of this motion of the surface in terms of the motion of the contour lines
and the creation and cancellation of cusps. Figure 15c shows how that motion extends
to the surface. That is, throughout the motion the red outside disk is pushed downwards
and the blue inside disk is pushed upwards, giving us the desired isotopy.
Note that this isotopy moves a band of the original surface to the band directly to the

right of it. This is understood as a cyclic operation, that is, the last band is moved to the
first band. The fact that all bands are moving to the right is owed to the fact that in the
initial surface the blue contours in this example lie to the right of the crossings. If we had
pictured crossings with the opposite sign, then the corresponding isotopy would move all
bands to the left. This illustrates why this techniques requires that the braid in question
is homogeneous. In every row the crossings need to have the same sign, so that there is in
every row one direction in which all the bands are pushed.
Our visualization showsa smooth isotopy fromafiber surface to itself, fixing its boundary

pointwise throughout and filling the entire space. In order to convince ourselves that this
describes a fibration, we have to make sure that all different surfaces can be taken to have
pairwise disjoint interiors and that the required behavior on a tubular neighborhood of
the link is satisfied.
For a given fibered link and a finite set of isotopic fiber surfaces with pairwise distinct

interior, we can always fill the space between the finitely many surfaces with more fiber
surfaces, completing the fibration. This can be seen as follows. The union of two Seifert
surfaces of the same link with disjoint interiors is the surface of a handlebody. If the two
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Seifert surfaces are fiber surfaces, this defines a Heegaard splitting of S3. The complement
of the handlebody surface in S3 has two connected components, each of which is a solid
handlebody. For example, if two fiber surfaces have disjoint interiors and are homeomor-
phic to some abstract surface �, then the solid handlebody is given by (� × I)/ ∼, where
I is the interval and (x, t1) ∼ (x, t2) for all x ∈ ∂�, t1, t2 ∈ I . Since the finite set of fiber
surfaces is assumed to have pairwise disjoint interiors, there is a natural ordering of the
surfaces as follows. We may pick any of the surfaces as the first surface. Then we draw a
meridian around any component of the fibered link and number the surfaces in the order
in which the meridian intersects them. Then the second surface has the property that the
union of the first and the second surface bounds a solid handlebody that does not contain
any of the other finitely many fiber surfaces. The union of the kth and the (k+1)st surface
bounds a solid handlebody that does not contain any of the other finitely many fiber sur-
faces and likewise for the union of the last and the first surface. Note that here we rely on
the fact that we are indeed dealing with a fibered link and fiber surfaces, so that the union
of two surfaces bounds a solid handlebody on either side, i.e, both components of their
complement are solid handlebodies. Since the surfaces have pairwise distinct interiors,
their interiors all lie completely in one solid handlebody or in the other.
The space (�×I) has a natural foliation by surfaces of constant coordinate in the interval

I . Since the equivalence relation ∼ only affects the boundary, this defines a family of
surfaces with disjoint interiors that fill the solid handlebody. The surfaces have a common
boundary, which is the fibered link on the handlebody boundary. In particular, there is a
smooth family of isotopic Seifert surfaces that fills the solid handlebody whose boundary
is the union of the first and the second surface. Continuing in the same manner, we have
a natural family of surfaces that fills the handlebody bounded by the kth surface and the
(k + 1)st, while not intersecting the interiors of any of the other displayed surfaces. In this
way, we can fill the space between the first and the second surface, between the second
surface and the third and so on. Likewise, we can fill the space between the last and the
first surface.
In this sense, every finite set of isotopic fiber surfaces with pairwise distinct interiors is

a visualization of a fibration. However, if the number of displayed surfaces is too small,
it is not particularly useful, since it is difficult to visualize how exactly the space between
the two surfaces is filled. In our case, Fig. 15a along with Figs. 17 through 19 shows fiber
surfaces andwe have explained how to deform one into the next. This deformation pushes
the surface (at all points) in the direction of its blue side, that is, in the normal direction
that faces away from the blue side, while keeping its boundary fixed. In the abstract picture
of � × I this simply corresponds to increasing the coordinate in the interval I .
The fact that all the fiber surfaces displayed in our visualization can be taken to have

pairwise disjoint interiors can be seen as follows. A key observation is that throughout
the isotopy all points on the surface are always pushed in the direction of its blue side.
For convenience the sequence of subfigures in Fig. 15a looks like we only move (at most)
two disks at a time (red moving down and blue moving up), while the rest of the surface
remains stationary. For example, in order to go from the first subfigure to the second
we only really move the top disk. Of course, we may push the rest of the surface just
a small ε-amount in the direction of its blue side, while we move the top disk, keeping
the boundary fixed. We can thus perform the isotopy between the first and the second
subfigure in a way that makes the surfaces in the first subfigure and the second subfigure
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pairwise disjoint away from their common boundary. Similarly, between the second and
third subfigure of Fig. 15a when wemove the blue disk upwards, we should not move it all
the way to the initial disk in the first subfigure, but instead leave a small ε-amount that the
disk can traverse, while the rest of the surface completes the whole isotopy. In this way,
all of the surfaces displayed in Fig. 15a can be taken to have pairwise disjoint interiors. In
fact, by the same arguments the intermediate surfaces that break down the motion from
one subfigure in Fig. 15a to the next and that are indicated in Figs. 17 through 19 can also
be taken to have pairwise disjoint interiors. Therefore, all of the displayed surfaces have
pairwise disjoint interiors.
We know that all displayed surfaces are fiber surfaces [40], since they are (isotopic to)

repeatedMurasugi sums of the fiber surfaces of torus links on two strands. Thus it follows
from the argument above that the space between the displayed surfaces can be filled with
fiber surfaces that have pairwise distinct interiors. The fact that the isotopies between the
surfaces are obtained by always pushing in the direction of the blue side, while keeping the
boundary fixed also shows that the usual radial behavior that is required for pages of an
open book is satisfied in a tubular neighborhood of the link, so that our technique indeed
visualizes a fibration.
Figure 15b and c also gives a visual proof of Theorem 1.4 for homogeneous braids. We

can now interpret our results and the visualization using the terminology of braided open
books in S3 [11]. Here we think of S3 as an oriented submanifold of R4, determined by
the volume form ω, ω(X1, X2, X3) := ωstd(N,X1, X2, X3) for all vector fields X1, X2, X3 on
S3, where ωstd = dx1 ∧ dx2 ∧ dx3 ∧ dx4 is the standard volume form on R

4 with global
coordinates x1, x2, x3, x4 andN := ∑4

i=1 xi∂xi is the normal vector of S3. Every open book
in S3 is described by a fibered linkL in S3 and a fibrationmap� : S3\L → S1. The fibration
allows us to define a natural orientation on each fiber Fϕ := �−1(ϕ). Pick a point x ∈ Fϕ .
Then we have local coordinates X, Y on a neighborhood of x in Fϕ , so that (∂ϕ , ∂X , ∂Y ) is
a right-handed basis of tangent vectors on a neighborhood of x in S3 with respect to the
standard volume form on S3. Equivalently to ∂ϕ we can use −∇�. Since S3 and all Fϕs
are orientable manifolds, this determines an orientation on each Fϕ . These orientations
are consistent with each other in the sense that they induce the same orientation on the
common boundary L = ∂Fϕ . We may thus think of a fibered link as an oriented link with
its orientation induced by the fibers. If we want to change the orientation of a fibered
link on all of its components, we have to compose the fibration map � with complex
conjugation, mapping ϕ to −ϕ, which reverses the orientations on all fibers.
The unknotO is a fibered knot in S3, where the fibers of the corresponding fibrationmap

are disks, commonly referred to as fiber disks. Since the monodromymap of the fibration,
which determines how the disk F2π is glued to F0, is the identity map, the complement
of the unknot in S3 is diffeomorphic to the interior of a disk times S1. The interior of
a disk is naturally diffeomorphic to the complex plane. We may thus represent S3\O as
C × [0, 2π ] with the complex planes thought of as horizontal planes and the interval as
a vertical direction with top and bottom identified. This is of course exactly the ambient
space that geometric braids live in. Using t as the variable in [0, 2π ], the tangent vector ∂t
points vertically upwards, so that the induced orientation of the unknot is the common
counterclockwise orientation of the boundary of a disk.
In the introduction we specified that a geometric braid B should be positively transverse

to the horizontal planes C × {t}, that is, if we think of B as an oriented closed braid in
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C × S1, then its tangent vector should always have a positive coefficient in front of ∂t .
Note that if B is a P-fibered geometric braid, then the orientation on B that is induced by
the corresponding polynomial fibration map arg(gt ) is exactly of this form.
The concept of a braid and a braid axis can then be generalized as follows. Let (L1,�1)

be an open book on S3 with fibers Fϕ1 := �−1
1 (ϕ1). As above there is a coordinate atlas

of S3 such that each local coordinate chart has coordinates of the form (ϕ1, X, Y ), where
X and Y are coordinates on a fiber surface Fϕ1 and ϕ1 determines which fiber we are on.
Let L2 ⊂ S3\L1 be an oriented link in S3. Then we say that L2 is positively transverse to
the fibers Fϕ1 if its tangent vectors (that are consistent with its orientation) always have a
positive coefficient in front of ∂ϕ1 . Suppose now that L2 is also a fibered link in S3. So it is
the binding of an open book (L2,�2) with its orientation induced by the orientation of the
fibers of �2. Then we say that L1 and L2 are mutually braided if L1 (with its orientation
coming from the fibers of�1) is positively transverse to the fibers of�2 and L2 is positively
transverse to the fibers of�1. It was shown that this mutual braiding is another equivalent
definition of what it means for an open book in S3 to be braided, that is, a fibered link L is
the closure of a P-fibered braid if and only if there is an unknotO ⊂ S3\L such that L and
O are mutually braided [11].
Since homogeneous braids are P-fibered, this brings us back to our discussion of saddle

point braids. The saddle point braid of a braided open book may then be defined without
referring to a loop of polynomials gt . It is given by the points of tangential intersections
between the fiber surfaces of B and the fiber disks of O. In Fig. 15a the fiber disks are
vertical, so that the saddle points are the points where the tangent plane of the fiber
surface is spanned by the vertical direction and the normal to the diagram plane. We can
see from Fig. 15c that throughout the isotopy the saddle points are moving horizontally
to the right. Again, if the sign of the crossing had been different, the saddle points would
move to the left. It follows that the saddle points form a split unlink on n−1 components,
where n is the number of strands of the homogeneous braid B. Furthermore, we may
choose an orientation for this unlink so that it becomes the trivial braid on n − 1 strands
relative to the same braid axis O.
A comment on this issue of orientation is in order. Since all the surfaces are oriented,

the components of the derived bibraid, i.e. the unoriented link that is formed by the saddle
points, split into two families, pos and neg , see [36]. Each saddle point p is a tangential
intersection point between a fiber surface and a fiber disk of O. Its component is in pos if
the orientations of the fiber surface and the fiber disk match at p. It lies in neg if the two
orientations do not match. Note that for homogeneous braids, this corresponds precisely
to the sign of the corresponding band. Saddle points in rows with positive crossings lie
on components in pos and saddle points in rows with negative crossings lie in neg . Note
that what we call “pos” here is denoted “pos0” by Rudolph [36]. It is a proper subset of
Rudolph’s “pos”.
There are two natural orientations for the derived bibraid. In earlier sections, when

we discussed the saddle point braid in terms of loops of polynomials gt , we naturally
parametrized the components of the link consisting of saddle points by the variable t,
which parametrizes the loop gt . Note that different values of t ∈ S1 correspond to different
fiber disks whose boundary is the braid axis O. In other words, we automatically picked
an orientation for the derived bibraid that turned it into a braid relative to O, so that it is
positively transverse to the fiber disks with boundary O.
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In this subsection, we studied the motion of the saddle points as we vary the fiber
surfaces (as opposed to varying the fiber disks).We can interpret this as parametrizing the
derived bibraid by the variable ϕ ∈ S1 that parametrizes the family of fiber surfaces. With
the induced orientation the derived bibraid is positively transverse to the fiber surfaces,
but in general it is not positively transverse to the fiber disks with boundaryO. Therefore,
with this induced orientation the derived bibraid is not a braid relative to O. Flipping the
orientation of the components in neg rectifies this and turns the derived bibraid into a
braid with braid axis O, the saddle point braid.
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