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Abstract

In Cisneros-Molina et al. (São Paulo J Math Sci, 2023. https://doi.org/10.1007/
s40863-023-00370-y) it was proved the existence of fibrations à la Milnor (in the tube
and in the sphere) for real analytic maps f : (Rn, 0) → (Rk , 0), where n ≥ k ≥ 2, with
non-isolated critical values. In the present article we extend the existence of the
fibrations given in Cisneros-Molina et al. (São Paulo J Math Sci, 2023. https://doi.org/10.
1007/s40863-023-00370-y) to differentiable maps of class C�, � ≥ 2, with possibly
non-isolated critical value. This is done using a version of Ehresmann fibration theorem
for differentiable maps of class C� between smooth manifolds, which is a generalization
of the proof given by Wolf (Michigan Math J 11:65–70, 1964) of Ehresmann fibration
theorem. We also present a detailed example of a non-analytic map which has the
aforementioned fibrations.
Keywords: Milnor fibration, d-regularity, Differentiable singularities

Mathematics Subject Classification: Primary 14D06, 14B05, 14J17, 32S55, 58K05,
58K15

1 Introduction
One of themost important tools to study singularities of analytic maps and spaces is given
by the fibration theorems à la Milnor [10,12,13,15,16].
In the case of a real analytic map f : (Rn, 0) → (Rk , 0) with n ≥ k ≥ 2 and with an

isolated critical value, it was proved in [18, Theorem 1.3] that if f has Thom’s af property,
one has fibration on the tube:

f : Bn
ε ∩ f −1(Sk−1

δ ) −→ S
k−1
δ , (1)

where Bn
ε is the closed ball in R

n of radius ε around the origin. This is known as Milnor-
Lê fibration. Moreover, using Milnor’s vector field [16, Lemma 11.3] one also has an
equivalent fibration on the sphere:

φ : Sn−1
ε \ f −1(0) → S

k−1 , (2)

where Sk−1 is the sphere of radius 1 around 0 ∈ R
k . However, there is no control on the

projection map φ.
The question of whether we can take the projection φ of (2) to be the natural one,

φ = f /‖f ‖ was answered in [7] for analytic functions with an isolated critical value,
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by introducing the concept of d-regularity (see also [3,4,8]). The d-regularity condition
actually springs from [6] and is defined by means of a canonical pencil as follows: For
every line 0 ∈ � ⊂ R

k consider the set

X� = {x ∈ R
n | f (x) ∈ �} .

This is a pencil of real analytic varieties intersecting at f −1(0) and smooth away from it.
The map f is said to be d-regular at 0 if there exists ε0 > 0 such that every X� \ V is
transverse to every sphere centred at 0 and contained in Bε0 , whenever the intersection is
not empty.
The case of a real analytic map f : (Rn, 0) → (Rk , 0) with n ≥ k ≥ 2 and with non-

isolated critical value was studied in [5,9,19]. If f has the transversality property [5, Def-
inition 2.1] (compare with the definition of ρ-regularity in [9,19]), then for each ε > 0
sufficiently small there is a smooth locally trivial fibration on the tube:

f : Bε ∩ f −1(Sk−1
δ \ �ε) → S

k−1
δ \ �ε (3)

where �ε is the image by f of the critical points of f in the interior of Bn
ε . It was proved in

[5, Theorem 3.12] that if f admits a linearization h : (Rk , 0) → (Rk , 0) (as in [5, Definition
3.11]) such that h−1 ◦ f is d-regular. Then the map

φf,h : Sn−1
ε \ f −1(�ε) → S

k−1 \ Ah (4)

defined by

φf,h(x) = h−1 ◦ f (x)
‖h−1 ◦ f (x)‖ ,

is the projection of a smooth locally trivial fibration, and this is equivalent to fibration (3)
above.
In this paper we envisage the case of (possibly non-analytic) functions f : (Rn, 0) →

(Rk , 0) of classC�, � ≥ 2, with possibly non-isolated critical value.We extend the fibration
theorems of [5] for thesemaps: if f has the transversality property, then there is a fibration
on tube (3); if in addition f has linear discriminant and is d-regular, then there is a
fibration on sphere (6). This is done using a version of Ehresmann Fibration Theorem
for differentiable maps of class C� between smooth manifolds given in Sect. 6. It is an
open question whether these two fibrations are equivalent, as in the analytic case. If f
has arbitrary discriminant with the transversality property and admits a linearization
h : (Rk , 0) → (Rk , 0) such that h−1 ◦ f is d-regular, then there is fibration (4) on the
sphere.
Notice that the discriminant �ε can have real codimension 1 and in that case its com-

plement splits into finitely many connected components, say S1, . . . , Sr . As it was pointed
out in [5], the topology of the fibres f −1(t) ∩ Bε can change for values in different Si. It
would be very interesting to determine how the topology changes as we move from one
sector to another. This can clearly be seen in the example given in Sect. 5.

Remark 1.1 As in [5], throughout this paper, we will assume that f is locally surjective,
that is, the image by f of every neighbourhood of the origin in R

n contains an open
neighbourhood of the origin inR

k , and we shall not mention it all the time. Nevertheless,
it is easy to see that in the general case the same results hold if one intersects the bases of
the locally trivial fibrations with their image. This choice is to avoid a heavy notation.
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2 Fibration on the tube
Let f : (Rn, 0) → (Rk , 0), n > k ≥ 2, be a map of class C� with � ≥ 2 and a critical point
at 0.
Assume that f is locally surjective (see Remark 1.1). In what follows, for 0 < ε we shall

consider the restriction fε of f to the closed ball Bn
ε of radius ε around 0 in R

n.
Denote by�ε the intersection of the critical set of f with the ballBε and set�ε := fε(�ε),

which we call the discriminant of fε . It may depend on the choice of the radius ε, as shown
in [9].
Also denote by �ε(Sn−1

ε ) the set of critical points in S
n−1
ε of the restriction fε |Sn−1

ε
. Set

�̂ε := �ε ∪�ε(Sn−1
ε ) and denote by �̂ε := f (�̂ε) whichwe call the extended discriminant1

of f .
Following [17, §IV.4.4] and [2, Corollary 2.2], one can prove that the restriction of f to

the tube

f : Bε ∩ f −1(Sk−1
δ \ �̂ε) → S

k−1
δ \ �̂ε , (5)

is a locally trivial fibration, where S
k−1
δ = ∂Bk

δ . Hence, in this general setting there is
always a fibration on the tube.

Definition 2.1 We say that f has the transversality property in the ball Bn
ε if there exist

0 < δ 
 ε such that for every y ∈ B
k
δ \ �ε the fibre f −1(y) is transverse to the sphere

S
n−1
ε .

So, if f satisfies the transversality property, there is no contribution to the extended
discriminant �̂ε by points on the sphere S

n−1
ε ; the extended discriminant is just the

discriminant �ε of f in B
n
ε . Then we get:

Theorem 2.2 Let f : (Rn, 0) → (Rk , 0), n > k ≥ 2 be a map of class C�, � ≥ 2 with a
critical point at 0 and dim(f −1(0)) > 0. The map f has the transversality property in the
ball Bn

ε if and only if it admits local Milnor-Lê fibrations in tubes over the complement of
the discriminant �ε .

3 Differentiable maps with linear discriminant
In this section, we extend the concept of d-regularity to real differentiable maps with
linear discriminant. Then we show that in this context, d-regularity guarantees a fibration
on the sphere.
First, let us recall some definitions.
We say that a map f : (Rn, 0) → (Rk , 0) of class C�, � ≥ 2 has linear discriminant in the

ball Bn
ε if �ε is a union of line segments with one endpoint at 0 ∈ R

k and there exists
η > 0, called a linearity radius for �ε , such that each of these line segments intersects
S
k−1
η , that is, if

�ε ∩ B
k
η = Cone

(
�ε ∩ S

k−1
η

)
.

In this case, we set

Aη := �ε ∩ S
k−1
η .

1In [17, §IV.4.4] �̂ε is called the apparent contour at the source and �ε is called the apparent contour at the target or
just apparent contour.
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Also, let π : Sk−1
η → S

k−1 be the radial projection onto the unit sphere Sk−1 and set

A = π (Aη) .

For each point θ ∈ S
k−1
η , let Lθ ⊂ R

k be the open ray in R
k from the origin that contains

the point θ . Set:

Eθ := f −1(Lθ ) .

We say that f is d-regular in the ball Bn
ε if Eθ intersects the sphere Sn−1

ε′ transversely in
R
n, for every ε′ with 0 < ε′ ≤ ε and for every θ ∈ S

k−1
η \ Aη.

The following proposition is a straightforward generalization of [7, Proposition 3.2].

Proposition 3.1 Let f : (Rn, 0) → (Rk , 0) be a map of class C� with � ≥ 1, with linear
discriminant. Then f is d-regular in the ball Bn

ε if and only if the C�-map

φε′ = f
‖f ‖ : Sn−1

ε′ \ f −1(�ε) −→ S
k−1 \ A

is a submersion for every sphere Sn−1
ε′ with 0 < ε′ < ε.

Now we can state the main result of this paper:

Theorem 3.2 Let f : (Rn, 0) → (Rk , 0) with n ≥ k ≥ 2 be a map of class C� with � ≥ 2.
Suppose f has linear discriminant and the transversality property in the ball Bn

ε . If f is
d-regular in the ball Bn

ε , then the map

φε = f
‖f ‖ : Sn−1

ε \ f −1(�ε) → S
k−1 \ A (6)

is a locally trivial fibration of class C�−1.

In order to prove Theorem 3.2 we first need the following:

Lemma 3.3 Let f : X → Y and g : Y → Z be C�−1-locally trivial fibrations with 2 ≤ l ≤
∞, between smoothmanifolds possibly with boundary. Then g ◦f : X → Z is aC�−1-locally
trivial fibration.

We will prove Lemma 3.3 in Sect. 6. Now we will prove Theorem 3.2.

Proof of Theorem 3.2 Set

M := S
n−1
ε \ f −1(�ε) .

Notice that M is an open submanifold of Sn−1
ε since �ε is closed in R

k . Consider the
following decomposition

M =
(
M ∩ f −1(Bk

δ )
)

∪
(
M \ f −1(B̊k

δ )
)
,

where B̊k
δ is the interior of the closed ballB

k
δ . Both pieces are submanifolds with boundary

ofM of dimension n− 1, and their intersection is the common boundary submanifold of
dimension n − 2

S
n−1
ε ∩ f −1(Sk−1

δ \ �ε) =
(
M ∩ f −1(Bk

δ )
)

∩
(
M \ f −1(B̊k

δ )
)
.

We are going to show that the restriction of φ to each of these components is aC�−1-fibre
bundle and that these two fibre bundles coincide on the common boundary submanifold
S
n−1
ε ∩ f −1(Sk−1

δ \ �ε), so they can be glued into a global fibre bundle.
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The restriction of f given by f1 : M∩ f −1(Bk
δ ) → B

k
δ \�ε is proper since Sn−1

ε ∩ f −1(Bk
δ )

is compact, and since f has the transversality property in the ballBn
ε it is a submersion, and

by Ehresmann fibration theorem (Theorem 6.3) it is a C�−1-fibre bundle. Now consider
the radial projection π̃ : Bk

δ \�f,η → S
k−1 \Awhich is a (trivial and smooth) fibre bundle.

The restriction

φ1 :
(
M ∩ f −1(Bk

δ )
)

→ S
k−1 \ A

of φ is given by the composition π̃ ◦ f1. By Lemma 3.3 the composition φ1 = π̃ ◦ f1 is a
C�−1-locally trivial fibration.
So now we just have to show that the restriction:

φ2 : M \ f −1(B̊k
δ ) → S

k−1 \ A

is a C�−1-fibration. We have that φ2 is proper since Sn−1
ε \ f −1(B̊k

δ ) is compact.
Since f is d-regular, by Proposition 3.1 the map φ : Sn−1

ε \ f −1(�ε) → S
k−1 \ A has no

critical points. So φ2 is a submersion restricted to the interiorM\ f −1(Bk
δ ) ofM\ f −1(B̊k

δ ).
Sinceφ1 andφ2 coincide on the boundaryM∩f −1(Sk−1

δ ), we already saw thatφ1 restricted
to this boundary is a submersion.The result follows fromtheEhresmannfibration theorem
for manifolds with boundary (Theorem 6.3). ��

Remark 3.4 In the articles [3,4] we proved that when f : (Rn, 0) → (Rk , 0) is analytic
with a critical point at 0 ∈ R

n and 0 ∈ R
k is an isolated critical value, fibrations (3) and

(6) are equivalent. The proof uses [3, Proposition 3.5] (which is the analytic version of a
corollary byMilnor [16, Corollary 3.4]) which says that there exists a neighbourhood of the
origin of Rn such that the gradients of two non-negative analytic functions cannot point
in opposite directions. This result is proved using the Analytic Curve Selection Lemma;
thus, the proof does not extend to the case when f is non-analytic.

Question 3.5 Are fibrations (3) and (6) equivalent, as in the analytic case? We do not
know the answer.

4 Differentiable maps with arbitrary discriminant
As in the analytic case, we want to extend the concept of d-regularity, allowing somemaps
to become d-regular after a homeomorphism on the target space.We start recalling some
definitions from [5].
Given η > 0 and θ ∈ S

k−1
η , recall the set Lθ ⊂ R

k , which is the open segment of line
that starts in the origin and ends at the point θ .
We say that a restriction hη : Bk

η → h(Bk
η) of a homeomorphism h : (Rk , 0) −→ (Rk , 0)

is a conic homeomorphism if:

(i) For each θ ∈ S
k−1
η the image hη(Lθ ) is a path in R

k of class C� with � ≥ 1;
(ii) The inverse map h−1 of h is of class C� with � ≥ 1 outside the origin;
(iii) The map h−1 is a submersion outside the origin.

To simplify the notation, set Bk
η := h(Bk

η).
We say that a conic homeomorphism h : Bk

η → Bk
η is a linearization for fε if

h−1(�ε ∩ Bk
η ) = Cone(h−1(�ε ∩ ∂Bk

η )) .
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Given a linearization h for fε , we say that f is dh-regular in B
n
ε if the composition h−1 ◦ f

is d-regular. Set

Ah,η := h−1(�ε ∩ ∂Bk
η ) = h−1(�ε) ∩ S

k−1
η .

As before, let π : Sk−1
η → S

k−1 be the radial projection onto the unit sphere Sk−1 and
set Ah = π (Ah,η). Then the following theorem is a straightforward generalization of [5,
Theorem 3.12].

Theorem 4.1 Let f : (Rn, 0) → (Rk , 0) be a map of class C� with the transversality prop-
erty in B

n
ε , and suppose it admits a linearization h : Bk

η → Bk
η making f dh-regular in B

n
ε .

Then the map

φh,ε = h−1 ◦ f
‖h−1 ◦ f ‖ : Sn−1

ε \ f −1(�f ) → S
k−1 \ Ah

is a C�−1-locally trivial fibration.

5 An example of a non-analytic dh-regular map
Consider the real function ς : R → R+ given by:

ς (t) :=
⎧
⎨

⎩
e−1/t ift > 0;

0 ift ≤ 0.

It is a classic example of a function that is smooth and non-analytic.
Now define α : Rn → R by α(x) = 1 − ‖x − 1̄‖2 where 1̄ := (1, 0, . . . , 0).
So the function f : Rn → R+ given by f (x) := ς (α(x)), is smooth and non-analytic at

the origin.
Notice that:

• f (x) = 0 if and only if ‖x − 1̄‖ ≥ 1;
• f (x) = t for some t > 0 if and only if t ≤ e−1 and

‖x − 1̄‖2 = 1
ln t

+ 1.

So we have that:

(i) Im(f ) = [0, e−1];
(ii) V (f ) = R

n \ B̊n(1̄; 1), where B̊n(1̄; 1) is the open ball of radius 1 around the point 1̄;

(iii) f −1(t) = S
n−1

(
1̄;

√
1
ln t + 1

)
, where S

n−1
(
1̄;

√
1
ln t + 1

)
is the (n − 1)-sphere

around 1̄ of radius
√

1
ln t + 1, for any 0 < t < e−1;

(iv) f −1(e−1) = {1̄}.
The gradient of α is given by

∇α(x) = −2(x − 1̄).

The derivative of ς is given by

ς ′(t) =
⎧
⎨

⎩

1
t2 e

− 1
t t > 0

0 t ≤ 0.
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So by the chain rule, the gradient vector of f at a point x ∈ R
n is given by:

∇f (x) = ς ′(α(x)∇α(x) =
⎧
⎨

⎩
− 2

α(x)2 f (x)(x − 1̄), if ‖x − 1̄‖ < 1,

0̄, if ‖x − 1̄‖ ≥ 1,

where 0̄ := (0, 0, . . . , 0).
Hence the critical set and the discriminant of f are given by:

�f = V (f ) ∪ {1̄}, �f = {0, e−1} .
Now we consider a function g analogous to the function f . Define β : Rn → R by

β(x) = 4 − ‖x − 2̄‖2 where 2̄ := (2, 0, . . . , 0). Define g : Rn → R+ by g(x) := ς (β(x)).
In this case we have:

(1) Im(g) = [0, e− 1
4 ];

(2) V (g) = R
2 \ B̊n(2̄; 2);

(3) g−1(t) = S
n−1

(
2̄;

√
1
ln t + 4

)
, for any 0 < t < e− 1

4 ;

(4) g−1(e− 1
4 ) = {2̄}.

Doing a computation analogous to that for f , we get that the critical set and the discrimi-
nant of g are given by:

�g = V (g) ∪ {2̄}, �g = {0, e− 1
4 } .

Finally, set the map � : Rn → R
2 given by � := (f, g). It is a smooth map that is not

analytic at the origin.
We have that:

(a) Im(�) ⊂ [0, e−1] × [0, e− 1
4 ];

(b) V (�) = V (g) = R
n \ B̊n(2̄; 2), since V (g) ⊂ V (f );

(c) �−1(t1, t2) = S
n−1

(
1̄;

√
1

ln t1 + 1
)

∩ S
n−1

(
2̄;

√
1

ln t2 + 4
)
, for any t1 �= 0 and t2 �= 0.

Notice that if the two spheres f −1(t1) and g−1(t2) are transverse, the intersection is
either homeomorphic to a sphere Sn−2 or empty. If they are tangent, the intersection
is a point;

(d) �−1(0, t2) =
(
R
n \ B̊n(1̄; 1)

)
∩ S

n−1
(
2̄;

√
1

ln t2 + 4
)
, for any t2 �= 0. Notice that this

is homeomorphic to a ball Bn−1, except when t2 = e− 1
4 we get the point {2̄}.

(e) �−1(t1, 0) = S
n−1

(
1̄;

√
1

ln t1 + 1
)

∩
(
R
n \ B̊n(2̄; 2)

)
, for any t1 �= 0. Notice that this

is the empty set.

The Jacobian matrix of � at a point x = (x1, . . . , xn) is given by the following matrix
[− 2

α(x)2 f (x)(x1 − 1) − 2
α(x)2 f (x)x2 . . . − 2

α(x)2 f (x)xn
− 2

β(x)2 g(x)(x1 − 2) − 2
β(x)2 g(x)x2 . . . − 2

β(x)2 g(x)xn

]

.

So we have that the critical set and the discriminant are given by

�� = V (f ) ∪ {x2 = · · · = xn = 0}, �� = {(0, t2) | 0 ≤ t2 ≤ e−1/4} ∪ C ,

where C is the curve in R
2 given by:

C(s) :=
⎧
⎨

⎩

(
e−

1
s(2−s) , e−

1
s(4−s)

)
ifs > 0;

(0, 0) ifs ≤ 0.

In particular, � does not have linear discriminant (see Fig. 1).
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Fig. 1 The blue closed curve is the discriminant

Remark 5.1 The discriminant �� divides the plane in two connected components. Here
we can see the phenomenon described in Introduction: by (c), over points inside the
discriminant, the fibres are spheres Sn−2, while over points outside the discriminant, the
fibres are empty.

We claim that � has the transversality property, so there is no further contribution to
the discriminant by critical points of � restricted to the sphere Sn−1

ε . Let Bε be the closed
n-ball of small radius ε > 0 centred at the origin 0̄ ∈ R

n. Consider the (n − 1)-sphere
S
n−1(1̄; 1) of radius 1 centred at 1̄. Firstly, wewant to find the equation of the (n−2)-sphere

which is the intersection of the (n − 1)-spheres Sn−1
ε and S

n−1(1̄; 1) which, respectively,
have the equations

x21 + x22 + · · · + x2n = ε2 (7)

(x1 − 1)2 + x22 + · · · + x2n = 1. (8)

Getting x22 from (7) and substituting in (8) we get that x1 = ε2

2 , so the intersection is the
(n − 2)-sphere with equation

x22 + · · · + x2n = ε2 − ε4

4
. (9)

Now we want to compute the radius r of the (n − 1)-sphere Sn−1(2̄; r) with equation

(x1 − 2)2 + x22 + · · · + x2n = r22 (10)

which intersects the hyperplane x1 = ε2

2 on the (n − 2)-sphere given by (9). Substituting
x1 = ε2

2 and (9) in (10) we obtain that r2 = 4 − ε2. The image of the (n − 1)-sphere

S
n−1(2̄; r) under g is e−

1
4−r2 . Any (n− 1)-sphere Sn−1(2̄; r′) of radius r′ > r > 0 intersects

any (n − 1)-sphere S
n−1(1̄; r′′) with 0 < r′′ ≤ 1 in either, an (n − 2)-sphere contained

in the interior of the n-ball Bn
ε or the empty set. Taking δ ≤ e−

1
r(4−r) we get that the fibre
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�−1(t1, t2) with (t1, t2) ∈ B
k
δ \ �� is either contained in the interior of the n-ball Bn

ε , or it
is the empty set; hence, � has the transversality property.
Consider the homeomorphism h : (0, 1) × (0, 1) → (0, e−1) × (0, e− 1

3 ) given by

h(u, v) :=
(
e

1
u(u−2) , e

1
v(v−4)

)
,

with inverse

h−1(u, v) :=
(

1 −
√

1 + 1
ln u

, 2 −
√

4 + 1
ln v

)

.

For η < e−1 the restriction of h to B
2
η ∩ (

(0, 1) × (0, 1)
)
is a conic homeomorphism that

gives a linearization for � , since h takes the segment L π
2
to itself and the segment L π

4
onto the curve C (see the small rectangle in Fig. 1).
Set Eθ := (h−1 ◦ �)−1(Lθ ) for θ ∈ (0, π

2 ]. For any θ ∈ (π/4,π/2), one can check that
Eθ is a manifold homeomorphic to the cylinder Sn−2 × (0, 1) that intersects the sphere Sε′

transversally, for any ε′ ≤ ε, with ε small enough as above, and for θ ∈ [0,π/4) we have
that Eθ is empty. Moreover:

E π
4

= {x2 = · · · = xn = 0}
and E π

2
is a manifold homeomorphic to a disk Dn that intersects the sphere Sε′ transver-

sally, for any ε′ ≤ ε. Hence � is dh-regular. Alternatively, one can check this by using
Proposition 3.8 of [3] for the composition h−1 ◦ � .

6 An extension of Ehresmann fibration theorem
In this section we give an extension of Ehresmann fibration theorem proved by Wolf in
[20] to prove Lemma 3.3. Analogous results are given by Ekedahl [11] and McKay [14,
Corollary 7].
We followSection 2of [20] to give thenecessary definitions to enunciateWolf’s theorem.

In [20] the results are stated for smooth manifolds and smooth maps between them. Here
we also deal with smooth (C∞) manifolds, but the maps may be only of class C� for
2 ≤ l ≤ ∞.
Let E and B be smooth manifolds and ϕ : E → B a submersion of class C� with 2 ≤

l ≤ ∞. Since ϕ is a submersion, for any b ∈ B the fibre ϕ−1(b) is a submanifold of E of
dimension dim E − dimB.
Given x ∈ E, the vertical space Vx at x is the subspace of TxE defined by

Vx = { v ∈ TxE | Dxϕ(v) = 0 },
that is, the space tangent to the fibre ϕ−1(ϕ(x)). One has that dimVx = dim E − dimB.
The vertical distribution is V = {Vx}x∈E . An Ehresmann connection for ϕ is a distribution
H = {Hx}x∈E on E that is complementary to V , i.e., TxE = Vx ⊕ Hx for every x ∈ E. So
Dxϕ restricts to a linear isomorphism fromHx onto Tϕ(x)B. The spaceHx is the horizontal
space at x. Notice that using a Riemannian metric on E it is always possible to construct
an Ehresmann connection taking the orthogonal complement of the vertical distribution.
Fix an Ehresmann connection H of ϕ : E → B. A tangent vector v ∈ TxE is horizontal

(respectively, vertical) if v ∈ Hx (respectively, v ∈ Vx); a sectionally smooth curve in E is
horizontal (respectively, vertical) if each of its tangent vectors is horizontal (respectively,
vertical). We make the convention that all sectionally smooth curves are parametrised so
as to be regular (nowhere vanishing tangent vector) on each smooth arc.
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Let α(t), t ∈ [0, 1], be a sectionally smooth curve in ϕ(E) ⊂ B. Given x ∈ ϕ−1(α(0)),
there is at most one sectionally smooth horizontal curve αx(t), t ∈ [0, 1], in E such that:

(a) αx(0) = x, and
(b) ϕ ◦ αx = α.

If it exists, αx is called the horizontal lift of α to x. If αx exists for every x ∈ ϕ−1(α(0)), then
we say that α has horizontal lifts. In such case, the translation of the fibres along α is the
map

ρα : ϕ−1(α(0)) → ϕ−1(α(1)),

x �→ αx(1).

Following [20, Lemma 2.2] we get the following lemma.

Lemma 6.1 Let E andB be smoothmanifolds andϕ : E → B a submersion of class C� with
2 ≤ l ≤ ∞. If u ∈ ϕ(E), thenϕ−1(u) is a closedC�-submanifold of E. Ifρ : ϕ−1(u) → ϕ−1(v)
is a translation relative to an Ehresmann connection for ϕ, then ρ is of class C�−1.

Proof Since ϕ is a C�-submersion, by the Rank Theorem [1, 2.5.15 Rank Theorem] Fu :=
ϕ−1(u) is a closedC�-submanifold of E for any u ∈ ϕ(E). The tangent bundleTFu of Fu is a
C�−1-manifold [1, 3.3.10 Theorem]; hence, the tangent spaces TxFu depend differentiably
of classC�−1 on x ∈ Fu. Thus, given an Ehresmann connectionH the horizontal subspaces
Hx depend differentiably of class C�−1 on x.
Since E and B are smooth manifolds, we can take the curve α to be sectionally smooth.

Thus, its derivative α′, which is a curve on the tangent bundle TB, is also sectionally
smooth. Given x ∈ ϕ−1(α(0)), lifting the vector field α′ to a horizontal vector field α′

x on
E using the Ehresmann connectionH and the differential Dϕ, which is of class C�−1, we
loose one degree of differentiability, but since α′ is of class C∞, its lifting α′

x is also of class
C∞. View the Ehresmann connection as a system of ordinary differential equations. In
local coordinates the coefficients are of class C�−1 because Hx depends differentiably of
class C�−1 on x; thus, the solution curve at time t depends differentiably of class C�−1 on
the initial data. ��
Taking Lemma 6.1 into account, one can follow the proofs of [20, Proposition 2.3 and

Corollary 2.5] to obtain the following theorem, where ϕ : E → B instead of being a smooth
fibre bundle, is a differentiable locally trivial fibre bundle of class C�−1: the projection is a
map of class C�, but the local trivializations are C�−1-diffeomorphisms.

Theorem 6.2 ( [20, Corollary 2.5]) Let ϕ : E → B be a submersion of class C� with
2 ≤ l ≤ ∞, where E and B are paracompact and B connected.2 Then the following
statements are equivalent:

(i) ϕ : E → ϕ(E) is a C�−1-fibre bundle.
(ii) There exists an Ehresmann connection forϕ, relative towhich every sectionally smooth

curve in ϕ(E) has horizontal lifts.
(iii) If H is an Ehresmann connection for ϕ, then every sectionally smooth curve in ϕ(E)

has horizontal lifts relative toH.

2The hypothesis in [20] of E being connected is not used in the proof, and it works without it.
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As a corollary, we get the following version of Ehresmann fibration theorem, which
corresponds to [20, Corollary 2.4].

Theorem 6.3 (Ehresmann Fibration Theorem) Let ϕ : E → B be a proper submersion
of class C� with 2 ≤ l ≤ ∞, where E and B are paracompact. Then ϕ : E → ϕ(E) is a
C�−1-fibre bundle.

It is easy to extend Theorem 6.3 when E is a manifold with boundary ∂E asking that the
restrictionφ|∂E : ∂E → B is also a submersion and applying Theorem 6.3 to the restriction
of ϕ to the interior of E and to the restriction of ϕ to the boundary ∂E.

Proof of Lemma 3.3 Since g is a C�−1-locally trivial fibration, by Theorem 6.2 there exists
an Ehresmann connection Hg for g , relative to which every sectionally smooth curve in
g(Y ) ⊂ Z has horizontal lifts. For any y ∈ Y we have TyY = V g

y ⊕ Hg
y where V g

y and
Hg
y are, respectively, the vertical and horizontal subspaces of TyY . Recall that V g

y is the
tangent space of the fibre g−1(g(y)) at y and that Hg

y projects isomorphically onto Tg(y)Z
under Dyg .
Analogously, there exists an Ehresmann connection Hf for f , relative to which every

sectionally smooth curve in f (X) ⊂ Y has horizontal lifts. For any x ∈ X we have TxX =
V f
x ⊕ Hf

x where V f
x and Hf

x are, respectively, the vertical and horizontal subspaces of
TxX . Recall that V

f
x is the tangent space of the fibre f −1(f (x)) at x and that Hf

x projects
isomorphically ontoTf (x)Y = V g

f (x)⊕Hg
f (x) underDxf . This isomorphism induces a direct

sum decomposition Hf
x = H̃ f

x ⊕ Hg◦f
x , where H̃ f

x and Hg◦f
x correspond, respectively, to

V g
f (x) and Hg

f (x). Hence we have TxX = V f
x ⊕ H̃ f

x ⊕ Hg◦f
x . Set V g◦f

x = V f
x ⊕ H̃ f

x , then we

have TxX = V g◦f
x ⊕Hg◦f

x and we claim that V g◦f
x is the vertical space of g ◦ f at x and that

the distributionHg◦f = {Hg◦f
x }x∈X is an Ehresmann connection for g ◦ f . Firstly, it is easy

to see that Hg◦f
x is mapped isomorphically onto Tg(f (x))Z under Dx(g ◦ f )

Df (x)g
(
Dxf (H

g◦f
x )

) = Df (x)g(H
g
f (x)) = Tg(f (x))Z.

To see thatV g◦f
x is the vertical space of g ◦f at xwe need to check two cases: 1) if v ∈ V f

x we
have thatDxf (v) = 0, thenDf (x)g

(
Dxf (v)

) = Df (x)g(0) = 0, 2) if v ∈ H̃ f
x thenDxf (v) ∈ V g

y
and Df (x)g

(
Dxf (v)

) = 0.
Let z ∈ (g ◦ f )(X) ⊂ Z, x ∈ (g ◦ f )−1(z) and y = f (x) ∈ g−1(z) ⊂ Y . Let α : I → Z be

a sectionally smooth curve in (g ◦ f )(X) ⊂ Z with α(0) = z, and let αy : I → f (X) ⊂ Y
be its horizontal lift relative to Hg , so we have that αy(0) = y and g ◦ αy = α. Now let
αx : I → X be the horizontal lift of αy relative to Hf , so we have that αx(0) = x and
f ◦ αx = αy. Thus we have g ◦ f ◦ αx = g ◦ αy = α, so αx is a lift of α by g ◦ f . To
conclude the proof we need to check that αx is a horizontal lift relative to the Ehresmann
connectionHg◦f . Since αx : I → X is the horizontal lift of αy relative toHf we have that
α′
x(t) ∈ Hf

αx(t) = H̃ f
αx(t) ⊕Hg◦f

αx(t) for every t ∈ I . We claim that α′
x(t) ∈ Hg◦f

αx(t), suppose this

is not true that α′
x(t) ∈ H̃ f

αx(t), then Dαx(t)f (α′
x(t)) = α′

y(t) ∈ V g
f (αx(t)), but this contradicts

the fact that αy is a horizontal lift of α relative to the Ehresmann connectionHg . ��
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